文档库 最新最全的文档下载
当前位置:文档库 › 单作用叶片泵

单作用叶片泵

单作用叶片泵
单作用叶片泵

单作用叶片泵

工作原理:单作用叶片泵也是由转子、定子、叶片和配油盘等零件组成。与双作用叶片泵明显不同之处是,定子的内表面是圆形的,转子与定子之间有一偏心量e,配油盘只开一个吸油窗口和一个压油窗口。单作用叶片泵的转子回转时,由于离心力的作用,使叶片紧靠在定子内壁,这样在定子、转子、叶片和两侧配油盘间就形成若干个密封的工作区间,当转子按图示的方向回转时,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这就是吸油腔。叶片被定子内壁逐渐压进槽内,工作空间逐渐减小,将油液从压油口压出,这就是压油腔。叶片泵转子每转一周,每个工作空间完成一次吸油和压油,称单作用叶片泵。

排量计算:下图是单作用叶片泵排量和流量计算简图。定子、转子直径分别为D 和d,宽度为B,两叶片间夹角为β,叶片数为Z,定子与转子的偏心量为e。当泵的转子转一转时,两相邻叶片间的密封容积的变化量为V1-V2。若把AB和CD看作是以O1为中心的圆弧,则有

所以,单作用叶片泵的排量为

泵的实际流量q为

式中,n—转子转速;ηpv—泵的容积效率。

为了使叶片运动自如、减小磨损,叶片槽通常向后(注意,这里与双作用叶片泵不同)倾斜20o~30o。下图为单作用叶片泵的配油盘和转子结构简图。

特点:单作用叶片泵的特点

可以通过改变定子的偏心距 e 来调节泵的排量和流量。

叶片槽根部分别通油,叶片厚度对排量无影响。

因叶片矢径是转角的函数,瞬时理论流量是脉动的。叶片数取为奇数,以减小流量的脉动。

单作用叶片泵与双作用叶片泵的区别:

一:单作用

1、单数叶片(使流量均匀)

2、定子、转子和轴受不平衡径向力

3、轴向间隙大,容积效率低

4、叶片底部的通油槽采取高压区通高压、低压区通低压,以使叶片底部和顶部的受力平衡,叶片靠离心力甩出。

5、叶片常后倾(压力角较小)

二:双作用

1、双数叶片(使流量均匀)

2、定子、转子和轴受平衡径向力

3、叶片底部的通油槽均通以压力油(定子曲线矢径的变化率较大,在吸油区外伸的加速度较大,叶片的离心力不足以克服惯性力和摩擦力)

4、叶片常前倾(叶片在吸油区和压油区的压力角变化较大)

总结:叶片泵流量大,压力大、压力稳定、噪音小。缺点:工作时易发热。制作精度高,成本高。

它是目前液压系统中应用最广的一种低噪音油泵。目前还没有能代替它的油泵,发展前景受到液压系统的限制,一般一套液压系统只用一台叶片泵。

双作用叶片泵工作原理介绍

双作用叶片泵工作原理介绍 工作原理 图A所示为双作用叶片泵的工作原理。其工作原理与单作用叶片泵相似,不同之处在于双作用叶片泵的定子内表面似椭圆,由两大半径R圆弧、两小半径r圆弧和四段过渡曲线组成,且定子和转子同心。配油盘上开两个吸油窗口和两个压油窗口。当转子按图示方向转动时,叶片由小半径r处向大半径R处移动时,两叶片间容积增大,通过吸油窗口a吸油;当叶片由大半径R处向小半径r处移动时,两叶片间容积减小,液压油油液压力升高,通过压油窗口b压油。转子每转一周,每一叶片往复运动两次。故这种泵称为双作用叶片泵。双作用叶片泵的排量不可调,是定量泵。 叶片泵 2.排量和流量的计算 由图A可知,叶片泵每转一周,两叶片组成的工作腔由最小到最大变化两次。因此,叶片泵每转一周,两叶片间的油液排出量为大圆弧段R处的容积与小圆弧段r处的容积的差值的两倍。若叶片数为z,当不计叶片本身的体积时,通过计算可得双作用叶片泵的排量为 V=2π(R2-r2)b (1)泵的流量为q=2π(R2-r2)bnηv (2)式中,R为定子的长半径;,r为定子的短半径;b为叶片的宽度;n为转子的转速;ηv为叶片泵的容积效率。 由上述的流量计算公式可知,流量的大小由泵的结构参数所决定,当转速选定后,液压泵的流量也就确定了。因此,双作用叶片泵的流量不能调节,是定量泵。如果不考虑叶片厚度的影响,其瞬时流量应该是均匀的。但实际上叶片具有一定的厚度,长半径圆弧和短半径圆弧也不可能完全同心,泵的瞬时流量仍将出现微小的脉动,但其脉动率较其他形式的泵小得多,只要合理选择定子的过渡曲线及与其相适应的叶片数(为4的倍数,通常为12片或16片),理论上可以做到瞬时流量无脉动。

液压气压传动与控制单作用叶片泵doc

《液压气压传动与控制》课程设计单作用变量叶片泵设计 学院:机械与汽车工程学院 班级:装备122 组员:张月吴传奇宋梓瑜 张大亮张如意 指导教师:苏学满 20 15年 4月

