文档库 最新最全的文档下载
当前位置:文档库 › 利塞膦酸钠的波谱学数据和结构确证

利塞膦酸钠的波谱学数据和结构确证

利塞膦酸钠的波谱学数据和结构确证
利塞膦酸钠的波谱学数据和结构确证

利塞膦酸钠的波谱学数据和结构确证

目的确证利塞膦酸钠的结构。方法采用红外(IR)、紫外(UV)、氢谱(1HNMR)、碳谱(13CNMR,DEPT)等进行结构解析。结果根据氢-氢相关谱(1H-1H COSY)、碳氢相关谱(HMQC)、碳氢远程相关谱(HMBC)对所有的1HNMR和13CNMR谱信号进行了归属;讨论了红外特征吸收峰所对应的官能团的振动形式。结论确证了利塞膦酸钠的结构。

标签:利塞膦酸钠;核磁共振;归属;红外;紫外

利塞膦酸钠是双膦酸盐类药物,化学名为[1-羟基-2-(3-吡啶基)乙叉基]双膦酸单钠盐,其结构式见图1。在临床研究中显现出其对变形性骨炎及骨质疏松症具有优异的疗效[1-4]。文献对利塞膦酸钠的制备与药理方面的报道较多,波谱学方面报道较少。本研究报道了该化合物的红外、紫外、氢氢相关谱、碳谱、碳氢相关谱、碳氢远程相关谱并予以解析,对所有的1HNMR和13CNMR谱信号进行了归属;同时讨论了红外特征吸收峰所对应的官能团的振动形式,并对样品进行热差和热重分析。现报道如下:

1 资料与方法

1.1 仪器和测定条件

1HNMR、13CNMR、HMQC 和HMBC均在超导核磁共振波谱仪(德国Bruker DPX-400M)核磁共振仪上完成。以D2O为溶剂,二维谱采用反相检测探头,1HNMR的观测频率为400.144 MHz;13CNMR的观测频率为100.625 MHz;PE-2400型元素分析仪;PERKIN-ELMER LAMBDA17紫外可见分光光度计;美国BIO-RAD FTS-40型傅立叶变换红外分光光度仪,KBr压片;日本岛津DT-40型热分析仪。

1.2 样品制备

以3-吡啶乙酸盐酸盐为起始原料,与亚磷酸和PCl3缩合、水解得利塞膦酸钠。以异丙醇、水精制[4]。对样品进行HPLC分析,结果表明纯度为99.5%,符合结构鉴定所需纯度。样品的元素分析测定值(m%)为:C 23.98,H 4.29,N 3.98,P 17.6,与理论值基本符合。

2 结果

2.1 利塞膦酸钠的核磁共振谱

利塞膦酸钠分子结构中有7个碳原子,10个质子,1个氮原子,2个磷原子和7个氧原子, 2.5个结晶水。其13CNMR谱上出现7组碳原子信号。利用一维13CDEPT谱可以确定:无伯碳峰,1组仲碳峰,4组叔碳峰,2组季碳峰,与利塞膦酸钠的分子结构相符。

1HNMR谱显示有5组氢,由低场到高场的积分比例为1∶1∶1∶1∶2,与利塞膦酸钠的结构相符。δ3.33的三重峰,相当于2个氢,为7位亚甲基上的两个H。δ7.79的三重峰,相当于1个氢,为5位氢与4位氢和6位氢发生偶合裂分为三重峰,COSY谱(见图2)显示这两组氢相关。δ8.45的双重峰,相当于1个氢,为4位氢与5位氢发生偶合裂分为双重峰,COSY谱显示这两组氢相关。δ8.47的单峰,相当于1个氢,为6位氢。δ8.61的单峰,相当于1个氢,为2位氢。结构中有一个亚甲基,化学位移在最高场,四个吡啶环上的氢,化学位移在低场,其中2位氢由于受N原子和3位上取代基的影响,化学位移在最低场。6位氢受N原子影响移向低场。

