文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线公式大全

圆锥曲线公式大全

圆锥曲线公式大全
圆锥曲线公式大全

圆锥曲线公式大全

1、椭圆的定义、椭圆的标准方程、椭圆的性质

2、判断椭圆是 x 型还是y 型只要看2

x 对应的分母大还是2y 对应的分母大,若2

x 对应的分母大则x 型,若2y 对应的分母大则y 型.

3、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为122

22=+b y a x ,若为y

型则可设为12222=+b

x a y ,若不知什么型且椭圆过两点,则设为稀里糊涂型:22

1mx ny +=

4、双曲线的定义、双曲线的标准方程、椭圆的性质

122

22=-b

y a x 122

22=-b

x a y F 1(-c, 0 ), F 2( c, 0 )

1(0, -c, ), F 2( 0, c )

2、判断双曲线是 x 型还是y 型只要看2

x 前的符号是正还是2

y 前的符号是正,若2

x 前的符号为正则x 型,若2

y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为2

a

3、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为122

22=-b

y a x ,若

为y 型则可设为122

22=-b

x a y ,若不知什么型且双曲线过两点,则设为稀里糊涂型:

221(0)mx ny mn -=<

6、若已知双曲线一点坐标和渐近线方程y mx =,则可设双曲线方程为

222(0)y m x λλ-=≠,而后把点坐标代入求解

7、椭圆、双曲线、抛物线与直线:l y kx b =+的弦长公式:

AB == 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法 9、椭圆、双曲线、抛物线与直线问题的解题步骤:

(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理 (3)使用弦长公式

1、抛物线的定义:平面内有一定点F 及一定直线l (F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!

2、(1)抛物线标准方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不标准,立即化为标准方程!

(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!

(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”, 一次项为y ,则准线为”y=多少”!

(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!

(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!

3、求抛物线方程,如果只知x 型,则设它为2

y ax = (0)a ≠,a>o,开口朝右;a<0,开口朝左;

如果只知y 型,则设它为2

(0)x ay a =≠,a>o,开口朝上;a<0,开口朝下。 4、抛物线简单的几何性质:

(尤其对称性的性质要认真研究应用,经常由线对称挖掘出点对称,从而推出垂直平分等潜在条件!) 1、 抛物线的焦点弦,设1,12,2P(x ),Q(x )y y ,且P,Q 为抛物线22y px =经过焦点的一条弦:

(1)1,12,2P(x ),Q(x )y y 两点坐标的关系:22

1212,4

p y y p x x =-=

(2)焦点弦长公式:12()PQ x x p =++=

2

2sin p

α

(其中α为直线PQ 的倾斜角大小) (3)垂直于对称轴的焦点弦称为是通径,通径长为2p 5、(1)直线与椭圆一个交点,则直线与椭圆相切。

(2)直线与双曲线一个交点,则考虑两种情况:第一种是直线与双曲线相切;第二种是直线与双曲线的渐近线平行。

(3)直线与抛物线一个交点,则考虑两种情况:第一种是直线与抛物线相切;第二种是直线与抛物线的对称轴平行。

(4)直线与抛物线的位置关系,理论上由直线方程与抛物线方程的联立方程组实解的情况来确定,实践中往往归纳为对相关一元二次方程的判别式△的考察:直线与抛物线交于不同两点>0??;直线与抛物线交于一点0??= (相切)或直线平行于抛物线的对称轴; 直线与抛物线不相交0??<

6、判断点与抛物线、椭圆位置关系:先把方程化为标准式,而后把点代入,若大于,线外,等于线上,小于线内。

7、在研究直线与双曲线,直线与椭圆,直线与抛物线位置关系时,若已知直线过一个点

00(,)x y 时,往往设为点斜式:00()y y k x x -=-,但是尤其要注意讨论斜率不存在的情

况!!!斜率不存在则设为0x x =.

11、用点差法解决双曲线的弦的中点问题,一定要记得把所求出的直线方程与双曲线方程联立消去y 求出判别式,检验判别式如果小于0,则直线不存在!!!

