文档库 最新最全的文档下载
当前位置:文档库 › 齿轮设计实例

齿轮设计实例

齿轮设计实例
齿轮设计实例

【例1】设计一电动机驱动的带式运输机的两级减速器高速级的直齿圆柱齿轮传动。已知传递的功率P 1=5.5kW ,小轮转速n 1=960r/min ,齿数比u =4.45。

解:

1.轮齿部分主要几何尺寸的设计与校核

① 选定材料、齿数、齿宽系数 由表10-7选择常用的调质钢

小轮:45调质 HB 1=210~230, 大轮:45正火 HB 2=170~210,

取小轮齿数Z 1=22,则大轮齿数Z 2=uZ 1=4.45×22≈98, 对该两级减速器,取φd =1。 ②确定许用应力: 许用接触应力

N H lim H H min []Z S σσ=

许用弯曲应力

Flim ST NT

F F min

[]Y Y S σσ=

式中 σHlim1=560MPa ,σHlim2=520MPa (图8-7(c )),

σFlim1=210MPa ,σFlim2=200MPa (图8-7(c ))。

σFlim 按图8-26查取,应力修正系数Y ST =2,而最小安全系数σHlim =σFlim =1(表8-5),故

H11560

[]5601σ?== MPa H21520

[]5201σ?== MPa F12102

[]4201σ?== MPa F22002

[]4001

σ?=

= MPa ③ 按齿面接触强度设计 由式

d 1

计算小轮直径。

载荷系数K =K A K V K β 取K A =1(表8-2),K V =1.15,K β=1.09(表8-3),故

K =1×1.15×1.09=1.25

小轮传递的转矩

T 1=9.55×106p /n =9.55×106×5.5/960=54713.5N ?mm

弹性变形系数Z E =189.8(表10-5)。 节点区域系数Z H =2.5。 将以上数据代入上式得

d 1

51.86mm

④确定主要参数

求中心距a

a =(d 1+d 2)/2=d 1(1+i /2)=51.86×(1+4.45)/2=141.32 mm

圆整后,取a=145mm ,则d 1的计算值变为53.2mm 。 计算模数

m =d 1/z 1=53.2/22=2.4mm

按表10-1取标准模数m =2.5mm 。 求z 1、z 2

总齿数 z c =z 1+z 2=2a /m =2×145/2.5=116

若Z c 不等于整数时,可改变模数值使之成为整数。因

z c =z 1(1+i )

故 z 1=z c /(1+i )=116/(1+4.45)=21.28 取z 1=22(因最后d 1必须大于接触强度公式所求d 值)。则

z 2=z c -z 1=116-22=94

实际 i =z 2/z 1=94/22=4.27 传动比的变动量为

4.45 4.27

0.045%4.45

i -?=

=<

可用。

求小齿轮工作宽度

d 1=z 1m =22×2.5=55mm>51.86mm

计算齿轮的工作宽度

b=φd d=1×55=55mm

取b 2=55mm ,b 1=60mm.

⑤ 校核弯曲强度 由式

t

F1Fa1sa1KF Y Y bm

σ=

,ps2sa2F2F1

Fa1sa1Y Y Y Y σσ= 分别验算两轮齿根弯曲强度。

计算圆周力

1t 12254713.51989.655T F D ?=== N

齿形系数Y Fa 、应力修正系数Y sa

可由图8-23、10-24查得,当

z 1=22,Y Fa1=2.78,Y sa1=1.61, z 2=94,Y Fa2=2.22,Y sa2=1.87, 则

F1F11.251989.6

2.78 1.6180.95[]55 2.5

σσ?=

??=

F2F22.22 1.87

80.9575.08[]2.78 1.61

σσ?=?

=

⑥ 主要几何尺寸

m =2.5mm ,z 1=22,z 2=94, d 1=55mm ,d 2=z 2m=94×2.5=235mm , d a1=m (z 1+2)=2.5×(22+2)=60mm , d a2=m (z 2+2)=2.5×(94+2)=240mm , d f1=m (z 1-2.5)=2.5×(22-2.5)=48.75mm d f2=m (z 2-2.5)=2.5×(94-2.5)=228.75mm b =55,取b 1=60mm ,b 2=55mm , a =(d 1+d 2)/2=(55+235)/2=145mm

2.结构设计

上述齿轮轮齿部分的主要几何尺寸设计完成后、尚需根据工艺要求,材料特性等,按经验公式和资料来确定齿轮各部分的结构和尺寸。

3.绘制齿轮工作图(略)

【例2】 设计一闭式直齿圆柱齿轮传动。已知传递的功率P 1=20kW ,小齿轮转速n 1=1000r/min ,传动比i=3,每天工作16h ,使用寿命5年,每年工作300天,齿轮对称布置,轴的刚性较大,电机带动,中等冲击,传动尺寸无严格限制。

【例3】设计一闭式斜齿圆柱齿轮传动。已知传递的功率P1=20kW,小齿轮转速n1=1000r/min,传动比i=3,每天工作16h,使用寿命5年,每年工作300天,齿轮对称布置,轴的刚性较大,电机带动,中等冲击,传动尺寸无严格限制。

解:设计步骤见表

【例4】设计一闭式单级圆锥齿轮传动。已知传递的功率P1=10kW,小齿轮转速n1=960r/min,传动比u=2.55,每天工作16h,使用寿命10年,小锥齿轮悬臂布置。

解:设计步骤见表

【例5】设计一ZA型单级闭式蜗杆减速器。已知传递的功率P1=7.5kW,转速n1=1440r/min,传动比i12=27,工作寿命5年,单向传动。工作平稳,每日工作8h。

解:设计步骤见表

带式运输机用圆锥圆柱齿轮减速器设计课程设计word版

湖南人文科技学院 课程设计报告 课程名称:机械设计课程设计 设计题目:带式运输机用圆锥圆柱齿轮减速器设计 系别:机电工程系 专业:机械设计制造及其自动化

摘要 本设计是链式运输机用圆柱圆锥减速器,采用的是二级齿轮传动。在设计的过程中,充分考虑了影响各级齿轮和各部件的承载能力,对其做了详细的分析,并就它们的强度,刚度,疲劳强度和使用寿命等都做了校核,并且在此基础上,从选材到计算都力争做到精益求精。考虑到使用性能原则,工艺性能原则,经济及环境友好型原则,在材料的价格,零件的总成本,资源及能源,材料的环境友好及循环使用等方面都做了较为深刻的评估。本次设计还考虑了机械零件的各种失效形式,在尽可能的情况下做到少发生故障。本次设计具有:各级传动的承载能力接近相等;减速器的外廓尺寸和质量最小;传动具有最小的转动惯量;各级传动中大齿轮的浸油深度大致相等等特点。 关键词:齿轮传动轴滚动轴承键连接结构尺寸