第九章 化学动力学基本原理

第九章 化学动力学基本原理 第一次课: 课程名称:物理化学 本课内容:§9.1引言 §9.2反应速率和速率方程 授课时间: 90 分钟 一、教学目的 通过本次教学,使学生了解明确反应速率,反应级数,反应分子数等概念,掌握反应速率的表示方法方程,并能熟练应用。 二、教学意义 通过本次授课,主要使学生了解动力学的基本概念,掌握反应速率的表示方法,了解动力学研究的意义。 三、教学重点 反应速率,反应级数,反应分子数,反应速率的表示方法 四、教学难点 反应速率的表示方法 五、教学方式 以电子课件为主,辅以少量板书的课堂讲授。 六、讲授内容 §9.1引言 1.化学动力学的任务和目的 2.化学动力学发展简史 3.反应机理的概念 §9.2反应速率和速率方程 1.反应速率的表示法 2.反应速率的实验测定 3.反应速率的经验表达式 4.反应级数 5.质量作用定律 七、讲授方法 §9.1引言 1.化学动力学的任务和目的 首先讲述化学动力学基本任务即研究各种因素对反应速率的影响,进而揭示化学反应发生的具体过程(即反应机理)。 2.化学动力学发展简史 以图片的形式向学生生动的展示化学动力学发展简史,加深学生的印象。3.反应机理的概念 以实例讲述学生所熟悉的许多化学反应并不是简单的一步反应就能实现的,而是经历了一系列具体步骤而最终实现的,从而引出反应机理的概念,即组成宏观总反应的基元反应的总和及其序列,称为“反应机理”或“反应历程”。 §9.2 反应速率和速率方程 1.反应速率的表示法 重点讲述反应速率的表示方法,所谓反应速率就是化学反应进行的快慢程度。国际上已普遍采用以反应进度随时间的变化率来定义反应速率。

[核磁共振波谱学讲义]第三章—NMR实验技术基础(4脉冲技术)

第三章 NMR 实验技术基础 4 脉冲技术 a 频偏效应(off-resonance effects) 由于射频场为单色波,而样品中的化学位移有一定的范围,因此不同的核感受到的有效场也不同。 (1) 脉冲作用对象为Z 磁化向量 在off-resonance 状态,相位y 的脉冲作用于平衡态的z 磁化向量后: M M M M M M x y z ==-=+000221sin sin ; (cos )sin cos ;(cos cos sin ) αθαθθθαθ 当频偏大时有明显的相位及强度的畸变: tan (cos )cos sin (cos )sin sin βαθ α αθαγ= = -=-? -M M B y x 111Ω

这个式子适合于分析相位与频偏的关系。 当频偏不大于射频场频率时,90度脉冲后的水平分量的相位与频偏基本上是线性关系, βγτγττπ = -=-= -ΩΩΩ B B 190190902 因此不太大的频偏下,实际的90度脉冲可以当成理想的90度脉冲,后跟一 段演化期,时间长度为ττπ =290 相比之下,有频偏时180度脉冲的效果要差的多,通常需要其他技术来弥补。 90度脉冲的激发曲线的第一个零点位于Ω=±151γB 180度脉冲的激发曲线的第一个零点位 于Ω=±31γB 如蛋白质中C α的化学位移平均在 56ppm 左右,而CO 的化学位移在174ppm 左右,若要激发其中之一同时对另一个影响最小,180度方波的功率应选择为 118125673 8562?=. Hz ,对应的脉冲宽度大约58.4μs. (2) 脉冲作用对象为水平磁化向量(nonresonant effects) 频偏较大时射频场的有效磁场接近Z 向,因此横向磁化向量在脉冲期间绕Z 轴有额外的进动,产生相移:φωτNR p t =<>122()Ω 此处<>对脉冲串作平均,在多维谱中当τp 随间接维时间变化时(如去偶序列),这个相 移在对应的间接维中表现为一个频移ωωNR t = <>122()Ω