目录 一、前言 (1) 二、课程设计目的 (2) 三、课程设计任务和要求 (2) 四、设计计算说明书 (2) (一)工作原理 (4) (二)主要参数确定 (9) 五、单作用泵的注意事项 (9) 六、叶片泵的常见故障及排除方法 (11) 七、叶片泵的拆装修理 (13) 八、结论 (16) 九、参考文献 (17) 十、我的数据 (19)

前言 液压泵是现代液压设备中的主要动力元件,它决定着整个液压系统的工作能力。在液压系统中,液压泵的功能主要是将电动机及内燃机等原动机的机械能转换成液体的压力能,向系统提供压力油并驱动系统工作。在液压传动与控制中使用最多的液压泵主要有齿轮式、叶片式和柱塞式三大类型。其中叶片泵是在近代液压技术发展史上最早实用的一种液压泵。叶片泵与齿轮式、柱塞式相比,叶片泵具有尺寸小、重量轻、流量均匀、噪声低等突出优点。在各类液压泵中,叶片泵输出单位液压功率所需重量几乎是最轻的,加之结构简单,价格比柱塞泵低,可以和齿轮泵竞争。本设计对定量叶片泵的设计以YB系列的双作用叶片泵为基础,并结合现今的技术特点和最新观点进行设计,在定子过渡曲线和叶片倾角等设计上采用了一些有别于传统的设计方案,在一定程度上提高了泵的工作性能。叶片泵作为液压系统主要部件,对其的设计需要丰富的机械方面的理论知识,以及有关叶片泵的相关专业技术知识,将其作为我的设计方向,是我大学四年专业知识学习的总结和锻炼,在设计过程中也不断促使我重新认识、理解所学专业知识,对所学知识有了一次系统的巩固和提高。最重要的是在这次设计过程中,对所学理论知识与实践的结合,提高了自己的实践动手能力,并在这过程认识到自己的许多不足,我一定会

单作用叶片泵的结构特点

分析仪器 https://www.wendangku.net/doc/59714666.html, 单作用叶片泵的结构特点如下: 1.定子和转子相互偏置改变定子和转子之间的偏心距,可以调节泵的流量。 2.径向液压力不平衡 由于单作用叶片泵的这一特点,使泵的工作压力受到限制,所以这种泵不适于高压。 3.叶片后倾 一般在单作用叶片泵中,为了使叶片顶部可靠地与定子内表面相接触,叶片底部油槽在压油区是与压油腔相通,在吸油区与吸油腔相通的,即叶片的底部和顶部受到的压力是平衡的。这样,叶片仅靠随转子旋转时所受到的离心惯性力向外运动,顶住定子的内表面。根据力学原理,叶片后倾一个角度有利于叶片在惯性力的作用下向外甩出。通常,后倾角为24°。

我们为大家介绍了电磁流量计应该如何去了解它的制作工艺和性能有点,才能在工业生产中取得更好的应用,今天我公司技术人员来教您该产品是具有怎样的测量原理,还有如何挑选电磁流量计的技能参数,如何正确选型,包括防护等级、如何选择附加功能、如何选择安装、安装的位置需要注意哪些等选择条件,金湖捷特仪表有限公司是您可以值得信赖的专业生产流量仪表的公司。 电磁流量计具有怎样的测量原理,首先该产品是运用法拉第电磁感应定律,导电液体在磁场中作为切割磁力线运动时,导体中会产生感应电势,感应电势分别为K、B、V、D,其中K为仪表常数,B为磁感应强度,V为测量管道内的平均流速,D为测量管道内截面的内径。电磁流量计在工作测量流量时,导电液体以速度V流过垂直于流动方向的磁场,导电性液体的流动感应出一个与平均流速成正比的电压,其感应,它的感应电压信号通过二个或者以上与液体直接接触的电极检出,然后通过电缆传送至转换器再通过智能化处理,在液晶显示显示出标准信号。 电磁流量计应该如何正确的选型,该流量计的选型是工业应用中非常重要的工作,根据各个客户反馈的资料显示出,在实际的应用中有一大半的故障是由于选型错误和安装错误造成的,这要值得大家注意。

双作用叶片泵

引言 在广泛应用的各种液压设备中,液压泵是关键性的元件,它们的性能和寿命在很大程度上决定着整个液压系统的工作能力,因此对液压泵的合理选择和正确使用显得格外重要。即使是使用维护液压设备或从事液压系统的设计、生产,而不是从事液压元件开发、生产的工程技术人员,也有必要深入了解液压泵的结构及性能。本次设计中主要是从设计双作用叶片泵的方面来进入研究的。 本设计主要从双作用叶片泵的结构、原理、性能以及它的合理使用与维护来进行的,对于叶片泵参数设计的问题也有涉及。采用了国内通常所称的双作用式。 本设计的内容安排比较单一,只涉及了一种YB型的双作用叶片泵,而且其中的很多数据并不是按顺序来进行设计的,有些事根据网上的实验材料来进行取值的,先介绍的是双作用叶片泵的基本原理,接下来是流量计算,在然后是双作用叶片泵各零件和部件的设计,最后组装成为一个整体的双作用叶片泵。 由于本设计中,能够直接收集到的资料有限,不尽之处在所难免,希望您能指正。