1、 椭圆上的一点到椭圆焦点的最大距离为a c +,最小距离为a c -,椭圆上取得最大

距离和最小距离的点分别为椭圆长轴的两个顶点。 2、 判断过已知点的直线与抛物线一个交点直线条数:

(1) 若已知点在抛物线外,则过该点的直线与抛物线一个交点的直线有三条:相

切两条,与对称轴平行一条。

(2) 若已知点在抛物线上,则过该点的直线与抛物线一个交点的直线有两条:相

切一条,与对称轴平行一条。

(3) 若已知点在抛物线内,则过该点的直线与抛物线一个交点的直线有一条:相

切0条,与对称轴平行一条。

(1) 动点的轨迹方程。 3、 求点的轨迹的五个步骤:

(1) 建立直角坐标系(在不知点坐标的情况下)。 (2) 设点:求什么点的轨迹就只能把该点设为(x,y ),不能设为其它形式的坐标!!! (3) 根据直接法、代入法、定义法列出x 和y 的关系式。 (4) 化简关系式。

(5) 看看题目有没有什么限制条件,根据限制条件写出x 或y 的范围!!!易错!!! 7、过椭圆内部的一个点的直线必与椭圆相交,过双曲线或抛物线内部的一个点的直线

与双曲线或抛物线至少有一个交点:与双曲线的渐近线平行,一个交点;不平行,两个交点;与抛物线的对称轴平行,一个交点;不平行,两个交点。

圆锥曲线全部公式及概念

圆锥曲线 1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ =??=? 离心率c e a == 准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2 b a . 2.椭圆22 221(0)x y a b a b +=>>焦半径公式及两焦半径与焦距构成三角形的面积: 21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2 F PF F PF S b ?∠=. 3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200221x y b ?+>. 4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线 的距离(焦准距)2p c = 通径的一半(焦参数):2 b a 焦半径公式21|()|||a PF e x a ex c =+=+,2 2|()|||a PF e x a ex c =-=-, 两焦半径与焦距构成三角形的面积122 1cot 2 F PF F PF S b ?∠=. 5.双曲线的内外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 6.双曲线的方程与渐近线方程的关系: (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 7.抛物线px y 22 =的焦半径公式: 抛物线2 2(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x p x p x CD ++=+++=212122. 8.抛物线px y 22=上的动点可设为P ),2(2 y p y 或2 (2,2)P pt pt P (,)x y ,其中 22y px =. 9.二次函数22 24()24b ac b y ax bx c a x a a -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a --=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切. 11.直线与圆锥曲线相交的弦长公式: AB = 1212||||AB x x y y ==-=-

高考★圆锥曲线★的基本公式推导学长整合

高考★圆锥曲线★的基本公式推导(学长整合版)

————————————————————————————————作者:————————————————————————————————日期:

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是022222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22=外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22 =与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式, 再代入原始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

圆锥曲线公式大全

圆锥曲线知识考点 一、直线与方程 1、倾斜角与斜率:1 21 2180<α≤0(tan x x y y --==) α 2、直线方程: ⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点) ,(),,(222211y x P x x P 其中),(2121 y y x x ≠≠: 121 121 y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b : 1x y a b += ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率B A k -=,y 轴截距为B C -) (6)k 不存在?a x b a x o =??=)的直线方程为过(轴垂直,90α 3、直线之间的关系: 222111:,:b x k y l b x k y l +=+= ⑴ 平行:{ ? ?≠=2121212 1//b b k k k k l l 且都不存在 , 2 1 2121C C B B A A ≠= ⑵ 垂直:{ ?? ⊥-=?-==2 121211 1.0 21k k k k k k l l 不存在,02121=+B B A A ⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax ⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为: 0=++n Ay Bx ⑸定点(交点)系方程:过两条直线 :,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为: 0)(2 2 2 1 1 1 =+++++C y B x A C y B x A λ 反之直线0)(2 2 2 1 1 1 =+++++C y B x A C y B x A λ中,λ取任何一切实

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

圆锥曲线弦长公式

圆锥曲线弦长公式 关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。解:连结,设,由椭圆定义得,由余弦定理得 ,整理可得,同理可求得,则弦长 同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距) 结论:椭圆过焦点弦长公式: 二

. 双曲线的焦点弦长 设双曲线,其中两焦点坐标为 ,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。 。 解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得 整理可得,同理,则可求得弦长

(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得, 整理可得,则 因此焦点在x轴的焦点弦长为 同理可得焦点在y轴上的焦点弦长公式 三