电磁铁基本知识

中山市兰达电磁铁加工厂是一家专业电磁铁制造厂家,位于加工型企业密集的中山市,靠近广州、深圳、香港、澳门等城市。兰达电磁铁厂主要从事电磁铁的设计、研发、制造及相关技术服务。 工厂拥有一支经验丰富、勇于创新的团队,为客户提供最佳的设计方案及最完善的技术支持,确保能提供优良性能的产品。 我们的目标就是为客户提供高性价比的产品,让客户实惠让自身发展,最终达到双赢。工厂秉承“简化管理、效率优先、质量至上、专业服务、诚实守信、合理利润”的经营理念,与各方客户、供应商建立永久的合作伙伴关系,诚心合作。 我厂产品凭借质量优势和良好的服务成功进入欧美市场,获得广大客户的一致好评。海外市场一直稳步上升,外销份额逐渐增大,竞争力进一步提高。 电磁铁基本知识 电磁铁是一个带有铁心的通电螺线管,电磁铁的磁性大小与通电电流与螺线管的匝数有关。磁铁工作原理:电磁铁的工作原理就是采用电磁感应原理,主要运用毕奥-沙瓦定律与基尔霍夫定律进行磁场设计、计算。 电磁铁的特点是:电磁铁本身有无磁性,可以通过通断电流来控制,磁性的大小可以改变电流的大小来控制,磁极的方向有电流的方向决定。

各类小型精密电磁铁及电磁铁应用组件,作为自动控制系统的执行器件,已被广泛应用于工业自动化控制、办公自动化、医疗器械等各个领域。如办公设备、影像器材、银行设备、包装机械、医疗器械、食品机械、纺织机械、自动分拣机、自动柜员机、自动售货机、卡片打孔器、电磁锁、各种遥控装置、制动装置、计数装置、门禁系统等。电磁铁选型主要参数 客户选用或定做所需的电磁铁需要考虑以下的技术参数: 1.外形:安装电磁铁位置所能容纳的最大尺寸:长;宽;高, 2.电磁铁的最大行程及其吸力要求,断电后的复位力要求 3.提供给电磁铁的电源最大电压;电流?电压稳定性,交流/直流供电,能否提供正;负脉冲电源? 4.电磁铁是否需要长期不间断工作;断续工作,每次最长的通电时间及两次通电之间最短的间歇; 5.电磁铁的用途,使用电磁铁的环境特殊要求,如温度; 湿度; 冲击; 振动; 加速度等 电磁铁的分类方法 1.按动作方式: 保持式如电磁离合器、电磁卡盘、起重电磁铁等 吸引式各种自动电器继电器、接触器、电磁阀门、电动锤、电铃等2.照激磁线圈供电的种类:直流、交流 3.按照动作速度:快速动作、正常动作、延缓动作

聚合物反应工程基础知识总结

聚合物反应工程基础知识总结 第一章(填空、选择、简答) 1.聚合物反应和聚合物生产的特点: ①反应机理多样,动力学关系复杂,重现性差,微量杂质影响大。 ②除了要考虑转化率外,还要考虑聚合度及其分布,共聚物组成及其分布和序列分布,聚合物结构和性能等。 ③要考虑反应时候的聚合物流动、混合、传热、传质等问题。 ④要考虑反应器放大的问题。 2.本课程研究内容: 1)聚合物反应器的最佳设计。 2)进行聚合反应操作的最佳设计和控制。 第二章(所有题型) 化学反应器:完成化学反应的专门容器或设备。 1、反应器分类: 1)按物料相态分类 2)按结构型式分类

