文档库 最新最全的文档下载
当前位置:文档库 › 相关函数及协方差函数

相关函数及协方差函数

.

'.

方差与协方差理解

§2 方差、协方差与相关系数 方差 例1 比较甲乙两人的射击技术,已知两人每次击中环数分布为: ξ:7 8901 0601...?? ??? η:67891001 02040201.....?? ???. 问哪一个技术较好 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于 ()E E ξξ-=E E ξξ-=0对一切随机变量均成立,即ξ的离差正负相消,因此 用()E E ξξ-是不恰当的. 我们改用()2 E E ξξ-描述取值ξ的离散程度,这 就是方差. 定义 1 若()2 E E ξξ-存在,为有限值,就称它是随机变量ξ的方差(variance),记作Var ξ, Var ξ=()2E E ξξ- (1) 但Var ξ的量纲与ξξ的标准差(standard deviation). 方差是随机变量函数()2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的计算公式

Var ξ=2()d ()x E F x ξ ξ+∞ -∞-?=22()(),,()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-= ()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ=()2 2 E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η. 解 利用(3)式 2 E ξ= ∑=i i i x P x ) (2 ξ=72×+82×+92×=, Var ξ= ()2 2E E ξξ-=82=. 同理, Var η= ()2 2 E E ηη-= = > Var ξ, 所以η取值较ξ分散. 这说明甲的射击技术较好. 例2 试计算泊松分布P(λ)的方差. 解 2 2 01 ! (1)!k k k k E k e k e k k λ λ λλξ∞ ∞ --====-∑∑ 1 1(1) (1)! (1)!k k k k k e e k k λ λ λλ∞ ∞ --===-+--∑∑ 2 ! ! j j j j j e e j j λ λ λλλ λ∞ ∞ --===+∑∑ 2 λλ=+ 所以Var ξ=22 λλλλ+-=. 例3 设ξ服从[ a, b ]上的均匀分布U [a, b],求Var ξ.

自相关函数

自相关函数在不同的领域,定义不完全等效。在某些领域,自相关函数等 同于自协方差(autocovariance)。 统计学 R(k) = \frac{E[(X_i - \mu)(X_{i+k} - \mu)]}{\sigma^2} 信号处理 R_f(\tau) = f(\tau) * f^*(-\tau)= \int_{-\infty}^{\infty} f(t+\tau)f^*(t)\, dt = \int_{-\infty}^{\infty} f(t)f^*(t-\tau)\, dt,其中“*”是卷积算符,(\cdot)^*为取共轭。 同一时间函数在瞬时t和t+a的两个值相乘积的平均值作为延迟时间t 的函数,它是信号与延迟后信号之间相似性的度量。延迟时间为零时,则 成为信号的均方值,此时它的值最大。 编辑本段 自相关函数的性质 以下以一维自相关函数为例说明其性质,多维的情况可方便地从一维 情况推广得到。 对称性:从定义显然可以看出R(i) = R(?i)。连续型自相关函数为偶 函数 当f为实函数时,有: R_f(-\tau) = R_f(\tau)\, 当f是复函数时,该自相关函数是厄米函数,满足: R_f(-\tau) = R_f^*(\tau)\, 其中星号表示共轭。 连续型实自相关函数的峰值在原点取得,即对于任何延时τ,均有 |R_f(\tau)| \leq R_f(0)。该结论可直接有柯西-施瓦兹不等式得到。离 散型自相关函数亦有此结论。 周期函数的自相关函数是具有与原函数相同周期的函数。 两个相互无关的函数(即对于所有τ,两函数的互相关均为0)之和 的自相关函数等于各自自相关函数之和。 由于自相关函数是一种特殊的互相关函数,所以它具有后者的所有性质。 连续时间白噪声信号的自相关函数是一个δ函数,在除τ = 0 之外 的所有点均为0。 维纳-辛钦定理(Wiener–Khinchin theorem)表明,自相关函数和功 率谱密度函数是一对傅里叶变换对: R(\tau) = \int_{-\infty}^\infty S(f) e^{j 2 \pi f \tau} \, df