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。. 抛物线的焦点弦长 若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|(图4) 解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得 即 则 同理的焦点弦长为

的焦点弦长为,所以抛物线的焦点弦长为 由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。 一

圆锥曲线公式大全

圆锥曲线公式大全 1 2 2 2 2、判断椭圆是 X 型还是y 型只要看X 对应的分母大还是 y 对应的分母大,若X 对应的分 2 母大则X 型,若y 对应的分母大则y 型? X 2 y 2 3、求椭圆方程一般先判定椭圆是 X 型还是y 型,若为X 型则可设为 2 ? 2 =1,若为丫 a b 4 型则可设为 2 y a 2 X ^ =1 ,若不知什么型且椭圆过两点,则设为稀里糊涂型: b 2 mχ2 n y 2 = 1

2 2 2 2、判断双曲线是X型还是y型只要看X前的符号是正还是y前的符号是正,若X前的符号为正则X型,若y2前的符号为正则y型,同样的,哪个分母前的符号为正,则哪个分母就为a2

2 2 X V 3、求双曲线方程一般先判定双曲线是X型还是y型,若为X型则可设为—2 =1 ,若 a b 2 2 为V型则可设为爲一笃=1 ,若不知什么型且双曲线过两点,则设为稀里糊涂型: a b 2 2 mx「ny 1(mn ::O) 6、若已知双曲线一点坐标和渐近线方程y = mx,则可设双曲线方程为 y2-m2x2VGK o),而后把点坐标代入求解 7、椭圆、双曲线、抛物线与直线l:y = kx?b的弦长公式: AB = J(k2+1)(X1—X2)2=、怙+l)(y1- y?)2 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法 9、椭圆、双曲线、抛物线与直线问题的解题步骤: (1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y或X (2)求出判别式,并设点使用伟大定理 (3)使用弦长公式 1、抛物线的定义:平面内有一定点F及一定直线I(F不在I上)P点是该平面内一动点,当 且仅当点P到F的距离与点P到直线I距离相等时,那么P的轨迹是以F为焦点,I为准线的一条抛物线?--------------- 见距离想定义!! ! 2、 ( 1)抛物线标准方程左边一定是X或y的平方(系数为1),右边一定是关于X和y的一次项,如果抛物线方程不标准,立即化为标准方程! (2)抛物线的一次项为X即为X型,一次项为y即为y型! (3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为 X,则准线为”X=多少” 一次项为y,则准线为”y=多少” (4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴! (5)抛物线的题目强烈建议画图,有图有真相,无图无真相! 3、求抛物线方程,如果只知X型,则设它为y2 = ax (a=0),a>o,开口朝右;a<0,开口朝左; 如果只知y型,则设它为X2=ay(a=0),a>o,开口朝上;a<0,开口朝下。 4、抛物线简单的几何性质:

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是022222=--C b B a A 【1-3】抛物线的切线方程: ② 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式,再代入原始式,最后得切线方程式1)()(22 02202020=+= +b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论 椭圆与双曲线对偶结论 倾斜角为α的直线l过焦点F与椭圆相交 倾斜角为α的直线l过焦点F与双曲线相

如图,已知直线l与双曲线相交于,A (注:直线l与双曲线的渐近线相交于两点,其他条件不变,结论依然成立)

推广:如图,已知点,A B是双曲线上关于推广:如图,已知点,A B是椭圆上关于原 F c与双曲线相 线l过焦点(),0

1.过定点(定点在双曲线外且不在渐近线上)的直线与双曲线交点个数问题: 设斜率为k 的直线l 过定点()()0,0P t t ≠,双曲线方程为()22 2210,0x y a b a b -=>>,过点P 与双曲线 相切时的斜率为0k . (1)当0b k a ≤<时,直线l 与双曲线有两个交点,且这两交点在双曲线的两支上; (2)当b k a =时,直线l 与双曲线只有一个交点; (3)当 0b k k a <<时,直线l 与双曲线有两个交点,且这两交点在双曲线的同一支上; (4)当0k k =时,直线l 与双曲线只有一个交点; (5)当0k k >时,直线l 与双曲线没有交点. 2.如图,(),0F c 是双曲线()22 2210,0x y a b a b -=>>的焦点,过点F 作FH 垂直双曲线的其中一条渐 近线,垂足为H ,O 为原点,则,OH a FH b ==. 3.点P 是双曲线()22 2210,0x y a b a b -=>>上任意一点,则点P 到双曲线的渐近线的距离之积为定值 22 22 a b a b +. 4.点P 是双曲线()22 2210,0x y a b a b -=>>上任意一点,过点P 作双曲线的渐近线的平行线分别与渐 近线相交于,M N 两点,O 为原点,则平行四边形OMPN 的面积为定值2 ab .