1.双作用叶片泵的概述 1.1 工作原理 如图1-1所示。它的作用原理和单作用叶片泵相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。 定子内表面近似为椭圆柱形,该椭圆形由两段长半径R、两段短半径r和四段过渡曲线所组成。当转子转动时,叶片在离心力和(建压后)根部压力油的作用下,在转子槽内作径向移动而压向定子内表,由叶片、定子的内表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子内壁逐渐压进槽内,密封空间容积变小,将油液从压油口压出,因而,当转子每转一周,每个工作空间要完成两次吸油和压油,所以称之为双作用叶片泵,这种叶片泵由于有两个吸油腔和两个压油腔,并且各自的中心夹角是对称的,所以作用在转子上的油液压力相互平衡,因此双作用叶片泵又称为卸荷式叶片泵,为了要使径向力完全平衡,密封空间数(即叶片数)应当是双数。

ATOS单作用叶片泵和双作用叶片泵的工作原理

ATOS单作用叶片泵和双作用叶片泵的工作原理 阿托斯ATOS柱塞泵、阿托斯ATOS液压泵、阿托斯ATOS比例阀 ATOS意大利阿托斯液压泵 定量泵:叶片泵,径向柱塞泵,齿轮泵。变量泵:叶片泵,轴向柱塞泵,比例控制泵–多联泵–手动泵– Atex防爆泵 油缸伺服油缸液压油缸,标准型缸液压油缸防爆油缸不锈钢油缸 常规阀&叠加阀溢流阀先导式阀两级电磁阀安全阀方向开/关控制气控方向阀液控方向阀 一、A TOS单作用叶片泵的工作原理 泵由转子1、定子2、叶片3、配油盘和端盖等部件所组成。定子的内表面是圆柱形孔。转子和定子之间存在着偏心。叶片在转子的槽内可灵活滑动,在转子转动时的离心力以及通入叶片根部压力油的作用下,叶片顶部贴紧在定子内表面上,于是两相邻叶片、配油盘、定子和转子间便形成了一个个密封的工作腔。当转子按逆时针方向旋转时,图右侧的叶片向外伸出,密封工作腔容积逐渐增大,产生真空,于是通过吸油口6和配油盘5上窗口将油吸入。而在图的左侧。叶片往里缩进,密封腔的容积逐渐缩小,密封腔中的油液经配油盘另一窗口和压油口1被压出而输出到系统中去。这种泵在转子转一转过程中,吸油压油各一次,故称单作用泵。转子受到径向液压不平衡作用力,故又称非平衡式泵,其轴承负载较大。改变定子和转子间的偏心量,便可改变泵的排量,故这种泵都是变量泵。 二、A TOS双作用叶片泵的工作原理 它的作用原理和单作用叶片泵相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。 ATOS双作用叶片泵的瞬时流量是脉动的,当叶片数为4的倍数时脉动率小。为此,双作用叶片泵的叶片数一般都取12或16。

单作用叶片泵

单作用叶片泵 工作原理:单作用叶片泵也是由转子、定子、叶片和配油盘等零件组成。与双作用叶片泵明显不同之处是,定子的内表面是圆形的,转子与定子之间有一偏心量e,配油盘只开一个吸油窗口和一个压油窗口。单作用叶片泵的转子回转时,由于离心力的作用,使叶片紧靠在定子内壁,这样在定子、转子、叶片和两侧配油盘间就形成若干个密封的工作区间,当转子按图示的方向回转时,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这就是吸油腔。叶片被定子内壁逐渐压进槽内,工作空间逐渐减小,将油液从压油口压出,这就是压油腔。叶片泵转子每转一周,每个工作空间完成一次吸油和压油,称单作用叶片泵。 排量计算:下图是单作用叶片泵排量和流量计算简图。定子、转子直径分别为D 和d,宽度为B,两叶片间夹角为β,叶片数为Z,定子与转子的偏心量为e。当泵的转子转一转时,两相邻叶片间的密封容积的变化量为V1-V2。若把AB和CD看作是以O1为中心的圆弧,则有 所以,单作用叶片泵的排量为 泵的实际流量q为 式中,n—转子转速;ηpv—泵的容积效率。

为了使叶片运动自如、减小磨损,叶片槽通常向后(注意,这里与双作用叶片泵不同)倾斜20o~30o。下图为单作用叶片泵的配油盘和转子结构简图。 特点:单作用叶片泵的特点 可以通过改变定子的偏心距 e 来调节泵的排量和流量。 叶片槽根部分别通油,叶片厚度对排量无影响。 因叶片矢径是转角的函数,瞬时理论流量是脉动的。叶片数取为奇数,以减小流量的脉动。 单作用叶片泵与双作用叶片泵的区别: 一:单作用 1、单数叶片(使流量均匀) 2、定子、转子和轴受不平衡径向力 3、轴向间隙大,容积效率低 4、叶片底部的通油槽采取高压区通高压、低压区通低压,以使叶片底部和顶部的受力平衡,叶片靠离心力甩出。 5、叶片常后倾(压力角较小) 二:双作用 1、双数叶片(使流量均匀) 2、定子、转子和轴受平衡径向力 3、叶片底部的通油槽均通以压力油(定子曲线矢径的变化率较大,在吸油区外伸的加速度较大,叶片的离心力不足以克服惯性力和摩擦力) 4、叶片常前倾(叶片在吸油区和压油区的压力角变化较大) 总结:叶片泵流量大,压力大、压力稳定、噪音小。缺点:工作时易发热。制作精度高,成本高。 它是目前液压系统中应用最广的一种低噪音油泵。目前还没有能代替它的油泵,发展前景受到液压系统的限制,一般一套液压系统只用一台叶片泵。