第三章 协方差传播律 使用

第三章 协方差传播律 一、 公式汇编 广义传播律 T YY XX T ZZ XX T YZ XX D FD F D KD K D FD K ?=?=??=?220022 002200()()()T YY XX T ZZ XX YZ XX Q F Q F Q K Q K Q F Q K σσσσσσ?=??=??=?T YY XX T ZZ XX YZ XX Q FQ F Q KQ K Q FQ K ? =??=??=? 独立观测值权倒数 2 2211221111Z n n f f f P L P L P L P ?????????=+++ ? ? ?????????? 方差与协因数阵 202020XX XX YY YY XY XY D Q D Q D Q σσσ===22022 020i ii j jj ji ij Q Q Q σσσσσσ=== 2 210 XX XX XX D Q P σσ-== 权2 02i i p σσ= 二、 解题指南 1.观测值及其方差阵 写成向量、矩阵形式 ,XX X D 2 按要求写出函数式,对函数式求全微分,写成矩阵形式 函数式 ),,2,1(),,,,(21n i X X X f Z n i i == 全微分 写成矩阵形式: dZ KdX =

3应用协方差传播律求方差或协方差阵。 T ZZ XX D KD K = 三、 例题讲解 在三角形ABC 中观测三个内角 ,将闭合差平均分配后得到各角值及其方差阵为: 1 23?4010'30"??5005'20"?8944'10"L L L L ????????==?????????????? ??633363336LL D --????=--????--?? 解:1.观测量 及其方差 123????L L L L ????=??????? ? ??633363336LL D --????=--????--?? 2.写出函数式 1 2 3 3 ??sin sin ??sin sin a b L L S S S S L L == 线性化 013 2 3 ??ln ln ln sin ln sin ??ln ln ln sin ln sin a b S S L L S S L L =+-=+- 11332 2 3 3 ????cot cot ????cot cot a a a b b b dS S L dL S L dL dS S L dL S L dL =-=- 写成矩阵形式 11 332 33???cot 0cot ???0cot cot ?a a a b b b dL dS S L S L dS dL dS S L S L dL ??????-??==?????? -??????? ????? 1 313 2 33??cot cot ?0???cot cot ?0a a a b b b S L S L dL dS dS dL dS S L S L dL ρρρ ρ????-? ????? ? ?==????? ???????-???? ??? ?133?1146041??09625?dL dL KdL dL ρ????-??==????-???????? 3.应用协方差传播律求方差或协方差阵 263311460114604136309620962533645Dss ρ--???? -??????=--??????-??????----???? 1 2 3 ???,,L L L 已知边长S0=1500.000m,求Sa 、Sb 的长度及他们的协方差阵 Dss

相关协方差相关函数内积点击等概念

>> temp1=[1 2 3]; >> temp2=[3 4 1]; >> xtemp=temp1.*temp2 %matlab所谓的向量点击,结果还是向量!!!!!!! xtemp = 3 8 3 >> te=temp1*temp2' %这是数学上两个向量点击,然后在matlab里面的计算方法,结果就是一个值了,含义是两个向量的相似度!!不过没有归一化(没有 按照方差归一) te = 14 >> 2.相关和协方差的关系:如函数: function rou=calcuateSimilary(Beye,data_new) %Beye,data_new前者是去噪前的18*751的数据,后者去去噪后的18导的 %%下面是用概率论里面的相关系数来做的,分别计算比如18导各自的相关系数,结果是18*1的向量 [m,n]=size(Beye); rou=zeros(m,1); for i=1:m temp=cov(Beye(i,:),data_new(i,:));%没有办法,cov函数不像数学公式,matlab的cov函数得到的一定是一个协方差矩阵 %所以对两个向量而言,取反斜对角的任何一个(对称的)就是他们两个的方差。然后按照下面的其实是一个归一化公式 %就是得到了两个向量的相关系数,也其实是衡量的两个变量的相似程度(而且是归一化以后的,否者不好衡量),注意 %注意和信号处理里面的相关函数区分,相关函数在0点的值就是两个变量没有归一化的协方差也就是上面的那个temmp值(如果去了均值,内积就是协方差 %见信号处理里面的什么交流功率和直流功率和相关函数的关系那个图),而相关函数在其它点的值是为了衡量信号如果错位后的相似程度。如果错位后两个 %信号居然达到最大的值,那表示这两个信号时间上延迟后才最像或者说有可能是同一个信号的延迟再现,所以用在衡量寻找信号的潜在周期嘛。 rou(i)=temp(1,2)/(sqrt(cov(Beye(i,:)))*sqrt(cov(data_new(i,:)))); end