目录 前言 (1) 一、设计任务书 (3) 二、传动方案的拟定及其说明 (4) 三、电动机的选择 (6) 3.1 电动机的功率的选择 (6) 3.2 电动机转速和型号的选择 (7) 四、传动比的分配 (11) 4.1 锥齿轮传动比、齿数的确定 (11) 4.2 圆柱齿轮传动比、齿数的确定 (11) 五、传动参数的计算及其确定 (14) 5.1 整个机构各轴转速的确定 (14) 5.2 整个机构各轴的输入功率的确定 (14) 5.3 整个机构各轴的输入转矩的确定 (15) 5.4 整个机构各轴的传动参数 (16) 六、传动件的设计计算 (18) 6.1 高速级齿轮传动的设计计算 (18) 6.2 低速级齿轮传动的设计计算 (25) 七、轴的设计计算 (39) 7.1 输入轴的设计 (39) 7.2 中间轴的设计 (45) 7.3 输出轴的设计 (52) 八、滚动轴承的选择及校核计算 (58) 九、键联接的选择及校核计算 (61) 9.1 输入轴键计算 (61) 9.2 中间轴键计算 (61) 9.3 输出轴键计算 (61) 十、联轴器的选择及校核计算 (63)

齿轮机构及其设计分析

(八)齿轮机构及其设计 1、本章的教学要求 1)了解齿轮机构的类型及应用。 2)了解齿廓啮合基本定律。 3)深入了解渐开线圆柱齿轮的啮合特性及渐开线齿轮的正确啮合条件、连续传动条件等。 4)熟悉渐开线齿轮各部分名称、基本参数及各部分几何尺寸的计算。 5)了解渐开线齿廓的展成切齿原理及根切现象;渐开线标准齿轮的最少齿数;及渐开线齿轮的变位修正和变位齿轮传动的概念。 6)了解斜齿圆柱齿轮齿廓曲面的形成、啮合特点,并能计算标准斜齿圆柱齿轮的几何尺寸。 7)了解标准支持圆锥齿轮的传动特点及其基本尺寸的计算。 8)对蜗轮蜗杆的传动特点有所了解。 2、本章讲授的重点 本章讲授的重点是渐开线直齿圆柱齿轮外啮合传动的基本理论和设计计算。对于其他类型的齿轮及其啮合传动,除介绍它们与直齿圆柱齿轮啮合传动的共同特点外,则着重介绍他们的特殊点。 3、本章的教案安排 本章讲授12-14学时,安排了六个教案,习题课穿插在课堂教学中进行,其中教案JY8-5(2)可根据学时及专业的不同选讲。此外本章有两个实验:齿轮范成实验和齿轮基本参数测绘。 [教案JY8-1(2) ] 1)教学内容和教学方法 本讲的教学内容有:齿轮机构的类型及应用;齿轮的齿廓曲线;渐开线的形成及其特性。 1、齿轮机构的应用及分类 齿轮机构是在各种机构中应用最广泛的一种传动机构。它可用来传递空间任意两轴间的运动和动力,并具有功率范围大、传动效率高、传动比准确、使用寿命长、工作安全可靠等特点。齿轮机构的应用既广,类型也多。根据空间两轴间相对位置的不同,齿轮机构的基本类型如下:(1)用于平行轴间传动的齿轮机构 外啮合齿轮传动,两轮转向相反; 内啮合齿轮传动,两轮转向相同。 齿轮与齿条传动。 斜齿轮传动。 人字齿轮传动。 (2)用于相交轴传动的齿轮机构 直齿圆锥齿轮传动。 曲线圆锥齿轮(又称弧齿圆锥齿轮)能够适应高速重载的要求,故目前也得到了广泛的应用。 (3)用于交错轴间传动的齿轮机构 交错轴斜齿轮传动。 蜗杆传动。 准双曲面齿轮传动。

直齿锥齿轮传动计算例题

例题10-3试设计一减速器中的直齿锥齿轮传动。已知输入功率P=10kw,小齿轮转速n1=960r/min,齿数比u=3.2,由电动机驱动,工作寿命15年(设每年工作300天),两班制,带式输送机工作平稳,转向不变。 [解]1.选定齿轮类型、精度等级、材料及齿数 (1)选用标准直齿锥齿轮齿轮传动,压力角取为20°。 (2)齿轮精度和材料与例题10-1同。 (3)选小齿轮齿数z1=24,大齿轮齿数z2=uz1=3.224=76.8,取z2=77。 2.按齿面接触疲劳强度设计 (1)由式(10-29)试算小齿轮分度圆直径,即 1) =1.3 计算小齿轮传递的转矩。 9.948 选取齿宽系数=0.3。 查得区域系数 查得材料的弹性影响系数。 [] 由图 由式( , 由图10-23查取接触疲劳寿命系数 取失效概率为1%,安全系数S=1,由式(10-14)得 取和中的较小者作为该齿轮副的接触疲劳许用应力,即

2)试算小齿轮分度圆直径 (2) 1 3.630m/s ②当量齿轮的齿宽系数 0.342.832mm 2) ①由表查得使用系数 ②根据级精度(降低了一级精度) ④由表 由此,得到实际载荷系数 3)由式(10-12),可得按实际载荷系数算得的分度圆直径为 及相应的齿轮模数 3.按齿根弯曲疲劳强度设计 (1)由式(10-27)试算模数,即

1)确定公式中的各参数值。 ①试选 ②计算 由分锥角 由图 由图 由图查得小齿轮和大齿轮的齿根弯曲疲劳极限分别为 由图取弯曲疲劳寿命系数 ,由式(10-14)得 因为大齿轮的大于小齿轮,所以取 2)试算模数。 =1.840mm