3)按操作方式分类 间歇反应器:在反应之前将原料一次性加入反应器中,直到反应达到规定的转化率,即得反应物,通常带有搅拌器的釜式反应器。优点是:操作弹性大,主要用于小批量生产。 连续操作反应器:反应物连续加入反应器产物连续引出反应器,属于稳态过程,可以采用釜式、管式和塔式反应器。优点是:适宜于大规模的工业生产,生产能力较强,产品质量稳定易于实现自动化操作。 半连续操作反应器:预先将部分反应物在反应前一次加入反应器,其余的反应物在反应过程中连续或断连续加入,或者在反应过程中将某种产物连续地从反应器中取出,属于非稳态过程。优点是:反应不太快,温度易于控制,有利于提高可逆反应的转化率。 (PS:造成三种反应器中流体流动型态不同是由于物料在不同反应器中的返混程度不一样。返混:是指反应器内不同年龄的流体微元之间的混合,返混代表时间上的逆向混合。) 2、连续反应器中物料流动型态 平推流反应器: ⑴各物料微元通过反应器的停留时间相同。 ⑵物料在反应器中沿流动方向逐段向前移动,无返混。 ⑶物料组成和温度等参数沿管程递变,但是每一个截面上物料组成和温度等参数在时间进程中不变。 ⑷连续稳态操作,结构为管式结构。 理想混合流反应器: ⑴各物料微元在反应器的停留时间不相同。 ⑵物料充分混合,返混最严重。 ⑶反应器中各点物料组成和温度相同,不随时间变化。

波谱分析知识全书总结剖析

波谱分析(spectra analysis) 波谱分析的内涵与外延: 定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等) 特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等 化合物:一般为纯的有机化合物 分子结构:分子中原子的连接顺序、位置;构象,空间结构 仪器分析(定量),波谱分析(定性) 综合性、交叉科学(化学、物理、数学、自动化、计算机) 作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。 课程要求:本课将在学生学习有机化学、分析化学、物理化学等课程的基础上,系统讲授紫外光谱(UV)、红外光谱(IR)、核磁共振光谱(NMR)和质谱(MS)这四大光谱的基本原理、特征、规律及图谱解析技术,并且介绍这四大光谱解析技术的综合运用,培养学生掌握解析简单有机化合物波谱图的能力。为学习中药化学有效成分的结构鉴定打下基础。 第一章紫外光谱(ultraviolet spectra,UV) 一、电磁波的基本性质和分类 1、波粒二象性 光的三要素:波长(λ),速度(c),频率(v) 电磁波的波动性 光速c:c=3.0 x 1010 cm/s 波长λ :电磁波相邻波峰间的距离。用nm,μm,cm,m 等表示 频率v:v=c/ λ,用Hz 表示。 电磁波的粒子性 光子具有能量,其能量大小由下式决定: E = hν = hc/λ(式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s ) 电磁波的分类

833高级土壤学

中国农业科学院 2017年硕士研究生招生考试自命题科目考试大纲 科目代码:833 考试科目:高级土壤学 一、考查目标 要求考生具备较为全面的土壤学基础知识,具备较高的土壤学理论分析能力,具备较强的土壤学理论应用能力。 二、适用范围 适用于报考全日制和非全日制专业学位农业资源利用领域的考生。 三、考试形式和试卷结构 1.试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。 2.答题方式 闭卷、笔试。 3.试卷内容结构 内容包括土壤学基础知识和土壤学理论分析与综合应用两部分。 四、考试大纲 (一)土壤学基础知识 1.土壤质地与结构 2.土壤水 3.土壤热量 4.土壤胶体与特性 5.土壤酸碱性与酸碱缓冲性 6.土壤氧化还原性 7.土壤生物种类与功能 8.土壤氮素的形态与转化 9.土壤磷素形态与转化 10.土壤钾、钙、镁、硫、微量元素的形态与有效性