变量叶片泵工作原理

变量叶片泵工作原理 单作用叶片泵,它的理论排量为V=4BzeRsin(丌/z) 式中 y——变量叶片泵的排量; B——叶片宽度; z——叶片数; R——定子圆半径; e——定子环对转子的偏心距。 显然,泵的理论排量正比于定子环对转子的偏心距e。 1.内控式变量叶片泵 内控式泵的变量操纵力来自其本身的排出压力。如图7.1所示,定子环5在其顶部滚动轴承的支承下可在水平方向移动。泵配流盘的吸、排油窗口的布置和定子运动方向存在偏角0,排油压力对定子环的作用力可分解为垂直方向的分量F1及与定子移动方向同向的水平分量F2。F2克服调节弹簧的压缩力,形成调节力,推动定子环移动。当泵的工作压力所形成的调节力R小于弹簧预紧力时,定子对转子的偏心距e 受最大流量调节螺钉的限制,保持在最大值。因而泵的流量基本不变,只是由于泄漏略有下降,如图7—2中AB所示。当泵的工作压力超过P。值后,调节力F2大于弹簧预紧力。随工作压力的增加,调节力F,增加,克服弹簧力使定子环向偏心距减小方向移动,泵的排量开始下降。当工作压力到达P,时,定子环的偏心距所对应的泵的理论流量等于它的泄漏量,泵的实际输出流量为零。此时泵的输出压力为最大。 增加调节弹簧的预紧力可以使图7—2的曲线船段平行右移。减小弹簧刚度,可改变BC段的斜率,使其更陡。调节最大流量调节螺钉,可调节曲线A点的位置(即最大流量)。这种变量泵称为限压式(亦称压力反馈或压力补偿式)泵。 内控式变量叶片泵结构简单,调节容易。但是,由于配流盘的偏转会使泵的有效排量减少、并使流量脉动增加。它的动态调节特性也比较差,因而一般仅用于经济型的小规格泵上。对于性能要求比较高的大、中规格的变量叶片泵,大图7—2限压式变量叶片泵特性部分采用外控式。 2.外控式变量叶片泵 外控式变量叶片泵的工作原理如图7.3所示。定子在顶部滑块3的限制下可水平移动。泵的吸、排油腔对称地布置在定子中心线的两侧。因而,作用在定子环上的液压力不产生使定子移动的调节力。外来控制压力通过控制活塞2克服弹簧力推动定子环移动,改变其对于转子的偏心距而实现变量。 采用不同的液压控制手段及不同的泵的输出参数反馈,可以组成各种控制形式的变量叶片泵。

叶片泵设计说明

叶片泵的结构设计及造型 叶片泵在液压系统中应用非常广泛,它具有结构紧凑、体积小、运转平稳、噪声小、使用寿命长等优点,但也存在着结构复杂、吸油性能差、对油液污染比较敏感等缺点。在此次课题设计过程过学习了解它的分类、结构特点、工作原理、应用场合等,在对流量,压力等技术参数进行计算的基础上,运用UG软件完成了一种典型叶片泵的设计,包括实体造型、装配图、工程图。 第一章叶片泵概述 1.1 叶片泵的分类 液压泵是液压系统的动力装置,它将原动机输入的机械能转化为液体的压力能。按不同的分类原则,划分如下: 1.按工作原理可分为 (1)叶片式泵、容积式泵、其它类泵。其中叶片式泵有立式泵、高速泵等;容积式泵有往复泵,如活塞(柱塞)泵、隔膜泵等;回转泵如齿轮泵、螺杆泵等。 2.叶片泵按结构分为单作用泵和双作用泵。单作用式叶片泵主要做变量泵使用,双作用式叶片泵主要做定量泵使用。 1.2叶片泵工作原理 1.2.1双作用式叶片泵的原理 当电机带动转子沿转动时,叶片在离心力和叶片底部压力油的双重作用下向外伸出,其顶部紧贴在定子表面上。处于四段同心圆弧上的四个叶片分别与转子外表面、定子表面及两个配流盘组成四个密封工作油腔。这些油腔随着转子的转动,密封工作油腔产生由小到大或由大到小的变化,可以通过配流盘的吸油窗口(与吸油口相连)或排油窗口(与排油口相连)将油液吸入或压出。 在转子每转过程中,每个工作油腔完成两次吸油和压油,所以称为双作用式叶片泵,由于高低压腔相互对称,轴受力平衡,为卸荷式。由于改善了机件的受力情况,

所以双作用叶片泵可承受的工作压力比普通齿轮泵高,一般国产双作用叶片泵的公称压力为5 1063 pa 。 图1.1 双作用叶片泵工作原理 1— 定子;2—压油口;3—转子;4—叶片;5—吸油口 1.2.2单作用叶片泵的原理 单作用叶片泵的工作原理如图所示,单作用叶片泵由转子1、定子2、叶片3和端盖等组成。定子具有圆柱形表面,定子和转子间有偏心距。叶片装在转子槽中,并可在槽滑动,当转子回转时,由于离心力的作用,使叶片紧靠在定子壁,这样在钉子、转子、叶片和两侧配油盘间就形成若干个密封的工作空间,当转子按图示的方向回转时,在图的右部,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这是吸油腔。在图的左部,叶片被定子壁逐渐压进槽,工作空间逐渐缩小,将油液从压油口压出,这是压油腔,在吸油腔和压油腔之间,有一段封油区,把吸油腔和压油腔隔开,这种叶片泵在转子每转一周,每个工作空间完成一次吸油和压油,因此称为单作用叶片泵。转子不停地旋转,泵就不断地吸油和排油。 图 1.2 单作用叶片泵工作原理