普通锥齿轮差速器设计

第一章绪论 汽车行驶时,左、右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎符合、胎面磨损程度不同以及制造误差等因素的影响,也会引起左、右车轮因滚动半径不同而使左、右车轮行程不等。如果驱动桥的左、右、车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性能恶化。为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器按其结构特征不同,分为齿轮、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 本次设计选择的是对称锥齿轮式差速器中的普通锥齿轮式差速器。

第二章 普通锥齿轮差速器基本原理 普通锥齿轮差速器由于结构简单、工作平稳可靠,一直广泛用于一般使用条件下的汽车驱动桥中。图2-1为其示意图,图中ω0为差速器壳的角速度; ω1、ω2分别为左、右两半轴的角速 度;To 为差速器壳接受的转矩;T r 为 差速器的内摩擦力矩;T 1、T 2分别为左、右两半轴对差速器的 反转矩。 图2-1 普通锥齿轮式差速器示意图 根据运动分析可得 ω1+ω2=2ω0 (2 - 1) 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当差速器壳体不转时,左右半轴将等速反向旋转。 根据力矩平衡可得 T0 T2T1T0T1-T2{ =+= (2 - 2) 差速器性能常以锁紧系数k 是来表征,定义为差速器的内摩擦力矩与差速器壳接受的转矩之比,由下式确定 K=r T /0T (2 - 3) 结合式(5—24)可得 k ) -0.5T0(1T1k ) 0.5T0(1T2{ =+= (2 - 4) 定义快慢转半轴的转矩比kb=T2/T1,则kb 与k 之间有

齿轮机构及其设计(全部习题参考答案)

第5章 齿轮机构及其设计 5.1 已知一对外啮合正常齿标准直齿圆柱齿轮123, 1941m mm z ===,z ,试计算这对齿轮的分度圆直径、齿顶高、齿根高、顶隙、中心距、齿顶圆直径、齿根圆直径,基圆直径、齿距、齿厚和齿槽宽。 解: ()1212121219357,413123133,1.253 3.753.7530.75,0.55712390572363, 12323129572 3.7549.5,1232 3.75115.557cos2053.563,123cos20a f a a f f b b d mm d mm h mm h mm c mm a mm d mm d mm d mm d mm d mm d =?==?==?==?====?+==+?==+?==?==?==??==??=---115.58339.425mm p ==mm π 5.2 已知一正常齿标准直齿圆柱齿轮20,540m mm z α=?==,,试分别求出分度圆、基圆、齿顶圆上渐开线齿廓的曲率半径和压力角。 解:分度圆上:0.554010020sin 100sin 2034.20r mm r mm αρα=??====?=o 基圆上: 100cos2093.9700 b b b r r cos mm ααρ=?=??==? = 齿顶圆上:1 1005105cos (/ )26.5 sin 105sin26.546.85a a b a a a a r mm r r r mm αρα-=+=====?=o 5.4 在某项技术革新中,需要采用一对齿轮传动,其中心距144a mm =,传动比2i =。现在库房中存有四种现成的齿轮,已知它们都是国产的正常齿渐开线标准齿轮,压力角都是20°,这四种齿轮的齿数z 和齿顶圆直径a d 分别为: 1a12a23a34a424,=104mm;47,196mm; 48,250mm; 48,200mm. z d z d z d z d ======= 试分析能否从这四种齿轮中选出符合要求的一对齿轮来。 解:根据传动比要求,显然齿轮2不合适。又

平面齿轮机构设计(甲类精制)

平面齿轮机构设计 一、特点: 1)功率和速度范围↑。 2)η↑。 3)寿命长。 4)保证精确角速比,传动比i。 5)制造设备要求↑(专门机构,刀具),成本↑,装配要求↑。 二、分类 1、按两齿轮轴相对位置分:平行,相交,交叉。平行(外啮合,内啮合):直齿,斜齿,人字齿,图8-1(a,b,c);相交:直齿圆锥,斜齿圆锥,曲齿圆锥,图8-4(a,b,c);交错:螺旋(图8-5),蜗轮蜗杆(图8-7),双曲线体(图8-6)。 2、按两齿轮相对运动:a).平面运动机构(平行轴);b).空间运动机构(其他:相交,交叉)。 3、按齿廓曲线分:渐开线,摆线,圆弧。 §7-2 齿廓啮合基本定理与渐开线齿廓(图8-8) 一、齿廓啮合基本定理(齿廓曲线与齿轮传动比关系) 一对齿轮啮合传动是靠主动轮的齿廓推动从动轮的齿廓来实现的,所以

当主动轮按一定角速度转动时,从动轮转动角速度显然与两轮齿廓的形状有关,也就是说:两齿轮传动时,其传动比变化规律与两轮齿廓曲线有关。 两轮角速比称传动比:i=ω1/ω2=常数。 如图:为一对互相啮合的齿轮: 主动轮1,ω1方向 从动轮2,ω2 方向 两轮齿齿廓C1,C2在K点接触,两轮在K点的线速度分别为V k1,V k2,过点k作两齿廓公法线n-n,要一对齿廓能连续地接触传动,它们沿接触点的公法线方向是不能有相对运动的。否则,两齿廓将不是彼此分离就是互相嵌入,因而不能达到正常传动目的。这就是说,要使两齿廓能够接触传动,则V k1和V k2在公法线n-n方向的分速度应相等,所以两齿廓接触点间的相对速度V k2k1只能沿两齿廓接触点的公切线方向,设以η表示两齿廓在接触点的公法矢量,则有:V k2k1 xη=0。 这就是齿廓的啮合基本要求,上式为齿廓啮合基本方程式,由于V k1和V k2在公法线方向分速度应相等。 故:

二级圆锥圆柱齿轮减速器设计(就这个)

机械设计课程设计任务书 设计题目:带式运输机圆锥—圆柱齿轮减速器 设计内容: (1)设计说明书(一份) (2)减速器装配图(1张) (3)减速器零件图(不低于3张 系统简图: 原始数据:运输带拉力 F=2100N ,运输带速度 s m 6.1=∨,滚筒直径 D=400mm 工作条件:连续单向运转,载荷较平稳,两班制。环境最高温度350C ;允许运输带速度误差为±5%, 小批量生产。