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

圆锥曲线的相关公式

圆锥曲线的相关公式 注:平面内到定点F(1,1)和到定直线l:x+2y=3距离相等的点的轨迹是?过定点F垂直直线l的一条直线 当A为短轴端点时,角最大,面积也最大,为bc,椭圆中焦点三角形的周长为2(a+c) 计算a,b,c相关值时,要对应标准方程,所以记得化为标准方程的形式 附录:定理1(椭圆中点弦的斜率公式): y x M F1F2 O A B

设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不平行y 轴)的中点,则有:2 2AB OM b k k a ?=- 证明:设11(,)A x y ,22(,)B x y ,则有1212 AB y y k x x -=-,22 1122 22 2222 11x y a b x y a b ?+=????+=?? 两式相减得:22221212220x x y y a b --+=整理得:22 21222 212y y b x x a -=--,即2 121221212()()()()y y y y b x x x x a +-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012 0012 22OM y x y y k x y x x +=== +,所以22AB OM b k k a ?=- 定理2(双曲线中点弦的斜率公式): 设00(,)M x y 为双曲线22221x y a b -=弦AB (AB 不平行y 轴)的中点,则有2 2AB OM b k k a ?= 证明:设11(,)A x y ,22(,)B x y ,则有1212 AB y y k x x -=-,22 1122 22 2222 11x y a b x y a b ?-=????-=?? 两式相减得:22221212220x x y y a b ---=整理得:22 2 1222 212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a +-=+-,因为00(,)M x y 是弦AB 的中点,所以0012 0012 22OM y x y y k x y x x +=== +,所以22AB OM b k k a ?= 定理3(抛物线中点弦斜率公式) 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =?0.(斜率存在并有两个交点) 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有?????==) 2(.2) 1(,222212 1 m x y m x y )2()1(-,得).(2212 221x x m y y -=- .2)(121 21 2m y y x x y y =+?--∴ 又0121 21 22,y y y x x y y k MN =+--= .

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线知识点总结(供参考)

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 注:①以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; ②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和2y 的分 母的大小。例如椭圆 22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -, 2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

高考★圆锥曲线★的基本公式推导

圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2 换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是022222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22 =与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式, 再代入原始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一

致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像; 二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线有关焦点弦的几个公式定理及应用(老师)

圆锥曲线有关焦点弦的几个公式及应用 如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。

如图1,,所以。 图1 (2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。

图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离 心率为。过右焦点且斜率为的直线于相交于两点,若,则()

解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结 圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数 e的点的轨迹。数学里有很多公式,为了帮助大家更好的学习数学,小编特 地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。 圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其 中x2/a2+y2/b2=1,其中a>b>0,c2=a2-b22、中心在原点,焦点在y轴上的椭圆标准 方程:y2/a2+x2/b2=1,其中a>b>0,c2=a2-b2参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准 方程:x2/a-y2/b2=1,其中a>0,b>0,c2=a2+b2.2、中心在原点,焦点在y轴上的 双曲线标准方程:y2/a2-x2/b2=1,其中a>0,b>0,c2=a2+b2.参数方程: x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt2;y=2pt(t为 参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于 0直角坐标:y=ax2+bx+c(开口方向为y轴,a≠0)x=ay2+by+c(开口方向为x轴, a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到 定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。且当 01时为双曲线。圆锥曲线公式知识点总结 圆锥曲线椭圆双曲线抛物线标准方程x2/a2+y2/b2=1(a>b>0)x2/a2- y2/b2=1(a>0,b>0)y2=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[- b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称 关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c2=a2-b2】【其中c2=a2+b2】 准线x=±a2/cx=±a2/cx=-p/2渐近线——————y=±(b/a)x—————离心率

相关文档
相关文档 最新文档