文档库 最新最全的文档下载
当前位置:文档库 › 第六章 微分方程习题

第六章 微分方程习题

第六章  微分方程习题
第六章  微分方程习题

第六章 微分方程

一、是非题

1.任意微分方程都有通解。( )

2.微分方程的通解中包含了它所有的解。( )

3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( )

4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( )

5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 2

1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( )

7.xy y x y +='33不是一阶线性微分方程。( )

8.052=+'-''y y y 的特征方程为0522=+-r r 。( )

9.221xy y x dx

dy +++=是可分离变量的微分方程。( ) 10.可分离变量微分方程不都是全微分方程。( )

11.若()x y 1,()x y 2都是()()x Q y x P y =+'的特解,且()x y 1与()x y 2线性无关,则通解可表为()()()()[]x y x y C x y x y 211-+=。( )

12.函数x x e e y 21λλ+=是微分方程()02121=+'+-''y y y λλλλ的解。( )

13.曲线在点()y x ,处的切线斜率等于该点横坐标的平方,则曲线所满足的微分方程是C x y +='2(C 是任意常数)。( )

14.微分方程y x e y -='2,满足初始条件0|0==x y 的特解为1212+=

x y e e 。( ) 二、填空题

1.在横线上填上方程的名称

①()0ln 3=-?-xdy xdx y 是 。

②()()

022=-++dy y x y dx x xy 是 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。

⑤02=-'+''y y y 是 。

2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。

4.x x y cos 2sin -=''的通解是 。

5.124322+=+'+'''x y x y x y x 是 阶微分方程。

6.微分方程()06

='-''?y y y 是 阶微分方程。 7.x

y 1=

所满足的微分方程是 。 8.x y y 2='的通解为 。 9.0=+x

dy y dx 的通解为 。 10.()2511

2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()

012=+-'y x y x 的通解为 。

12.3阶微分方程3x y ='''的通解为 。

13.x y cos 1=与x y sin 2=是方程0=+''y y 的两个解,则该方程的通解为

14.微分方程032=-'-''y y y 的通解为 。

15.微分方程02=+'-''y y y 的通解为 。

16.微分方程x e y 2='''的通解是 。

17.微分方程'y y =''的通解是 。

18.微分方程xy dx dy 2=的通解是 。 19.微分方程054=++''y y y 的通解是 。

20.微分方程x e y y y =+'-''22的通解为 。

三、选择题

1.微分方程()043

='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2

2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。

A .3

B .5

C .4

D . 2

3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。

A .x y 2=

B .2x y =

C .x y 2-=

D . x y -=

4.微分方程3

23y y ='的一个特解是( )。

A .13+=x y

B .()32+=x y

C .()2C x y +=

D . ()31x C y += 5.函数x y cos =是下列哪个微分方程的解( )。

A .0=+'y y

B .02=+'y y

C .0=+y y n

D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。

A .通解

B .特解

C .是方程所有的解

D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。

A .1+=x e y

B .x e y 2=

C .2

2x e y ?= D . x e y ?=3

8.微分方程x y y sin =+''的一个特解具有形式( )。

A .x a y sin *=

B .x a y cos *?=

C .()x b x a x y cos sin *+=

D . x b x a y sin cos *+=

9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

A .02=-''y y

B .032=+'-''y y x y

C .045=-''x y

D . 012=+'-''y y

10.微分方程0=-'y y 满足初始条件()10=y 的特解为( )。

A .x e

B .1-x e

C .1+x e

D . x e -2

11.在下列函数中,能够是微分方程0=+''y y 的解的函数是( )。

A .1=y

B .x y =

C .x y sin =

D . x e y =

12.过点()3,1且切线斜率为x 2的曲线方程()x y y =应满足的关系是( )。

A .x y 2='

B .x y 2=''

C .x y 2=',()31=y

D . x y 2='',()31=y

13.下列微分方程中,可分离变量的是( )。

A .

e x y dx dy =+ B .()()y b a x k dx

dy --=(k ,a ,b 是常数) C .x y dx dy =-sin D . x e y xy y ?=+'2 14.方程02=-'y y 的通解是( )。