利用solidworks进行单作用叶片泵设计及其有限元分析本科大学论文

摘要 液压泵是随着液压传动技术的产生而产生的,随着我国工业和科学技术的不断发展,机、电、液一体化在整个机械行业所占的比重越来越大,液压传动技术在诸多领域得到了越来越广泛的应用,因此,液压泵作为动力元件成为液压传动元件中不可缺少的一部分,起到非常重要的作用,同时越来越受人们的关注。 单作用叶片泵作为液压泵的一种,在液压传动系统中有较为广泛的应用。基于单作用叶片泵的应用范围和优缺点,本文主要对单作用叶片泵做了从结构设计到部分结构性能分析的工作。其主要过程是通过现有工况确定单作用叶片泵主要的零件尺寸,然后通过SolidWorks软件对单作用叶片泵进行三维实体建模和虚拟装配。再对装配体中叶片的运动进行运动学分析和装配体进行动力学分析,最后对转子的静态应力进行有限元分析。整篇论文对于单作用叶片泵的设计具有参考和实用意义,同时也对单作用叶片泵的优化具有一定的指导作用。 关键字:单作用叶片泵,有限元,优化设计

Abstract Hydraulic pump is produced with hydraulic transmission technology, With the continuous development of industry and science and technology in our country, machine, andelectric, iquid integration in throughout machinery industry by accounted for of share increasingly big.Hydraulic drive technology get has increasingly widely of application in many area.So hydraulic pump as power components became hydraulic drive components in the not missing of part, up to very important of role, while increasingly by people of concern. Single-acting vane pump as a hydraulic pump.There are used in hydraulic transmission system more and more.Based on the scope of application of the single-acting vane pump and the advantages and disadvantages.This article focuses on single-acting vane pump part made from structural design to structural analysis. Its main processes are determined by existing conditions of single-acting vane pump parts dimensio. Through SolidWorks software for single-acting vane pump for three-dimension solid modeling, and virtual Assembly.Assembly blade motion in kinematics analysis and Assembly dynamics analysis, static finite element analysis of the stress of the last rotor. Papers for the design of single-acting vane pump with references and practical significance, as well as optimization of single-acting vane pump capable of guiding. Keywords: single-acting vane pump; finite; optimal design

限压式变量叶片泵的工作原理

1.限压式变量叶片泵的工作原理 限压式变量叶片泵是单作用叶片泵,根据前面介绍的单作用叶片泵的工作原理,改变定子和转子间的偏心距e,就能改变泵的输出流量,限压式变量叶片泵能借助输出压力的大小自动改变偏心距e的大小来改变输出流量。当压力低于某一可调节的限定压力时,泵的输出流量最大; 压力高于限定压力时,随着压力增加,泵的输出流量线性地减少,其工作原理如图3-20所示。泵的出口经通道7与活塞6相通。在泵未运转时,定子2在弹簧9的作用下,紧靠活塞4,并使活塞4靠在螺钉5上。这时,定子和转子有一偏心量e0,调节螺钉5的位置,便可改变e0。当泵的出口压力p较低时,则作用在活塞4上的液压力也较小,若此液压力小于上端的弹簧作用力,当活塞的面积为A、调压弹簧的刚度k s、预压缩量为x0时,有:pA<k s x0(3-22) 此时,定子相对于转子的偏心量最大,输出流量最大。随着外负载的增大,液压泵的出口压力p也将随之提高,当压力升至与弹簧力相平衡的控制压力p B时,有 p B A=k s x0(3-23) 当压力进一步升高,使pA>k s x0,这时,若不考虑定子移动时的摩擦力,液压作用力就要克服弹簧力推动定子向上移动,随之泵的偏心量减小,泵的输出流量也减小。p B称为泵的限定压力,即泵处于最大流量时所能达到的最高压力,调节调压螺钉10,可改变弹簧的预压缩量x0即可改变p B的大小。 设定子的最大偏心量为e0,偏心量减小时,弹簧的附加压缩量为x,则定子移动后的偏心量e为: e=e0-x (3-24) 这时,定子上的受力平衡方程式为: pA=k s(x0+x) (3-25) 将式(3-23)、式(3-25)代入式(3-24)可得: e=e0-A(p-p B)/k s(p≥p B) (3-26) 式(3-26)表示了泵的工作压力与偏心量的关系,由式可以看出,泵的工作压力愈高,偏心量就愈小,泵的输出流量也就愈小,且当p=ks(e0+x0)/A时,泵的输出流量为零,控制定子移动的作用力是将液压泵出口的压力油引到柱塞上,然后再加到定子上去,这种控制方式称为外反馈式。

叶片泵有哪些优缺点(内容清晰)