设计步骤: 一、 选择电动机和计算运动参数 (一) 电动机的选择 1. 计算带式运输机所需的功率:P w = 1000FV =1000 6 .12100?=3.36kw 2. 各机械传动效率的参数选择:1η=0.99(弹性联轴器), 2η=0.98(圆锥 滚子轴承),3η=0.96(圆锥齿轮传动),4η=0.97(圆柱齿轮传动),5η=0.96(卷筒). 所以总传动效率:∑η=2 1η4 2η3η4η5η =96.097.096.098.099.042???? =0.808 3. 计算电动机的输出功率:d P = ∑ ηw P = 808 .036 .3kw ≈4.16kw 4. 确定电动机转速:查表选择二级圆锥圆柱齿轮减速器传动比合理范围 ∑'i =8~25(华南理工大学出版社《机械设计课程设计》第二版朱文坚 黄 平主编),工作机卷筒的转速w n =400 14.36 .1100060d v 100060???= ?π=76.43 r/min , 所 以 电 动机转速范围为 min /r 75.1910~44.61143.7625~8n i n w d )()(’=?= =∑。则电动机同步转速选择可选为 750r/min ,1000r/min ,1500r/min 。考虑电动机和传动装置的尺寸、价格、及结构紧凑和 满足锥齿轮传动比关系(3i i 25.0i ≤=I ∑I 且),故首先选择750r/min ,电动机选择如表所示 表1 (二) 计算传动比: 1. 总传动比:420.943 .76720 n n i w m ≈== ∑

齿轮机构及其设计

第十章 齿轮机构及其设计 本章学习任务:齿廓啮合定律,渐开线齿形,渐开线圆柱齿轮各部分名称和尺寸,渐开线直齿圆柱齿轮机构的啮合传动,其他齿轮机构的啮合特点。 驱动项目的任务安排:完善项目中齿轮机构的详细设计。 10.4 其他齿轮机构的啮合特点 10.4.1平行轴斜齿圆柱齿轮机构 1.齿面的形成及啮合特点 图10-26 渐开螺旋面的形式 图10-27 一对斜齿轮的啮合情况 图10-28 斜齿轮齿面接触线 如图10-26所示,当发生面S 在基圆柱上相切并作纯滚动时,发生面上一条与基圆柱母线成角的直线KK 在空间所展开的轨迹为斜齿轮的齿廓曲面。从端面上看(垂直于轴线的b β平面)各点的轨迹均为渐开线,只是各渐开线的起点不同而已。由于斜线KK 在其上各点依次和基圆柱相切,因此各切点在基圆柱上形成螺旋线,线上各点为渐开线的起始点,00k k 00k k 它们在空间展开的曲面为渐开螺旋面。角称为基圆柱上的螺旋角。 b β一对平行轴斜齿轮啮合传动时,可以看成发生面(啮合面) 分别与两个基圆圆柱相切并作纯滚动,发生面上的斜线KK 分别在两基圆柱上形成螺旋角相同,方向相反的渐开螺旋面,

如图10-27所示。这对齿轮的瞬时接触线即为KK 线,即一对斜齿轮啮合时其接触线为一斜直线。由于一对斜齿轮的轮齿是反向倾斜的(一个左旋,另一个右旋),因此啮合时,是由前端面进入啮合,由后端面退出啮合,其接触线由短变长,再由长变短变化,图10-28为齿轮啮合时从动轮上接触线的情况,这种接触方式使齿轮传动的冲击与振动减小,传动较平稳,故斜齿轮传动适用于高速传动。 从端面上看,斜齿圆柱齿轮传动与直齿圆柱齿轮传动相同,啮合线为两基圆内公切线,所以斜齿轮传动能保证准确的传动比。传动过程中,具有啮合角不变及中心距可分性等特点。 2.标准参数及基本尺寸 (1)标准参数 由于斜齿轮的轮齿倾斜了角,切制斜齿轮时,刀具沿着螺旋线方向b β进刀,此时轮齿的法面参数与刀具的参数一样。因此斜齿轮的标准参数为法面参数,即法面 模数,法面压力角,法面齿顶高系数,法面顶隙系数为标准值。 n m n α*an h *n c (2)分度圆柱螺旋角及基圆柱螺旋角 与直齿圆柱齿轮一样,斜齿轮的基本尺寸是以其分度圆为基准圆来计算的。斜齿轮分度圆柱上的螺旋线的切线与其轴线所夹之锐角称为分度圆柱螺旋角(简称螺旋角)用表示。与间的关系如图10-29所示,可得: ββb β (10-21) tan tan cos b t ββα= (a ) (b ) 图10-29 斜齿轮的螺旋角 图10-30 斜齿轮的端面压力角与法面压力角 式中,,,其中L 为螺旋线的导程,对同一个斜齿轮而言,任一圆 tan d L πβ=tan b b d L πβ=柱面上螺旋线的导程应相同。 斜齿轮的螺旋角是重要的基本参数之一,由于斜齿轮的轮齿倾斜了角,使斜齿轮ββ传动时产生轴向力,越大,轴向力越大。 β(3)法面参数和端面参数 从斜齿轮的端面来看,斜齿轮形状与直齿轮相同,因此可按端面参数用直齿轮的计算公式进行斜齿轮基本尺寸的计算。而法面参数为标准值,故需建立法面参数与端面参数之间的关系。 1)模数 如图10-29(b )所示,、分别为斜齿轮法面和端面的齿距。它们之间的n p t p 关系为 cos n i p p β=由于,因此就求得 n n p m π=t t p m π= (10-22) cos n t m m β=