A .x y sin =

B .x e y 24?=

C .x e C y 2?=

D .x e y =

15.微分方程0=+x

dy y dx 满足4|3==x y 的特解是( )。 A .2522=+y x B .C y x =+43 C .C y x =+22 D . 722=-y x

16.微分方程01=?-y x

dx dy 的通解是=y ( )。 A .x C B .Cx C .C x

+1 D . C x + 17.微分方程0=+'y y 的解为( )。

A .x e

B .x e -

C .x x e e -+

D . x e -

18.下列函数中,为微分方程0=+ydy xdx 的通解是( )。

A .C y x =+

B .

C y x =+22 C .0=+y Cx

D . 02=+y Cx

19.微分方程02=-dx ydy 的通解为( )。

A .C x y =-2

B .

C x y =- C .C x y +=

D .C x y +-=

20.微分方程xdx ydy sin cos =的通解是( )。

A .C y x =+cos sin

B .

C x y =-sin cos

C .C y x =-sin cos

D . C y x =+sin cos 21.x e y -=''的通解为=y ( )。

A .x e --

B .x e -

C .21C x C e x ++-

D .21C x C e x ++--

22.按照微分方程通解定义,x y sin =''的通解是( )。

A .21sin C x C x ++-

B .21sin

C C x ++-

C .21sin C x C x ++

D . 21sin C C x ++

23.微分方程044=+'-''y y y 的两个线性无关解是( )。

A .x e 2与x e 22?

B .x e 2-与x e x 2-?

C .x e 2与x e x 2?

D . x e 2-与x e 24-?

24.下列方程中,不是全微分方程的为( )。

A .()()046632222=+++dy y y x dx xy x

B .()02=-?+dy y e x dx e y y

C .()022=--dy x dx y x y

D . ()

02=--xdy dx y x

25.下列函数中,哪个函数是微分方程()g t s -=''的解( )。

A .gt s -=

B .2gt s -=

C .221gt s -=

D . 221gt s = 26.下列函数中,是微分方程0127=+'-''y y y 的解( )。

A .3x y =

B .2x y =

C .x e y 3=

D . x e y 2=

27.方程()012='--y x y x 的通解是( )。

A .21x C y -=

B .21x

C y -= C .Cx x y +-=321

D . 221

x Cxe y -= 28.微分方程ydy x xdx y ln ln ?=?满足1|1==x y 的特解是( )。

A .y x 22ln ln =

B .1ln ln 22=+y x

C .0ln ln 22=+y x

D . 1ln ln 22+=y x

29.微分方程()()01122=+++dx y dy x 的通解是( )。

A .C y x =+arctan arctan

B .

C y x =+tan tan

C .C y x =+ln ln

D . C y x =+cot cot

30.微分方程()x y -=''sin 的通解是( )。

A .()x y -=sin

B .()x y --=sin

C .()21sin C x C x y ++--=

D . ()21sin C x C x y ++-=

四、解答题

1、求微分方程

xy dx

dy 2=的通解.

2、求微分方程

221xy y x dx

dy +++=的通解. 3.求微分方程()()

???==-++=1

|011022x y dy x y dx y x 的通解和特解。 4.求微分方程x y x y dx dy tan +=的通解。 5.求微分方程?????=+='=2|1