matlab 协方差概述

引用MATLAB... -matlab 协方差 [n,d]=numden(ex):变为有理分式形式,提取最小分母因子d,相应份子公因子n XLimMode…:轴范围模式 直方图平衡:hellostep 不克不及包容交互式操作、动画、步伐调试等,包含上述号令的步伐也不克不及运行,只能在MATLAB中运行后再复制到notebook中; Error:引发、显示指定的错误 Laplace变换:laplace C和C 同享库 Dbclear:清除断点 Welch方法:对分段的数据施用非长方形,减低由于叠合引起段间的计数相关性,也有助于克服长方形窗的旁瓣效应 双线性变换法:求出s=f(z),然后带到模拟滤波器的函数表达式H(s),得到数字滤波器的H(z)供给的函数为[bz,az]=bilinear(b,a,Fs).

XTick…:确定轴刻度位置 椭圆滤波器:ellipap(n,rp,rs) 鼠标键盘对应原则 约束最小二乘法设计,施用户在设计FIR滤波器的时无须定义幅值响应中的过渡带H=fircls(n,f,a,up,lo)up和lo长度和a相称时分别描写各频带最大限度和下限的向量a 的长度和f不必相称 M文件中包含了所有GUI组建的callbacks(回调函数),自己填写相关里容即可其中的函数有: 随机数天生:所有函数基于rand,randn,且以rnd末端 Any(a)或 prec默认uint8,fid文件句柄

Evaluate loop:循环运行输入细胞 count1可选N,inf,[M,N];prec取值精度,默以为uchar Isinteger 判断整容类型 Axes:坐标轴比例设置 描写随机序列的模子有:自回归(AR)模子、移动均等(MA)模子、自回归移动均等(ARMA)三种 MCC是调用MATLAB编译器的号令 17.4 MATLAB引擎 XTickMode…:刻度位置模式 harmmean调和均值 Libpointer:创建一个指向外部库指针 3.3 字符与字符串 12.1 函数的表示

从自协方差数出发, 建立MA(2)模型如下

从自协方差函数()()4.3,664.2,4084.7,,210-=γγγ出发, 建立MA(2)模型如下: 0102030405060708090100 -8 -6-4-202468 10 02468 101214161820 Lag S a m p l e A u t o c o r r e l a t i o n Sample Autocorrelation Function (ACF)

⒈ 利用公式 ??? ? ??∏-???? ??=???? ??C A b b 212211 γγσ 20T C C σγ=-∏ 其中1 lim T k k k k -→∞ ∏=ΩΓΩ,0100A ??= ???,10C ?? = ???,1212k k k k γγγγ+??? Ω= ???L L 计算出0000.42 =σ 和)8500.0,3600.0(),(21-=b b 。 ⒉所要求的模型为21*85.0*36.0--+-=t t t t X εεε t Z ∈,其中{}t ε是)4,0(WN 。 附:Matlab 程序 A=[0 1;0 0;]; C=[1;0]; gamma=[-2.664;3.4]; k=50; Omega=zeros(2,k); Omega(1,1)=-2.664; Omega(2,1)=3.4; Omega(1,2)=3.4; Gamma=zeros(k,k); for i=1:k Gamma(i,i)=7.4084; end for i=2:k Gamma(i,i-1)=-2.664; Gamma(i-1,i)=-2.664; end for i=3:k Gamma(i,i-2)=3.4;

方差与协方差理解

§2 方差、协方差与相关系数 2.1方差 例1 比较甲乙两人的射击技术,已知两人每次击中环数分布为: ξ:78901 0601...?? ??? η:67 891001 02040201.....?? ???. 问哪一个技术较好? 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于()E E ξξ-=E E ξξ-=0对一切随机变量均 成立,即ξ的离差正负相消,因此用()E E ξξ-是不恰当的. 我们改用( )2 E E ξξ-描述取 值ξ的离散程度,这就是方差. 定义1 若()2 E E ξξ-存在, 为有限值,就称它是随机变量ξ的方差(variance),记作Var ξ, Var ξ=( )2 E E ξξ- (1) 但Var ξ的量纲与ξ 不同,为了统一量纲,有时用ξ的标准差(standard deviation). 方差是随机变量函数( )2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的计算公式 Var ξ=2()d ()x E F x ξ ξ+∞ -∞-?=22()(),, ()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-=()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ= ()2 2 E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η.