叶片泵有哪些优缺点? 油液的温度和粘度一般不宜超过55℃,粘度要求在17~37mm2/s之间。粘度太大则吸油困难;粘度太小则漏泄严重。 液压机双作用叶片泵的优缺点 发布者:admin 发布时间:2011-9-23 8:36:58 液压机双作用叶片泵的优缺点 双作用叶片泵的优点有以下几方面: ①流量均匀,运转平稳,噪声小。 ②转子所受径向液压力彼此平衡.轴承使用寿命长,耐久性好。 ③容积效率较高,可达95%以上。 ④工作压力较高。目前双作用叶片泵的工作压力为6. 86~10.3 MPa,有 时可达20.6 MPa。 ⑤结构紧凑,外形尺寸小且排量大。 双作用叶片泵的缺点有以下几方面: ①叶片易咬死,工作可靠性差,对油液污染敏感,故要求工作环境清洁, 油液要求严格过滤。 ②结构较齿轮泵复杂,零件制造精度要求较高。 ③要求吸油的可靠转速在8. 3—25 r/s范围内。如果转速低于8.3 rls, 因离心力不够,叶片不能紧贴在定子内表面,不能形成密封良好的封闭容积, 从而吸不上油。如果转速太高,由于吸油速度太快,会产生气穴现象,也吸不 上油,或吸油不连续。 叶片泵的优缺点及其应用 主要优点: (1)输出流量比齿轮泵均匀,运转平稳,噪声小。 (2)工作压力较高,容积效率也较高。 (3)单作用式叶片泵(Tokimec东京计器叶片泵)易于实现流量调节,双作用式叶片泵则因转子所受径向液压力平衡,使用寿命长。

(4)结构紧凑,轮廓尺寸小而流量较大。 主要缺点: (1)自吸性能较齿轮泵差,对吸油条件要求较严,其转速范围必须在 500~ 1500 r/min范围内。 (2)对油液污染较敏感,叶片容易被油液中杂质咬死,工作可靠性较差。 (3)结构较复杂,零件制造精度要求较高,价格较高。 叶片泵一般用在中压(6.3 M Pa)液压系统中,主要用于机床控制,特别是双作用式叶片泵(东京计器SQP叶片泵)因流量脉动很小,因此在精密机床中得到广泛使用。 叶片泵运行注意事项 发布时间:2012-09-03 09:58:30 浏览次数:127 作为泵产品,叶片泵更多地指滑片泵,例如:东京计器SQP叶片泵,油研PV2R 叶片泵,丹尼逊T6叶片泵,叶片泵的管理要点除需防干转和过载、防吸入空气和吸入真空度过大外,还应注意: 1、泵转向改变,则其吸排方向也改变,叶片泵都有规定的转向,不允许调反。因为转子叶槽有倾斜,叶片有倒角,叶片底部与排油腔通,配油盘上的节流槽和吸、排口是按既定转向设计,因此可逆转的叶片泵必须专门设计。 2、叶片泵装配配油盘与定子用定位销正确定位,叶片、转子、配油盘都不得装反,定子内表面吸入区部分最易磨损,必要时可将其翻转安装,以使原吸入区变为排出区而继续使用。 3、拆装注意工作表面清洁,工作时油液应很好过滤。 4、叶片在叶槽中的间隙太大会使漏泄增加,太小则叶片不能自由伸缩,会导致工作失常。 5、叶片泵的轴向间隙对ηv影响很大。 a)小型泵-0.015~0.03mm b)中型泵-0.02~0.045mm 6、油液的温度和粘度一般不宜超过55℃,粘度要求在17~37mm2/s之间。粘度太大则吸油困难;粘度太小则漏泄严重。

叶片泵在工程机械中的应用

目录 前言 (1) 第一章液压叶片泵的发展与应用 (2) 1.1液压叶片泵的发展史 (2) 1.2液压叶片泵的发展现状及发展趋势 (2) 1.3液压叶片泵的应用领域及意义 (3) 第二章液压叶片泵的介绍 (4) 2.1液压叶片泵的品牌及型号 (4) 2.2液压叶片泵的分类 (5) 2.3液压叶片泵的工作原理 (5) 2.4叶片泵的注意事项 (5) 2.5叶片泵的常见问题 (6) 第三章单作用叶片泵的工作原理 (11) 3.1单作用叶片泵构造 (11) 3.2单作用叶片泵的工作原理 (11) 3.3.单作用叶片泵的排量和流量计算 (12) 3.4单作用叶片泵的特点 (12) 第四章双作用叶片泵简介 (14) 4.1双作用叶片泵的结构特点 (14) 4.2双作用叶片泵工作原理 (15) 4.3双作用叶片泵的排量和流量计算 (16) 4.4 提高双作用叶片泵压力的措施 (17) 第五章限压式变量叶片泵的工作 (20) 5.1 限压式变量叶片泵的工作原理 (20) 5.2 限压式变量叶片泵的特性曲线 (21) 5.3限压式变量叶片泵与双作用叶片泵的区别 (21) 第六章推土机的工作原理 (23) 6.1推土机的发展史 (23) 6.2推土机的结构与工作原理 (24) 6.3推土机的转动系统 (25) 第七章叶片泵在推土机中的应用 (28) 7.1叶片泵在推土机中的正确使用 (28) 7.2叶片泵在推土机的安装与拆卸 (28)

……………………………………⊙……装…………………………⊙……订………………………⊙……线……………………………………… 7.3推土机叶片泵的故障检修...........................................28 结束语..................................................................31 致谢.. (32)