圆弧齿锥齿轮传动设计几何计算过程

圆弧齿锥齿轮传动设计几何计算过程 圆弧齿锥齿轮传动设计 几何计算过程 输入参数: 齿轮类型:35。格里森制 大端模数m=6mm 齿形角a =20° 齿数 Z 1=30,Z 2=90 径向变位系数X 1 =.347,x 2=-.347 传动比i=3 齿顶高系数 h a*=.85 切向变位系数 x t1 =-.056,x t2=.O56 中点螺旋角3m =35° 齿顶间隙系数c *=.188 齿宽系数tpR =.211 ,宽度b=60mm 小轮螺旋方向:左旋 序号 项目 公式 结果 1 大端分度圆d d 1=Z 1m,d 2=Z 2m d 1=180.00mm, d 2=540.00mm 2 分锥角S 81 =arctan(Z 1/Z 2), 2=90- 8 81=18.435 ° ,2=71.565 ° 3 锥距R R=d 1/2sin 81=d 2/2sin 82 R=284.605mm 4 齿距p p= nm p=18.850mm 5 齿高h h=(2h a *+c*)m h=11.328mm 6 齿顶高h a h a =(h a *+x)m h a1=7.182,h a2=3.018mm 7 齿根高h f h f =(h a *+c*-x)m h f1 =4.146,h f2=8.310mm 8 顶隙c c=c*m c=1.13mm 9 齿根角9f Q f1=arctg(h f1/R), Q =arctg(h f2/R) 0f1 =.835 ° ,f2=1.672 ° 10 齿顶角Q a Q a 1= Q f2, Q 2=Q f1(等顶隙收缩齿) 0a1=1.672 ° 戶陆.835 ° 11 顶锥角8a 8a1= 81+ Q f2, 82= 82+Q f1 81=20.107 °, 82=72.400 ° 12 根锥角8 8f1= 81- Q f1, f2= 82- 02 8f1=17.600 °, 8(2=69.893 ° 13 顶圆直径d a d a1=d 1+2h a1COS 81,d a2=d 2+2h a2COS 82, d a1=193.63,d a2=541.91mm 14 分锥顶点至轮冠距离 A k A k1 =d 2/2-h a1Sin 81,=d 1/2-h a2Sin 82 A k1=267.73,A k2=87.14mm 15 齿宽中点分度圆直径 d m d m1=d 1-bsin 81,d m2=d 2-bsin 82 d m1=161.026mm,d m2=483.079mm 16 齿宽中点模数m m m m =d m1/z 1=d m2/z 2 m m =5.368mm 17 中点分度圆法向齿厚s mn S mn =(0.5 n COS 唱+2xtan a +x?m m s mn1 =7.962mm,s mn2=5.851mm 18 中点法向齿厚半角书mn , 2 ^mn =S mn Sin 8 COS 旳/d m ipmn1 =1.803 ° 书 mn 2=.147 19 中点分圆法向弦齿厚S mn 2 _S mn =S mn (1-书mn /6) S mn1 =7.960mm 丄 mn2=5.851mm 20 中点分圆法向弦齿高h am h am =h a -btan 0a /2+S mn ^mn /4 h am1 =6.369mm,h am2=2.585mm 21 当量齿数Z v 3 Z v =Z/cos 8 cos (3m Z v1=57.532,Z v2=517.784 22 端面重合度£a e?=[Z 1(tan a at1 -tan a )/cos 1 +Z 2(tan a at2-tan a )/cos 2]/2 n 其中:tan a =(tan a /cos m j &z =1.317

直齿锥齿轮传动计算例题

例题10-3 试设计一减速器中的直齿锥齿轮传动。已知输入功率P=10kw,小齿轮转速n1=960r/min,齿数比u=3.2,由电动机驱动,工作寿命15年(设每年工作300天),两班制,带式输送机工作平稳,转向不变。 [解] 1.选定齿轮类型、精度等级、材料及齿数 (1)选用标准直齿锥齿轮齿轮传动,压力角取为20°。 (2)齿轮精度和材料与例题10-1同。 (3)选小齿轮齿数z1=24,大齿轮齿数z2=uz1=3.224=76.8,取z2=77。 2.按齿面接触疲劳强度设计 (1)由式(10-29)试算小齿轮分度圆直径,即 1)确定公式中的各参数值。 ①试选=1.3。 ②计算小齿轮传递的转矩。 9.948 ③选取齿宽系数=0.3。 ④由图10-20查得区域系数。 ⑤由表10-5查得材料的弹性影响系数。 ⑥计算接触疲劳许用应力[]。 由图10-25d查得小齿轮和大齿轮的接触疲劳极限分别为 ,。 由式(10-15)计算应力循环次数: , 由图10-23查取接触疲劳寿命系数,。 取失效概率为1%,安全系数S=1,由式(10-14)得 取和中的较小者作为该齿轮副的接触疲劳许用应力,即 2)试算小齿轮分度圆直径

(2)调整小齿轮分度圆直径 1)计算实际载荷系数前的数据准备。 ①圆周速度 3.630m/s ②当量齿轮的齿宽系数。 0.342.832mm 2)计算实际载荷系数。 ①由表10-2查得使用系数。 ②根据Vm=3.630m/s、8级精度(降低了一级精度),由图10-8查得动载系数Kv=1.173。 ③直齿锥齿轮精度较低,取齿间载荷分配系数。 ④由表10-4用插值法查得7级精度、小齿轮悬臂时,得齿向载荷分布系数 。 由此,得到实际载荷系数 3)由式(10-12),可得按实际载荷系数算得的分度圆直径为 及相应的齿轮模数 3.按齿根弯曲疲劳强度设计 (1)由式(10-27)试算模数,即 1)确定公式中的各参数值。 ①试选。

机械基础-案例07 闭式斜齿圆柱齿轮传动

闭式斜齿圆柱齿轮传动 设计一闭式斜齿圆柱齿轮传动。已知传递的功率P 1=20kW ,小齿轮转速 n 1=1000r/min ,传动比i=3,每天工作16h ,使用寿命5年,每年工作300天,齿轮对称布置,轴的刚性较大,电机带动,中等冲击,传动尺寸无严格限制。 解:设计步骤见表 1.选定材料、热处理方式、精度等级、齿数等 小轮:40Cr 调质 HB 1=241~286,取260HBW ; 大轮:45调质 HB 2=197~255,取230HBW ; 7级精度 取z 1=27,则大轮齿数z 2=i z 1=3×27=81, 对该两级减速器,取z=1。 初选螺旋角 =14° 2.确定许用弯曲应力 δHlim1=710MPa ,δHlim2=580MPa , δFlim1=600MPa ,δFlim2=450MPa , 安全系数取S Hlim =1.1 S Flim =1.25 N 1=60×1000×5×300×16=14.4×108 N 2= N 1/i=14.4×108/3=4.8×108 得:Z N1=0.975 Z N2=1.043 Y N1=0.884 Y N2=0.903 MPa S Z H N H H 3 .6291.1975.0710][min 1 1lim 1=?== σσ MPa S Z H N H H 550 1 .1043 .1580][min 2 2lim 2=?= = σσ MPa S Y Y F X N F F 32 .42425.11884.0600][min 1 11lim 1=??== σσ MPa S Y Y F X N F F 08 .32525 .11 903.0600][min 2 22lim 2=??= = σσ