x y x y y x y 的特解。 6.求微分方程x e x y y sin cos -=?='的通解。

7.求微分方程x x

y dx dy sin =+的通解。 8.求微分方程()()?????==+--'+=1

|0121027x y x y y x 的特解。

9.求微分方程01=++'x e y x

y 满足初始条件()01=y 的特解。 10.求微分方程()311

2+=+-x y x dx dy 的通解。 11.求微分方程02=-'+''y y y 的通解。

12.求微分方程052=+'+''y y y 的通解。

13.求微分方程044=+'+''y y y 的通解。

14.求微分方程()x x x y y 3sin 23cos 6249--=+''的通解。

15.求微分方程x y y y sin 67=+'-''的通解。

16.求微分方程()()0223222=-+-+dy xy x dx y xy x 的通解。

17.已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程。

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

常微分方程第一章

第一章一阶微分方程 1、1学习目标: 1、理解微分方程有关得基本概念,如微分方程、方程阶数、解、通解、初始条件、初值问题等得定义与提法、掌握处理微分方程得三种主要方法: 解析方法, 定性方法与数值方法、 2、掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程得猜测检验法, 常数变易法与积分因子法, 灵活运用这些方法求解相应方程, 理解与掌握一阶线性方程得通解结构与性质、 3、能够大致描述给定一阶微分方程得斜率场, 通过给定得斜率场描述方程解得定性性质; 理解与掌握欧拉方法, 能够利用欧拉方法做简单得近似计算、 4、理解与掌握一阶微分方程初值问题解得存在唯一性定理, 能够利用存在唯一性定理判别方程解得存在性与唯一性并解决与之相关得问题, 了解解对初值得连续相依性与解对初值得连续性定理, 理解适定性得概念、 5、理解自治方程平衡点, 平衡解, 相线得概念, 能够画出给定自治方程得相线, 判断平衡点类型进而定性分析满足不同初始条件解得渐近行为、 6、理解与掌握一阶单参数微分方程族得分歧概念, 掌握发生分歧得条件, 理解与掌握各种分歧类型与相应得分歧图解, 能够画出给定单参数微分方程族得分歧图解, 利用分歧图解分析解得渐近行为随参数变化得状况、 7、掌握在给定得假设条件下, 建立与实际问题相应得常微分方程模型, 并能够灵活运用本章知识进行模型得各种分析、 1、2基本知识: (一)基本概念 1.什么就是微分方程: 联系着自变量、未知函数及它们得导数(或微分)间得关系式(一般就是 指等式),称之为微分方程、 2.常微分方程与偏微分方程: (1)如果在微分方程中,自变量得个数只有一个,则称这种微分方程为常微分方程,例 如, 、 (2)如果在微分方程中,自变量得个数为两个或两个以上,则称这种微分方程为偏微 分方程、例如, 、 本书在不特别指明得情况下, 所说得方程或微分方程均指常微分方程、 3.微分方程得阶数: 微分方程中出现得未知函数最高阶导数得阶数、例如, 就是二阶常微分方程; 与就是二阶偏微分方程、 4.n阶常微分方程得一般形式: , 这里就是得已知函数,而且一定含有得项;就是未知函数,就是自变量、 5.线性与非线性: (1) 如果方程得左端就是及得一次有理式,则称为n阶线性微分方程、

高等数学第七章微分方程试题及复习资料

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程, 通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α -=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性 非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

常微分方程第1章教案

第一章 绪论 定义:指含有未知量的等式. 代数方程:2210x x -+ = 1=,3121x x x --=+ 超越方程:sin cos 1x x +=,221x e x x =+- 以上都是一元方程,一般形式可以写成()0F x = 二元方程2210x y +-=的一般形式可以写成(,)0F x y =,同理三元方程22210 x y z ++-=等等 根据对未知量施加的运算不同进行方程的分类,高等数学的运算主要是微分和积分运算 一、引例 例1:已知一曲线通过点(1,2),且在该曲线上任一点(,)M x y 处的切线的斜率为2x ,求这曲线的方程. 解:设所求曲线的方程为()y f x =,由题意 1d 2(1)d 2(2)x y x x y =?=???=? 由(1)得2d y x x =?,即2y x C =+ (3) 把条件“1x =时,2y =,”代入上式(3)得221 C =+,1C ∴= 把1C =代入式(3),得所求曲线方程:21y x =+ 例2:列车在平直道路上以20m/s (相当于72km/h )的速度行驶,当制动时列车获得加速度20.4m /s -.问开始制动后需要多长时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解:设列车在开始制动后t s 时行驶了s m.根据题意,反映制动阶段列车运动规律的函数()s s t =应满足关系式 00 220d 0.4(4) d d 20(5)d 0*t t t s t s v t s ===?=-???==???=??() 把式(4)两端积分一次,得1d 0.4d s v t C t = =-+ (6)