11.土壤母质的来源与类型 12.土壤形成因素 13.土壤形成中的物质循环与代表性成土过程 14.土壤发育与剖面 15.地带性分布概念与世界主要土壤分类系统 16.我国土壤分布状况 17.土壤质量概念与评价 18.土壤退化概念与主要类型 19.土壤调查基本原则与方法 20.土壤信息系统组成 (二)土壤学理论分析与综合应用 1.土壤肥力评价原则与实例分析 2.土壤水、气、热状况的调控手段与实例分析 3.土壤酸碱性的意义与调节途径 4.土壤生物与土传病害、连作障碍关系分析与防治措施 5.土壤有机质的作用与全球碳循环 6土壤养分有效性与调控 7.土壤过程与地表水体富营养化的关系与实例分析 8.土壤过程与温室气体排放 9.农田、园艺、草原、城市土壤特征分析 10.土壤学与现实问题(如再生水灌溉、垃圾施肥、食品安全、碳贸易,等等)

物化课后习题第章化学动力学

第八章 化学动力学* ——课后习题解答 难度级别:基础★,基础2★,综合3★,综合4★,超纲5★ 关于作业:公式有必要牢记,但是平时作业时最好是自己动手推导出比较简单的公式,而不是直接翻书,找到公式,套公式,这样的解题方式不值得提倡。 1.(基础★)气体反应SO 2Cl 2 = SO 2 + Cl 2为一级反应。在593K 时的k = 2.20×10-5 s -1。求半衰期和反应2h 后分解的百分比。 解:1/25 ln 20.693 315002.2010 t s k -= ==?(计算有点误差31507 s ), 510 0ln 2.21023600 1.58410c kt c x --==???=?- 0000 1 1.17161 1.1716100%14.65%1.17161c x x c x c c -===?=--, 2.(基础★)镭原子蜕变成一个Rn 和一个α粒子。它的半衰期是1622年,反应是一级。问1g 无水溴化镭RaBr 2在10年内能放出多少Rn ?Rn 的量用0℃,标准压力下的体积(cm 3)来表示。 解:41 1/2ln 2/0.692/1622 4.27310k t a --===?, 430 0ln 4.2731010 4.27310c kt c x --==??=?-, 0 0 1.00428c c x ∴ =- 1g 无水溴化镭的物质的量为1 0.00259386 mol =,也就是溴离子物质的量 在同一个密闭的容器中 50.00259 1.00428 1.105100.00259x mol x -=?=?- 故1g 无水溴化镭在10年内能放出在0℃,标准大气压下Rn 的体积为 V = 1.105×10- 5×22.4×103 = 0.248 cm 3 【讨论】(1)元素周期表应该作为一个常用的工具备在身边,Ra 的原子量为226,溴的原子量为80;(2)单位是灵活的,可以根据具体的情况而定,目的则是为了方便计算;(3)无水溴化镭RaBr 2不是气体?这样在浓度表达上有问题吗? 4.(基础★★)某二级反应在a = b 时,经过500s 原始物作用了20%,问原始物作用60%时须经过多少时间? *马鞍山,尹振兴,2007,zhenxingyin@https://www.wendangku.net/doc/5a16466399.html,