二级圆锥圆柱齿轮减速器设计

机械基础综合课程设计说明书 设计题目:带式运输机圆锥—圆柱齿轮减速器 学院:机械工程学院 专业年级:机械制造及其自动化11级 姓名:张建 班级学号:机制1班16号 指导教师:刘小勇 2013 年8 月30 日

题目:带式运输机传动装置设计 1. 工作条件 连续单向运转,工作时有轻微振动,空载起动;使用期10年,每年300个工作日,小批量生产,两班制工作,运输带速度允许误差为±5%。 1-电动机;2-联轴器;3-圆锥-圆柱齿 轮减速器;4-卷筒;5-运输带 题目B图带式运输机传动示意图 学 号 —数据编号7 - 1 8 - 2 9 - 3 1 - 4 1 1 - 5 1 2 - 6 1 3 - 7 1 4 - 8 1 5 - 9 1 6 - 1 运输带工 作拉力F (kN )2 . 1 2 . 1 2 . 3 2 . 3 2 . 4 2 . 4 2 . 4 2 . 5 2 . 5 2 . 6 运输带工 作速度v (m s )1 . 1 . 2 1 . 1 . 2 1 . 1 . 2 1 . 4 1 . 2 1 . 4 1 . 卷筒直径3 2 3 8 3 2 3 8 3 2 3 8 4 4 3 8 4 4 3 2

3. 设计任务 1)选择电动机,进行传动装置的运动和动力参数计算。 2)进行传动装置中的传动零件设计计算。 3)绘制传动装置中减速器装配图和箱体、齿轮及轴的零件工作图。4)编写设计计算说明书。

设计步骤: 一、 选择电动机和计算运动参数 (一) 电动机的选择 1. 计算带式运输机所需的功率:P w = 1000 FV =10001 2600?=2.6kw 2. 各机械传动效率的参数选择:1η=0.99(弹性联轴器),2η=0.98(圆锥 球轴承),3η=0.96(圆锥齿轮传动),4η=0.97(圆柱齿轮传动), 5η=0.96(卷筒). 所以总传动效率:∑η=21η4 2η3η4η5η =96.097.096.099.099.042???? =0.842 3. 计算电动机的输出功率:d P = ∑ηw P =842 .06.2kw ≈3.09kw 4. 确定电动机转速:∑'i =8~15,工作机卷筒的转速w n = 32014.31 100060d v 100060???= ?π=59.71 r/min ,所以电动机转速范围为min /r )65.895~68.477(71.59)15~8( n i n w ’d =?==∑。考虑电动机和传动装置的尺寸、价格、及结构紧凑和满足锥齿轮传动比关系(3i 且i 25.0i ≤=I ∑I ~4),故首先选择750r/min ,电动机选择如表所示 表1 (二) 计算传动比: 1. 总传动比:06.1271 .59720 n n i w m ≈== ∑

变位齿轮设计

齿轮机构及其设计 > 变位齿轮 变位齿轮的意义 (1)避免根切现象.切削z

(2)刀具的分度线(中线)与被加工齿轮分度圆相切位置远离轮坯中心一段径向距离xm(m为模数,x 为径向变位系数,简称变位系数)。这样加工出来的齿轮成为正变位齿轮。xm>0,x>0。 (3)刀具的分度线靠近轮坯中心移动一段径向距离xm,刀具分度线与轮坯分度圆相割。这样加工出来的齿轮称为负变位齿轮。xm<0,x<0。 变位齿轮的基本参数和几何尺寸 基本参数:比标准齿轮多了一个变位系数x 几何尺寸(与相同参数的标准齿轮

的尺寸比较): 正变位负变位 分度圆直 不变不变 径 基圆直径不变不变 齿顶圆直 变大变小 径 齿根圆直 变大变小 径 分度圆齿 不变不变 距 分度圆齿 变大变小 厚 分度圆齿 变小变大 槽宽 顶圆齿厚变小变大 根圆齿厚变大变小 无侧隙啮合方程 变位齿轮传动的中心距与啮合角 符合无侧隙啮合要求的变位齿轮传动的中心距a'是这样确定的:

(1)首先由无侧隙啮合方程求得啮合角α': (2)再由求得中心距a' 此中心距a'与标准中心距a之间的差值用ym表示(y称为中心距变动系 数): 则 可推导得: 可见:当x1+x2=0 时, α'=α,a'=a 当x1+x2>0 时, α'>α,a'>a 当xx1+x2<0 时, α'<α,a'0时,如果保证无侧隙安装,而且还要满足隙, 则两轮的齿顶高应各减小。称为齿顶高降低系数,其值为: 这时,齿轮的齿顶高为:

圆锥齿轮参数设计

圆锥齿轮参数设计 0.概述 锥齿轮是圆锥齿轮的简称,它用来实现两相交轴之间的传动,两轴交角S称为轴角,其值可根据传动需要确定,一般多采用90°。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,如下图所示。由于这一特点,对应于圆柱齿轮中的各有关"圆柱"在锥齿轮中就变成了"圆锥",如分度锥、节锥、基锥、齿顶锥等。锥齿轮的轮齿有直齿、斜齿和曲线齿等形式。直齿和斜齿锥齿轮设计、制造及安装均较简单,但噪声较大,用于低速传动(<5m/s);曲线齿锥齿轮具有传动平稳、噪声小及承载能力大等特点,用于高速重载的场合。本节只讨论S=90°的标准直齿锥齿轮传动。 1. 齿廓曲面的形成 直齿锥齿轮齿廓曲面的形成与圆柱齿轮类似。如下图所示,发生平面1与基锥2相切并作纯滚动,该平面上过锥顶点O的任一直线OK的轨迹即为渐开锥面。渐开锥面与以O为球心,以锥长R为半径的球面的交线AK为球面渐开线,它应是锥齿轮的大端齿廓曲线。但球面无法展开成平面,这就给锥齿轮的设计制造带来很多困难。为此产生一种代替球面渐开线的近似方法。 2. 锥齿轮大端背锥、当量齿轮及当量齿数 (1) 背锥和当量齿轮 下图为一锥齿轮的轴向半剖面,其中DOAA为分度锥的轴剖面,锥长OA称锥距,用R 表示;以锥顶O为圆心,以R为半径的圆应为球面的投影。若以球面渐开线作锥齿轮的齿廓,则园弧bAc为轮齿球面大端与轴剖面的交线,该球面齿形是不能展开成平面的。为此,再过A作O1A⊥OA,交齿轮的轴线于点O1。设想以OO1为轴线,以O1A为母线作圆锥面O1AA,该圆锥称为锥齿轮的大端背锥。显然,该背锥与球面切于锥齿轮大端的分度圆。由于大端背锥母线1A与锥齿轮的分度锥母线相互垂直,将球面齿形的圆弧bAc投影到背锥上得到线段 b'Ac',圆弧bAc与线段b'Ac'非常接近,且锥距R与锥齿轮大端模数m之比值愈大(一般R/m>30),两者就更接近。这说明:可用大端背锥上的齿形近似地作为锥齿轮的大端齿形。由于背锥可展开成平面并得到一扇形齿轮,扇形齿轮的模数m、压力角a和齿高系数ha*等参数分别与锥齿轮大端参数相同。再将扇形齿轮补足成完整的直齿圆柱齿轮,这个虚拟的圆

齿轮设计实例

【例1】设计一电动机驱动的带式运输机的两级减速器高速级的直齿圆柱齿轮传动。已知传递的功率P 1=5.5kW ,小轮转速n 1=960r/min ,齿数比u =4.45。 解: 1.轮齿部分主要几何尺寸的设计与校核 ① 选定材料、齿数、齿宽系数 由表10-7选择常用的调质钢 小轮:45调质 HB 1=210~230, 大轮:45正火 HB 2=170~210, 取小轮齿数Z 1=22,则大轮齿数Z 2=uZ 1=4.45×22≈98, 对该两级减速器,取φd =1。 ②确定许用应力: 许用接触应力 N H lim H H min []Z S σσ= 许用弯曲应力 Flim ST NT F F min []Y Y S σσ= 式中 σHlim1=560MPa ,σHlim2=520MPa (图8-7(c )), σFlim1=210MPa ,σFlim2=200MPa (图8-7(c ))。 σFlim 按图8-26查取,应力修正系数Y ST =2,而最小安全系数σHlim =σFlim =1(表8-5),故 H11560 []5601σ?== MPa H21520 []5201σ?== MPa F12102 []4201σ?== MPa F22002 []4001 σ?= = MPa ③ 按齿面接触强度设计 由式 d 1 计算小轮直径。 载荷系数K =K A K V K β 取K A =1(表8-2),K V =1.15,K β=1.09(表8-3),故 K =1×1.15×1.09=1.25 小轮传递的转矩 T 1=9.55×106p /n =9.55×106×5.5/960=54713.5N ?mm 弹性变形系数Z E =189.8(表10-5)。 节点区域系数Z H =2.5。 将以上数据代入上式得

锥齿轮计算模版.pdf

锥齿轮传动设计 1.设计参数 1150 150********=====d d z z u 式中:u ——锥齿轮齿数比; 1z ——锥齿轮齿数; 2z ——锥齿轮齿数; 1d ——锥齿轮分度圆直径(mm ) ; 2d ——锥齿轮分度圆直径(mm ) 。 1.1062 1115021)2()2(2212221=+=+=+=u d d d R mm 25.125)33.05.01(150)5.01(11=???=?=R m d d φ mm 同理 2m d =125.25 mm 式中:1m d 、2m d ——锥齿轮平均分度圆直径(mm ); R φ——锥齿轮传动齿宽比,最常用值为R φ=1/3,取R φ=0.33。 530 150111===z d m 同理 2m =5 式中:1m 、2m ——锥齿轮大端模数。 175.4)33.05.01(5)5.01(11=???=?=R m m m φ 同理 2m m =4.175 式中:m m 1、m m 2——锥齿轮平均模数。 2.锥齿轮受力分析 因为锥齿轮1与锥齿轮2的传动比为1,且各项数据相同,则现以锥齿轮1为分析对象得:

1250150 83.932211=?==m t d T F N 88.88345cos 45tan 1250cos tan 111=????==δαt r F F N 88.88345cos 45tan 1250sin tan 111=????==δαt a F F N 22.133020cos 1250cos 11=? ==αt n F F N 式中;1t F ——锥齿轮圆周力; 1r F ——锥齿轮径向力; 1a F ——锥齿轮轴向力; 1n F ——锥齿轮法向载荷; α——锥齿轮啮合角; δ——锥齿轮分度角。 3.齿根弯曲疲劳强度计算 (1) 确定公式内的各计算数值 1) 由《机械设计》图10-20c 查得锥齿轮的弯曲疲劳强度极限=1FE σ580MPa 2) 由《机械设计》图10-18取弯曲疲劳寿命系数=1FN K 1 3) 计算弯曲疲劳许用应力 取弯曲疲劳安全系数S =1.4,由《机械设计》式(10-12)得 =?==4 .15801][111S K FE FN F σσ414.29 MPa 4) 计算载荷系数K 23.235.111.15.1=???==βαF F v A K K K K K 5) 查取齿形系数 由《机械设计》表10-5查得8.21=Fa Y 6) 查取应力校正系数 由《机械设计》表10-5查得55.11=Sa Y