第六章微分方程

第六章 微分方程 【考试要求】 1.理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解. 2.掌握可分离变量方程的解法. 3.掌握一阶线性方程的解法. 4.了解二阶线性微分方程解的结构. 5.掌握二阶常系数齐次线性微分方程的解法. 【考试内容】 一、微分方程的基本概念 一般地,凡表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称为方程.未知函数是一元函数的微分方程,称为常微分方程. 方程中未知函数导数的最高阶数,称为该微分方程的阶. 如果函数()y f x =满足一个微分方程,则称它是该微分方程的解. 如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同时,这样的解叫做微分方程的通解. 当自变量取某值时,要求未知函数及其导数取给定值,这种条件称为初始条件. 满足给定初始条件的解,称为微分方程满足该初始条件的特解. 二、可分离变量的微分方程 一般地,如果一个一阶微分方程能写成 ()()g y dy f x dx = 的形式,也就是说,能把微分方程写成一端只含 y 的函数和dy ,另一端只含x 的函数和 dx ,那么原方程就称为可分离变量的微分方程.此方程两端同时积分,方程左端对变量y

积分,方程右端对变量x 积分,即 ()()g y dy f x dx =??, 便可求出其通解. 三、一阶线性微分方程 形如 ()()dy P x y Q x dx += 或 ()()y P x y Q x '+= 的方程称为一阶线性微分方程.“线性”是指在方程中含有未知函数y 和它的导数y '的项都是关于y 、y '的一次项, 而()Q x 称为自由项. 1.一阶齐次线性微分方程 当自由项()0Q x =时,()0y P x y '+= 称为一阶齐次线性微分方程.它的通解 为 ()P x dx y Ce -? =. 说明:在式()P x dx y Ce -? =中,求解 ()P x dx ?时只需求出一个原函数即可. 2.一阶非齐次线性微分方程 当自由项()Q x 不恒为零时, ()()y P x y Q x '+= 称为一阶非齐次线性微分方 程.它的通解为 ()()()P x dx P x dx y e Q x e dx C -??? ?=+???? ?. 说明:求解 ()P x dx ?时也只需求出一个原函数即可. 四、二阶常系数线性微分方程 1.二阶常系数线性微分方程解的结构 形如 ()y py qy f x '''++= 的二阶微分方程,由于方程中未知函数y 及其各阶导 数都以一次(线性)形式出现,故称为二阶常系数线性微分方程.其中p 、q 为常数,()f x 是自变量x 的函数.

第七章微分方程

第七章 微分方程 教学目的: 1.了解微分方程及其解、阶、通解,初始条件和特等概念。 2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4. 会用降阶法解下列微分方程: ()()n y f x =, (,)y f x y '''+和(,)y f y y '''= 5. 理解线性微分方程解的性质及解的结构定理。 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9.会解微分方程组(或方程组)解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 2、可降阶的高阶微分方程() ()n y f x =, (,)y f x y '''+和(,)y f y y '''= 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程; 教学难点: 1、齐次微分方程、伯努利方程和全微分方程; 2、线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。 4、欧拉方程 §12. 1 微分方程的基本概念 函数是客观事物的部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程. 解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程) x dx dy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件: x =1时, y =2, 简记为y |x =1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解) ?=xdx y 2, 即y =x 2 +C , (3)

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为x.y的连续函数。 2、形如-的方程,称为伯努利方 程,这里的连续函 数.n 3、如果存在常数-对于所 有函数称为在R 上关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的 任一解- 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x=,在任何不包含原点

的区间a上的基解矩阵。 2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证 明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题 2 一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 微分方程是. 2、方程的通解中含有任意常数的个数为. 3、方程有积分因子的充要条件为. 4、连续是保证对满足李普希兹条件的条件. 5、方程满足解的存在唯一性定理条件的区域是. 6、若是二阶线性齐次微分方程的基本解组,则它 们(有或无)共同零点. 7、设是方程的通解,则 . 8、已知是二阶齐次线性微分方程的一个非零解,则与 线性无关的另一解 . 9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线 性无关解是 .