协方差的意义和计算公式

协方差的意义和计算公式 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。 为什么需要协方差? 上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义: 来度量各个维度偏离其均值的程度,标准差可以这么来定义:

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?如果为0,也是就是统计上说的“相互独立”。 从协方差的定义上我们也可以看出一些显而易见的性质,如: 协方差多了就是协方差矩阵 上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算n! / ((n-2)!*2) 个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义: 这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有三个维度,则协方差矩阵为 可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。 Matlab协方差实战 上面涉及的内容都比较容易,协方差矩阵似乎也很简单,但实战起来就很容易让人迷茫了。必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。这个我将结合下面的例子说明,以下的演示将使用Matlab,为了说明计算原理,不直接调用Matlab的cov函数(蓝色部分为Matlab代码)。 首先,随机产生一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。mysample = fix(rand(10,3)*50)

相关函数与协方差函数的应用

互相关函数在工程中具有重要的应用价值: 1、在混有周期成分的信号中提取特定的频率成分,例如: 用相关分析法分析复杂信号的频谱 相关分析法分析复杂信号的频谱的工作原理如图3.24所示。 图3.24 利用相关分析法分析信号频谱的工作原理框图 2、线性定位和相关测试,例如: 用相关分析法确定深埋地下的输油管裂损位置 如图3.25所示。漏损处K 可视为向两侧传播声音的声源,在两侧管道上分别放置传感器1和2。因为放置传感器的两点相距漏损处距离不等,则漏油的声响传至两传感器的时间 就会有差异,在互相关函数图上处有最大值,这个就是时差。设为两传感器的安装中心线至漏损处的距离,为音响在管道中的传播速度,则 用来确定漏损处的位置,即线性定位问题,其定位误差为几十厘米,该方法也可用于弯曲的管道。 图3.25 利用相关分析进行线性定位实例 用相关法测试热轧钢带运动速度 图3.26所示是利用互相关分析法在线测量热轧钢带运动速度的实例。在沿钢板运动的方向上相距L处的下方,安装两个凸透镜和两个光电池。当热轧钢带以速度移动时,热轧钢带表面反射光经透镜分别聚焦在相距L的两个光电池上。反射光强弱的波动,通过光电池转换成电信号。再把这两个电信号进行互相关分析,通过可调延时器测得互相关函数出现 最大值所对应的时间,由于钢带上任一截面P经过A点和B点时产生的信号x(t)和y(t)是完全相关的,可以在x(t)与y(t)的互相关曲线上产生最大值,则热轧钢带的运动速度为

。 图3.26 利用相关分析法进行相关测速 利用互相关函数进行设备的不解体故障诊断 若要检查一小汽车司机座位的振动是由发动机引起的,还是由后桥引起的,可在发动机、司机座位、后桥上布置加速度传感器,如图3.27所示,然后将输出信号放大并进行相关分析。可以看到,发动机与司机座位的相关性较差,而后桥与司机座位的互相关较大,因此,可以认为司机座位的振动主要由汽车后桥的振动引起的。 图3.27 车辆振动传递途径的识别

协方差的意义和计算公式

协方差的意义和计算公式 统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些都比较简单,大家自己看看吧 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。 为什么需要协方差? 上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义: 来度量各个维度偏离其均值的程度,标准差可以这么来定义:

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?如果为0,也是就是统计上说的“相互独立”。 从协方差的定义上我们也可以看出一些显而易见的性质,如: 协方差多了就是协方差矩阵 上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算 个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给 出协方差矩阵的定义: 这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有 三个维度,则协方差矩阵为 可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。Matlab协方差实战 上面涉及的内容都比较容易,协方差矩阵似乎也很简单,但实战起来就很容易让人迷茫了。必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。这个我将结合下面的例子说明,以下的演示将使用Matlab,为了说明计算原理,不直接调用Matlab的cov函数(蓝色部分为Matlab代码)。 首先,随机产生一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。 1 M ySample = fix(rand(10,3)*50)