第十章 齿轮机构及其设计

第十章齿轮机构及其设计 10-1 填空题 (1)渐开线齿廓的齿轮啮合的特点是 。 (2)影响渐开线直齿圆柱齿轮齿廓形状的参数有、、。 (3)决定单个渐开线标准直齿圆柱齿轮几何尺寸的五个基本参数是,其中参数是标准值。 (4)一对外啮合渐开线直齿圆柱齿轮机构的正确啮合条件是和分别相等。(5)渐开线斜齿圆柱齿轮的标准参数在面上,在几何尺寸计算时应按面参数代入直齿轮的几何计算公式。 (6)用标准齿条型刀具加工标准齿轮时,其刀具的线与轮坯圆相切并作纯滚动。 (7)斜齿圆柱齿轮的螺旋角对传动的主要影响有、、、 ,其常用的取值范围为。 (8)用标准齿条型刀具加工n=20°,h*an=1,=20°的标准斜齿轮时,其不根切的最少齿数是。(9)一对渐开线直齿圆柱齿轮(=20°,h*a=1)啮合时,当安装的实际中心距a′大于标准中心距a时,啮合角′是变大还是变小;重合度是增大还是减小;传动比i又是如何变化的。(10)一对正常齿制的渐开线标准直齿圆柱外啮合齿轮传动,其模数m=4mm,当两轮以标准中心距安装时,其顶隙为 mm,理论上侧隙为 mm;当中心距增大时,其顶隙变为 mm,侧隙于零。 10-2 选择题 (1)渐开线直齿圆柱齿轮传动的可分性是指不受中心距变化的影响。 A.节圆半径; B.传动比; C.啮合角。 (2)模数m=2mm, 压力角=20°,齿数z=20,齿顶圆直径d a=,齿根圆直径d f=正常齿制的渐开线直齿圆柱齿轮是齿轮。 A.标准; B. 变位; C. A、B皆不是。 (5)齿轮经过正变位修正后,其分度圆与标准齿轮的分度圆相比,是。 A.相同; B.减小; C.增大。 (6)等移距(高度)变位齿轮传动的中心距和啮合角必分别标准中心距和标准压力角。

机械传动系统设计实例

机械传动系统设计实例 设计题目:V带——单级斜齿圆柱齿轮传动设计。 某带式输送机的驱动卷筒采用如图14-5所示的传动方案。已知输送物料为原煤,输送机室内工作,单向输送、运转平稳。两班制工作,每年工作300天,使用期限8年,大修期3年。环境有灰尘,电源为三相交流,电压380V。驱动卷筒直径350mm,卷筒效率0.96。输送带拉力5kN,速度2.5m/s,速度允差±5%。传动尺寸无严格限制,中小批量生产。 该带式输送机传动系统的设计计算如下:

例9-1试设计某带式输送机传动系统的V 带传动,已知三相异步电动机的额定功率P ed =15 KW, 转速n Ⅰ=970 r/min ,传动比i =2.1,两班制工作。 [解] (1) 选择普通V 带型号 由表9-5查得K A =1.2 ,由式 (9-10) 得P c =K A P ed =1.2×15=18 KW ,由图9-7 选用B 型V 带。 (2)确定带轮基准直径d 1和d 2 由表9-2取d 1=200mm, 由式 (9-6)得 ()6.41102.012001.2)1(/)1(12112=-??=-=-=εεid n d n d mm , 由表9-2取d 2=425mm 。 (3)验算带速 由式 (9-12)得 11π970200π 10.16100060100060 n d v ??= ==?? m/s , 介于5~25 m/s 范围内,合适。 (4)确定带长和中心距a 由式(9-13)得

)(2)(7.021021d d a d d +≤≤+, )425200(2)425200(7.00+≤≤+a , 所以有12505.4370≤≤a 。初定中心距a 0=800 mm , 由式(9-14)得带长 2 122 1004)()(2 2a d d d d a L -+++=π, 2 (425200)2800(200425)2597.62 4800 π -=?+ ++ =?mm 。 由表9-2选用L d =2500 mm ,由式(9-15)得实际中心距 2.7512/)6.25972500(8002/)(00=-+=-+=L L a a d mm 。 (5)验算小带轮上的包角1α 由式(9-16)得 012013.57180?--=a d d α 000042520018057.3162.84120,751.2 -=-?=> 合适。 (6)确定带的根数z 由式(9-17)得 00l α ()c P z P P K K = +?, 由表9-4查得P 0 = 3.77kW,由表9-6查得ΔP 0 =0.3kW;由表9-7查得K a =0.96; 由表9-2查得K L =1.03, 47.403 .196.0)3.077.3(18 =??+= z , 取5根。 (7)计算轴上的压力F 0 由表9-1查得q =0.17kg/m,故由式(9-18)得初拉力F 0 2c 0α 500 2.5 (1)P F qv zv K = -+

圆锥齿轮圆柱齿轮减速器(内含装配图和零件图)

目录. 第1章选择电动机和计算运动参数 (3) 1.1 电动机的选择 (3) 1.2 计算传动比: (4) 1.3 计算各轴的转速: (4) 1.4 计算各轴的输入功率: (5) 1.5 各轴的输入转矩 (5) 第2章齿轮设计 (5) 2.1 高速锥齿轮传动的设计 (5) 2.2 低速级斜齿轮传动的设计 (13) 第3章设计轴的尺寸并校核。 (19) 3.1 轴材料选择和最小直径估算 (19) 3.2 轴的结构设计 (20) 3.3 轴的校核 (25) 3.3.1 高速轴 (25) 3.3.2 中间轴 (27) 3.3.3 低速轴 (29) 第4章滚动轴承的选择及计算 (33) 4.1.1 输入轴滚动轴承计算 (33) 4.1.2 中间轴滚动轴承计算 (35) 4.1.3 输出轴滚动轴承计算 (36) 第5章键联接的选择及校核计算 (38) 5.1 输入轴键计算 (38) 5.2 中间轴键计算 (38) 5.3 输出轴键计算 (38) 第6章联轴器的选择及校核 (39) 6.1 在轴的计算中已选定联轴器型号。 (39) 6.2 联轴器的校核 (39) 第7章润滑与密封 (39) 第8章设计主要尺寸及数据 (40) 第9章设计小结 (41) 第10章参考文献: (42)

机械设计课程设计任务书 设计题目:带式运输机圆锥—圆柱齿轮减速器 设计内容: (1)设计说明书(一份) (2)减速器装配图(1张) (3)减速器零件图(不低于3张 系统简图: 联轴器 联轴器 输送带 减速器 电动机 滚筒 原始数据:运输带拉力 F=2400N ,运输带速度 s m 5.1=∨,滚筒直径 D=315mm,使 用年限5年 工作条件:连续单向运转,载荷较平稳,两班制。环境最高温度350C ;允许运输带速 度误差为±5%,小批量生产。 设计步骤:

相关文档