10、线性微分方程组的解是的基本解组的充要条件是 . 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给 出在解的存在区间的误差估计.(10分) 四、求解微分方程组 满足初始条件的解.(10%)五、证明题:(10%) 设,是方程

常微分方程第一章初等积分法

第一章 初等积分法 方程对于学过中学数学的人来说是比较熟悉的,在初等数学中就有各种各样的方程,比如线性方程、二次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知量和未知量之间的关系找出来,列出包含一个未知量或几个未知量的一个或者多个方程式,然后求取方程(组)的解.这里,方程(组)的解为常数. 然而在实际生活中,常常出现一些特点和以上方程完全不同的问题.比如:求物体在一定条件下运动的规律(比如某物体做匀速直线运动,速度为5,求其位移变化的规律);求满足一定条件(比如在某曲线任意点处的斜率为该点横坐标的2倍)的曲线的方程等等. 物体运动规律、曲线方程在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求出一个或者几个未知的函数. 在数学上,解决上述问题也需要建立方程,不过建立的是含有未知函数自变量、未知函数及未知函数的导数的方程(比如上述两个问题建立的方程为: 5=dt ds ,x dx dy 2=) ,这类方程就叫做微分方程. 本章主要介绍微分方程的基本概念及几类简单的微分方程的解法. 1.1 微分方程的基本概念 300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分学,是人类科学史上划时代的重大发现.而微积分的产生和发展,又与求解微分方程问题密切相关.这是因为:微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程.然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系.而这种联系,用数学语言表达出来,其结果往往形成一个微分方程.一

微分方程例题

1. 求下列微分方程的通解: (1)x e y dx dy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+?=+???=-----??. (2)xy '+y =x 2+3x +2; 解 原方程变为x x y x y 231++=+'. ])23([1 1C dx e x x e y dx x dx x +??++?=?- ])23([1])23([12C dx x x x C xdx x x x +++=+++=?? x C x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ; 解 )(cos sin cos C dx e e e y xdx x dx +???=?-- )()(sin sin sin sin C x e C dx e e e x x x x +=+?=---?. (4)y '+y tan x =sin 2x ; 解 )2sin (tan tan C dx e x e y xdx xdx +???=?- )2sin (cos ln cos ln C dx e x e x x +?=?- ?+?=)cos 1cos sin 2(cos C dx x x x x =cos x (-2cos x +C )=C cos x -2cos 2x . (5)(x 2-1)y '+2xy -cos x =0; 解 原方程变形为1 cos 12 22-=-+'x x y x x y . )1cos (12212 22C dx e x x e y dx x x dx x x +??-?=?--- )(sin 1 1])1(1cos [112222C x x C dx x x x x +-=+-?--=?. (6)23=+ρθ ρd d ; 解 )2(33C d e e d d +???=?-θρθθ )2(33C d e e +=?-θθθ θθθ3333 2)32(--+=+=Ce C e e .

第六章 常微分方程 - 答案

第六章 常微分方程 一、填空题 1.x ce y 2-= 2. 1()x x y xe e C x --=--+ 3. y =()x e x C + 4. 044=+'-''y y y 二、单项选择题 1. A 2.C 3.C 4.A 5.D 6. C 7.A 8. A 9. B 10. D 三/计算题 1.解:通解为 []11ln ln sin ...........................3sin 1 cos .............................................6dx dx x x x x x y e e dx C x x e e dx C x x C x - -????=+??????=+????=-+??分 分 2.解:通解为 []tan tan ln cos ln cos 1...........................2cos 1cos 11cos ..............................4cos cos 1.....................................cos xdx xdx x x y e e dx C x e e dx C x xdx C x x x C x --?? ? ?=+???? ?? =+?? ?? ?? = +???? =+???分分...............6分 求微分方程 x x y y x ln =-' 满足初始条件11==x y 的特解. 3.解: x y x y ln 1 =- ' ??? ? ??+??=?-C dx e x e y dx x dx x 1 1)(ln () ??? ??+=+=??-C dx x x x C dx e x e x x ln )(ln ln ln ?? ? ???+=C x x 2)(ln 2 由 11 ==x y 得1=C , 所以?? ? ???+=12)(ln 2x x y . 4.解:令y u x =,则dy du u x dx dx =+,原方程化为1du x dx u =,即2 2u e Cx =.通解为 2 2 2y x e Cx =.