波谱学分析吗问答题总结

第一章紫外光谱(UV) 1.1.什么是发色团、助色团、红移、蓝移、增色效应、减色效应、吸收带的概念? 发色团:凡能吸收紫外光或可见光而引起电子能级跃迁的基团称为发色团 助色团:当含有杂原子的饱和基团与发色团相连时,吸收波长会发生较大的变化,这种含杂原子的饱和基团称为助色团。 红移和蓝移:有机化合物的结构发生变化或测试条件发生变化时,其吸收波长向长波方向移动的现象称为红移;其吸收波长向短波方向移动的现象称为蓝移。 增色效应和减色效应:当有机化合物的结构发生变化或溶剂改变时,在吸收峰红移或蓝移的同时,常伴有吸光度(A)的增加或减弱。将吸光度增加的效应称为增色效应,将吸光度减小的效应称为减色效应。 吸收带:波长连续分布的辐射通过物质时,辐射能量被物质吸收的一部分波长范围。 1.2 什么是Lambert-Beer定律;什么是摩尔吸光系数;如何进行定量计算? Lambert-Beer定律:当一束平行单色光垂直地通过均匀溶液时,被测物质溶液的吸光度与溶液浓度及厚度的乘积成正比。 表达式:A=Kcl(A:吸光度K:比例常数l:液层厚度) 摩尔吸光系数(ε):物质对某波长的光的吸收能力的量度。指一定波长时,溶液的浓度为1 mol/L,光程为1cm时的吸光度值,用ε或EM表示。ε越大,表明该溶液吸收光的能力越强,相应的分光度法测定的灵敏度就越高。 1.3 什么是诊断试剂?如何利用UV鉴定黄酮类化合物的结构类型,黄酮UV吸收的A带和B带是怎么回事? 大多数黄酮类化合物在甲醇中的紫外吸收光谱由两个主要吸收带组成。出现在300~400nm之间的吸收带称为带Ⅰ,出现在240~280nm之间的吸收带称为带Ⅱ。不同类型的黄酮化合物的带Ⅰ或带Ⅱ的峰位、峰形和吸收强度不同,因此从紫外光谱可以推测黄酮类化合物的结构类型。 当向黄酮类化合物的甲醇(或乙醇)溶液中分别加入甲醇钠(NaOMe)、乙酸钠(NaOAc)、乙酸钠-硼酸(NaOAc-H3BO3)、三氯化铝或三氯化铝-盐酸(AlCl3/HCl)试剂能使黄酮的酚羟基离解或形成络合物等,导致光谱发生变化。据此变化可以判断各类化合物的结构,这些试剂对结构具有诊断意义,称为诊断试剂。 1.4.HPLC-DAD与普通UV在功能上有何区别? HPLC-DAD:高效液相色谱一二极管阵列检测器 光二极管阵列检测器(ptoto-diode-array detector detector,PDAD)是20世纪80年代发展起来的一种新型紫外吸收检测器,它与普通紫外吸收检测器的区别在于进入流通池的不再是单色光,获得的检测信号不是在单一波长上的,而是在全部紫外光波长上的色谱信号。因此它不仅能定量检测,还可提供组分的光谱信息。 1.5.你能列举紫外吸收光谱在有机化合物定量分析和结构鉴定中应用实例吗? 1 定性分析 利用紫外吸收光谱鉴定有机化合物,其主要依据是化合物的特征吸收特征。如吸收曲线的形状、吸收峰数目以及各吸收峰波长及摩尔吸收系数。用紫外光谱进行定性鉴定的化合物必须是纯净的,并按正确的操作方法用紫外分光光度计绘出吸收曲线,然后根据该化合物的吸收特征作出初步判断。

催化反应动力学数据测定

实验三气固相苯加氢催化反应实验 一.实验目的 1.了解苯加氢的实验原理和方法。 2.了解气固相加氢设备的使用方法和结构。 3.掌握加压的操作方法。 4.通过实验进一步考察流量、温度对苯加氢整套反应的影响。 二.实验原理 环己烷是生产聚酰胺类纤维的主要中间体之一,高纯度的环己烷可由苯加氢制得。 苯加氢是典型的有机催化反应,无论在理论研究还是在工业生产上,都具有十分重要的意义。工业上常采用的苯加氢生产环己烷的方法主要有气相法和液相法两种。气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,费用比液相大。液相法的优点是反应温度易于控制,不足之处是所需压力比较高,转化率较低。 反应主要方程式如下: 苯加氢制环己烷的反应是一个放热的、体积减小的可逆反应,因此,低温和高压对该反应是有利的。所以,苯加氢制环己烷的反应温度不宜过高,但也不能太低,否则反应分子不能很好地活化,进而导致反应速率缓慢。如果催化剂活性较好,选择性可达95%以上。

本实验选择在加压固定床中进行催化反应,催化剂采用r-Al 2O 3 载Ni 或Cu 。 原料:苯,氢气,氮气(吹扫用),环己烷 三、流程示意图与面板布置图 1、流程示意图 V -截止阀,S -三通转换阀,T C I -控温,T I -测温,P I -测压 气体钢瓶, 过滤器, 稳压阀 , 干燥器, 质量流量计,止逆阀缓冲器, 预热器, 预热炉, 反应炉, 反应器 , 冷却 器 气 液分离器背压阀, 取样器,湿式流量计, 加料泵