定量叶片泵设计与计算

1 双作用叶片泵简介 1.1双作用叶片泵组成结构 组成结构:定子、转子、叶片、配油盘、传动轴、壳体等 1.2 双作用叶片泵工作原理 图3-19 双作用叶片泵工作原理 1-定子 2-压油口 3-转子 4-叶片 5-吸油口 图1-1 双作用叶片泵工作原理 Fig 1-1 Double-acting vane pump principle of work 1—定子;2—吸油口;3—转子;4—叶片;5—压油口 如图1-1所示。它的作用原理和单作用叶片泵相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。 定子表面近似为椭圆柱形,该椭圆形由两段长半径R 、两段短半径r 和四段过渡曲线所组成。当转子转动时,叶片在离心力和建压后>根部压力油的作用下,

在转子槽作径向移动而压向定子表,由叶片、定子的表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子壁逐渐压进槽,密封空间容积变小,将油液从压油口压出,因而,当转子每转一周,每个工作空间要完成两次吸油和压油,所以称之为双作用叶片泵,这种叶片泵由于有两个吸油腔和两个压油腔,并且各自的中心夹角是对称的,所以作用在转子上的油液压力相互平衡,因此双作用叶片泵又称为卸荷式叶片泵,为了要使径向力完全平衡,密封空间数即叶片数>应当是双数。 1.3 双作用叶片泵结构特点 1>双作用叶片泵的转子与定子同心; 2>双作用叶片泵的定子表面由两段大圆弧、两段小圆弧和四段定子过渡曲 线组成; 3>双作用叶片泵的圆周上有两个压油腔、两个吸油腔,转子每转一转,吸、压油各两次双作用式>。 4>双作用叶片泵的吸、压油口对称,转子轴和轴承的径向液压作用力基本平衡;即径向力平衡卸荷式>。 5>双作用叶片泵的所有叶片根部均由压油腔引入高压油,使叶片顶部可靠地与定子表面密切接触。 6>传统双作用叶片泵的叶片通常倾斜安放,叶片倾斜方向与转子径向辐射线成倾角θ,且倾斜方向不同于单作用叶片泵,而沿旋转方向前倾,用于改善叶片的受力情况,最近观点认为倾角为0o最佳。

加油机叶片泵和组合泵的工作原理

加油机叶片泵和组合泵的工作原理 加油机的机械部分主要是一个液压系统,它包括电动机、叶片泵、油气分离器、流量计、电磁阀和油枪等。电动机是加油机的动力源,它将电能转化为机械能,并通过传动装置把机械能传给叶片泵。叶片泵将机械能转化为油液压力能,它是液压系统的动力源。从叶片泵出来的压力油进入油气分离器进行油气分离,气体被排入大气,油液进入流量计进行计量。流量计一方面不断地排出固定体积的油液,另一方面将流量信号转换为输出轴的转动信号。经计量后的油液通过电磁阀、导静电胶管和油枪注入受油容器。 第一节叶片泵 一、叶片泵的结构: 叶片泵又称旋板泵。它结构简单,抗污染能力强,成本低,易维护。叶片泵是液压系统的动力源,它的性能直接决定了整机的吸油与排油能力。叶片泵由铸铁泵体、铸铁泵盖、转子、叶片、弹簧(片)、溢流阀组件等组成。 铸铁泵体内分两部分,下部为泵腔,上部为溢流阀腔。泵腔为一空心圆柱体,其后端面左右两边各有一个三角口,右边三角口为叶片泵的进油口,左边三角口为叶片泵的出油口。泵腔左右两腰各开有一弧形槽,左弧形槽为正压过渡区,与叶片泵出油口相通,右弧形槽为负压过渡区,与叶片泵进油口相通。泵腔内偏心安装转子,转子沿圆周等距分布有七个径向槽,槽内装有弹簧(片)与叶片,转子旋转时,叶片能沿径向槽作往复运动。 溢流阀腔内装有溢流阀。溢流阀主要由阀座、阀芯、弹簧和调量螺钉等构成。阀座与阀芯将溢流阀腔分为左右两部分,左侧部分与泵的出油口及正压过渡区相通,右侧部分与泵的进油口及负压过渡区相通。 二、叶片泵的工作原理 A、B为相邻的两个叶片。转子和叶片A、B按顺时针转动。A叶片转动使低压过度区的容积不断增大,油液被吸入泵中。A、B两叶片所夹液体,因叶片的顺时针转动被带入高压过度区。在高压过度区,因叶片的转动,使容积不断缩小,油液在叶片的压迫下排出泵外。当转子连续转动时,油罐中的油液就被连续吸入泵内、排出泵外,使油泵形成一个稳定的流量。 泵腔圆柱体空间以其中心线为基准,可分为上密封区、下密封区、左过渡区和右过渡区四部分。转子与泵腔相切的部分为上密封区,与泵腔间隙最大的部分为下密封区,与出油口相通的左过渡区为正压区,与进油口相通的右过渡区为负压区。 叶片泵的泵腔上下两密封区的中心角为60°,两叶片间的夹角为51.43°(51°25′43″),故在密封区内有一个或两个叶片隔离了泵腔的两侧过渡区,使正压区与负压区之间的油液不能沟通。 当电机带动转子作顺时针旋转时,叶片在弹簧力和离心力的作用下贴紧泵腔(见图2.1.2),任意相邻的两叶片与转子、泵腔及端盖构成一个密封空间(在过渡区,各密封空间相通,形成一个大的密封空间)。右侧过渡区与泵的进油口相通,左侧过渡区与泵的出油口相通。转子顺时针旋转时,泵腔右侧密封容积增大,形成真空(负压),油罐内油液在大气压力作用下通过泵的进油口进入叶片泵的负压区,达到吸油的目的;左侧过渡区的密封容积减小,油液进入左过渡区后油压升高,压力油通过出油口被排出。转子连续不断地旋转,叶