第三章 协方差传播率

第三章 协方差传播律 一、 公式汇编 广义传播律 T YY XX T ZZ XX T YZ XX D FD F D KD K D FD K ?=?=??=?220022 002200()()()T YY XX T ZZ XX YZ XX Q F Q F Q K Q K Q F Q K σσσσσσ?=??=??=?T YY XX T ZZ XX YZ XX Q FQ F Q KQ K Q FQ K ? =??=??=? 独立观测值权倒数 2 22 1122 1111 Z n n f f f P L P L P L P ?????????=+++ ? ? ?????????? 方差与协因数阵 202020XX XX YY YY XY XY D Q D Q D Q σσσ===22022 020i ii j jj ji ij Q Q Q σσσσσσ=== 221 00XX XX XX D Q P σσ-== 权 202i i p σσ= 二、 解题指南 1.观测值及其方差阵 写成向量、矩阵形式 ,XX X D 2 按要求写出函数式,对函数式求全微分,写成矩阵形式 函数式

),,2,1(),,,,(21n i X X X f Z n i i == 全微分 写成矩阵形式: dZ KdX = 3应用协方差传播律求方差或协方差阵。 T ZZ XX D KD K = 三、 例题讲解 在三角形ABC 中观测三个内角 ,将闭合差平均分配后得到各角值及其方差阵为: 1 23?4010'30"??5005'20"?8944'10"L L L L ????????==????????? ????? ??633363336LL D --????=--????--?? 解:1.观测量 及其方差 123????L L L L ????=??????? ? ??633363336LL D --????=--????--?? 2.写出函数式 12 03 3 ??sin sin ??sin sin a b L L S S S S L L == 线性化 013 2 3 ??ln ln ln sin ln sin ??ln ln ln sin ln sin a b S S L L S S L L =+-=+- 1133 2 2 3 3 ????cot cot ????cot cot a a a b b b dS S L dL S L dL dS S L dL S L dL =-=- 1 2 3 ???,,L L L 已知边长S0=1500.000m,求Sa 、Sb 的长度及他们的协方差阵 Dss

自相关函数和自协方差函数

9.2.3 自相关函数和自协方差函数 上面介绍的均值、均方值和方差描述的是一维随机变量的统计特性,不能反映不同时刻各数值之间的相互关系。例如,随机信号X(t) 分别在t 1,t 2时刻的随机取值X(t1),X(t2) 之间的关联程度如何,这种关联称为自关联。同样,我们也要研究两个随机信号X(t)和Y(t)数值之间的关联程度,这种关联性称为X 与Y 之间的互关联(下一小节介绍)。 1.自相关函数(Autocorrelation function) 自相关函数是描述随机信号X(t)在任意两个不同时刻t 1,t 2,的取值之间的相关程度。 定义6 实随机信号X(t)的自相关函数定义为 (9.2.7) 由于平稳 随机信号的统计特性与时间的起点无关,设 , 则有 。所以,平稳随机信号的自相关函数是时间间隔t 的函 数,记为R xx (t). 2.自协方差函数(Autocovariance function) 自协方差函数是描述随机信号X(t)在任意两个不同时刻t 1,t 2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。 定义7 实随机信号X(t)的自协方差函数定义为 (9.2.8) 当 时,有 。 显然,自协方差函数和自相关函数描述的特性基本相同。 对于平稳随机信号,自协方差函数是时间间隔t 的函数,记为C xx (t),且有: (9.2.9) 当均值 时,有 。 当随机过程X(t)的均值为常数,相关函数只与时间间隔 有关,且均方值为

有限值时,则称X(t)为宽平稳随机过程或广义平稳随机过程。它是由一维、二维数字特征定义的。一般所说的平稳过程都是指这种宽平稳随机过程。 3.平稳随机信号自相关函数的性质 设X(t)为平稳随机过程,其自相关函数为,自协方差函数,则有如下性质: (1) (9.2.10) (9.2.11) 即时的自相关函数等于均方差,自协方差函数等于方差。 (2) (9.2.12) 即当平稳随机信号是实函数时,其相关函数是偶函数。 (3) (9.2.13) 即时的自相关函数、自协方差函数取最大值。 (4)若,则其自相关函数也是周期为T的周期函数,即 (9.2.14) (5)若均值,当时,与相互独立,有 (9.2.15) 即对于零均值的平稳随机信号,当时间间隔很大时,与相互独立,互不相关。

相关文档
相关文档 最新文档