微分方程(习题及解答)

第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解 . 答:是 . 2.微分方程 3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程2 3550x x y '+-=的通解是 . 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5'=的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答: Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++=

常微分课后答案第一章

第一章 绪论 §1.1 微分方程:某些物理过程的数学模型 §1.2 基本概念 习题1.2 1.指出下面微分方程的阶数,并回答方程是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+? ? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程02 2 2=+y dx y d ω的解,这里0>ω是常数. (1)x y ωcos =; (2)11(cos C x C y ω=是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=是任意常数); (5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).

解 (1)y x dx y d x dx dy 2222cos ,sin ωωωωω-=-=-=,所以02 2 2=+y dx y d ω,故x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以0222=+y dx y d ω,故 x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2 222sin ,cos ωωωωω-=-==,所以022 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=', 所以022 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故02 2 2=+y dx y d ω,因此)sin(B x A y +=ω为方程的解. 3.验证下列各函数是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 是任意常数); (3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-=';

微分方程习题教材

微分方程和差分方程作业题 专业:土规1101班 姓名:刘迈克 学号:2011306200521 微分方程模型作业: 1.用matlab 求解微分方程组 00dx x y dt dy x y dt ?++=????+-=?? (1)求在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形. (2)分别用 ode23、ode45 求此微分方程组初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异. 解: 程序: [x,y]=dsolve('Dx+x+y=0','Dy+x-y=0', ... 'x(0)=1', 'y(0)=0', 't') ezplot(x,y,[0,5]); (1) =x t t t t e e e e 22224242212 1+-+ 4242 22t t e e y -= (2) 先编写函数文件 verderpol.m function xprime=verderpol(t,x)

xprime=[-x(1)-x(2); -x(1)+x(2)]; 再编写脚本文件 vdpl.m,在命令窗口直接运行该文件 clear; y0=[1;0]; [t,x]=ode45(23)('verderpol',[1,40],y0); plot(t,x(:,1),'or-'); ode45求解器微分方程组初值问题的数值解(近似解) Ode23求解器微分方程组初值问题的数值解(近似解) 两种求解器之间的差异: 由图像可知,Ode45求解器的图像中点数比较多,更加精确。 2.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升

专业常微分方程学习活动3 第一章初等积分法的综合练习全解

常微分方程学习活动3 第一章 初等积分法的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握. 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。 一、填空题 1.微分方程0)(4 3 ='-'+''y y y x y xy 是 二 阶微分方程. 2.初值问题00 d (,) d ()y f x y x y x y ?=???=?的解所满足的积分方程是 0 0(,)d x x y y f s y s =+? . 3.微分方程0d )ln (d ln =-+y y x x y y 是 一阶线性非齐次微分方程 .(就方程可积类型而言) 4.微分方程0d )2e (d e =++y y x x y y 是 全微分方程 .(就方程可积类型而言) 5.微分方程03)(2 2 =+'+''x y y y 是 恰当导数方程 .(就方程可积类型而言) 6.微分方程 y x x y sin d d 2=的所有常数解是 …±±==210k ,, π,k y . 7.微分方程21d d y x y -=的常数解是 1±=y . 8.微分方程x x y y x 122 e -=-'的通解为 )(﹣C x x 1 +=e y . 9.微分方程2)(21 y y x y '+ '=的通解是 22 1C Cx y += .. 10.一阶微分方程的一个特解的图像是 二 维空间上的一条曲线. 二、计算题 1.指出下列方程的阶数,是否是线性方程: (1) 22d d x y x y += 答:一阶,非线性

相关文档
相关文档 最新文档