双作用式叶片泵的工作原理及功用

双作用式叶片泵的工作原理及功用 日期:2012-9-19 来源:液压油缸_油缸_液压油缸价格_液压系统_油缸厂家_ 双作用式叶片泵的工作原理及功用 叶片泵也是一种常见的液压泵。根据结构来分,叶片栗有单作用式和双作用式两种。单作用式叶片泵又称非平衡式泵,一般为变量泵;双作用式叶片泵也称平衡式泵,一般是定量泵。 图3-9所示双作用式叶片栗是由定子6、转子3、叶片4、配流盘和泵体1组成,转子与定子同心安装,定子的内曲线是由两段长半径圆弧、两段短半径圆弧及四段过渡曲线所组成,共有八段曲线。 如图3-9所示,转子作顺时针旋转,叶片在离心力作用下,径向伸出,其顶部在定子内曲线上滑动。此时,由两叶片、转子外圆、定子内曲线及两侧配油盘所组成的封闭的工作腔的容积在不断地变化,在经过右上角及左下角的配油窗口处时,叶片回缩,工作腔容积变小,液压缸油液通过压油窗口输出;在经过右下角及左上角的配油窗口处时,叶片伸出,工作腔容积增加,油液通过吸油窗口吸人。

在每个吸油口与压油口之间,有一段封油区,对应于定子内曲线的四段圆弧处。 双作用式叶片泵每转一转,每个工作腔完成吸油两次和压油两次,所以称其为双作用式叶片栗,又因泵的两个吸油窗口与两个压油窗口是径向对称的,作用于转子上的液压力是平衡的,所以又称为平衡式叶片杲。 定子曲线是影响双作用式叶片泵性能的一个关键因素,它将影响叶片泵的流量均勻性、噪声、磨损等问题,过渡曲线的选择主要考虑叶片在径向移动时的速度和加速度应当均匀变化,避免径向速度有突变,使得加速度无限大,引起刚性冲击;同时又要保证叶片在作径向运动时,叶片顶部与定子内曲线表面不应产生脱空现象。目前,常用的定子曲线有等加速-等减速曲线、高次曲线和余弦曲线等。 叶片泵在叶片数确定后,由每两个叶片所夹的工作腔所占的工作空间角度随之确定该角度所占区域应在配流盘上吸油口与压油口之间(封油区内〉,否则会造成液压缸吸油口与压油口相通;而定子曲线中四段圆弧所占的工作角度应大于液压缸封油区所对应的角度,否则会产生困油现象。

利用SolidWorks进行单作用叶片泵结构设计及其有限元分析毕业设计论文

利用SolidWorks进行单作用叶片泵结构设计及其有限元分析毕业设计论文 1 绪论 1.1 课题研究背景 1.1.1 CAD技术的发展 制造的全球化、信息化和需求的个性化,都需要企业能在最短的时间内推出用户满意的产品,并且能够开速占领市场。为了适应这种瞬息万变的市场,设计方必须要缩短设计周期,提高产品质量,必须要有先进的实际技术。 计算机辅助设计(CAD-Computer Aided Design)即利用计算机及其图形设备帮助设计人员进行设计工作,简称CAD。20世纪50年代美国诞生第一台计算机绘图系统,开始出现具有简单绘图输出功能的被动式的计算机辅助设计技术。60年代初期出现了CAD 的曲面片技术,中期推出商品化的计算机绘图设备。70年代,完整的CAD系统开始形成,后期出现了能产生逼真图形的光栅扫描显示器,推出了手动游标、图形输入板等多种形式的图形输入设备,促进了CAD技术的发展。 80 年代,随着强有力的超大规模集成电路制成的微处理器和存储器件的出现,工程工作站问世,CAD技术在中小型企业逐步普及。80 年代中期以来,CAD技术向标准化、集成化、智能化方向发展。一些标准的图形接口软件和图形功能相继推出,为CAD 技术的推广、软件的移植和数据共享起了重要的促进作用;系统构造由过去的单一功能变成综合功能,出现了计算机辅助设计与辅助制造联成一体的计算机集成制造系统;固化技术、网络技术、多处理机和并行处理技术在CAD中的应用,极大地提高了CAD系统的性能;人工智能和专家系统技术引入CAD,出现了智能CAD技术,使CAD系统的问题求解能力大为增强,设计过程更趋自动化。 SolidWorks就是在此历史条件下发展成的一款基于Windows开发的三维CAD系统,SolidWorks自1995年问世以来,以其优异的性能、易用性和创新性,极大地提高了机械设计工程师的设计效率。SolidWorks作为三维设计软件具有全面的零件及装配建模功能,利用该软件还可以快速的生成工程图,SolidWorks软件还包含零件建模、装配设计、工程图与钣金等模块,还与高级图像渲染软件Photo Works高级有限元分析软件Cosmos,结构运动学分析软件Motionworks,产品数据管理软件SmarTeam,以及数控加工软件无

相关文档