2、面板布置图

四.实验步骤 1、装填20ml催化剂 打开反应加热炉,卸下反应器的上下盖法兰的连接口接头,从炉内取出反应器(拆卸时先将热电偶插件拔出)。在设备外部将上下法兰压紧螺栓松开,旋转推出,若反应器内上部有玻璃棉,用带有倒钩的不锈钢丝将它取出,并倒出催化剂,再取出反应器下部的玻璃棉,最后用镊子夹住沾有丙酮的脱脂棉擦拭一下,同样擦拭反应器内部,用吸耳球吹干。这时要注意,反应器内有测温套管,不能将它碰歪。若感到不方便,可将下法兰也卸下来,这样就很好清洗了。装填催化剂时要先将下法兰装好,后装好支撑架测好位置,装玻璃棉,倒入催化剂,最后再装入玻璃棉。上好上法兰,拧紧螺栓放回反应炉内支撑好,再次连接出入口接头,插入热电偶(其底端位置应根据装在反应器内催化剂的高度而定。催化剂的加入量以实验的要求而定,单位的取舍是根据空速单位而定,由此选择称量重量还是测量体积。装催化剂要通过小漏斗装入反应器。装填时要轻轻震动反应器使催化剂均匀分布,催化剂上部再放入少许玻璃棉。 注意:安装反应器和上开启炉子一定要轻轻操作,拧紧接头时要用力适当不能过力,以免损坏接口螺纹。 2、系统试漏 <1>确定操作压力,关闭尾气出口阀门、背压阀。

利塞膦酸钠的波谱学数据和结构确证

利塞膦酸钠的波谱学数据和结构确证 目的确证利塞膦酸钠的结构。方法采用红外(IR)、紫外(UV)、氢谱(1HNMR)、碳谱(13CNMR,DEPT)等进行结构解析。结果根据氢-氢相关谱(1H-1H COSY)、碳氢相关谱(HMQC)、碳氢远程相关谱(HMBC)对所有的1HNMR和13CNMR谱信号进行了归属;讨论了红外特征吸收峰所对应的官能团的振动形式。结论确证了利塞膦酸钠的结构。 标签:利塞膦酸钠;核磁共振;归属;红外;紫外 利塞膦酸钠是双膦酸盐类药物,化学名为[1-羟基-2-(3-吡啶基)乙叉基]双膦酸单钠盐,其结构式见图1。在临床研究中显现出其对变形性骨炎及骨质疏松症具有优异的疗效[1-4]。文献对利塞膦酸钠的制备与药理方面的报道较多,波谱学方面报道较少。本研究报道了该化合物的红外、紫外、氢氢相关谱、碳谱、碳氢相关谱、碳氢远程相关谱并予以解析,对所有的1HNMR和13CNMR谱信号进行了归属;同时讨论了红外特征吸收峰所对应的官能团的振动形式,并对样品进行热差和热重分析。现报道如下: 1 资料与方法 1.1 仪器和测定条件 1HNMR、13CNMR、HMQC 和HMBC均在超导核磁共振波谱仪(德国Bruker DPX-400M)核磁共振仪上完成。以D2O为溶剂,二维谱采用反相检测探头,1HNMR的观测频率为400.144 MHz;13CNMR的观测频率为100.625 MHz;PE-2400型元素分析仪;PERKIN-ELMER LAMBDA17紫外可见分光光度计;美国BIO-RAD FTS-40型傅立叶变换红外分光光度仪,KBr压片;日本岛津DT-40型热分析仪。 1.2 样品制备 以3-吡啶乙酸盐酸盐为起始原料,与亚磷酸和PCl3缩合、水解得利塞膦酸钠。以异丙醇、水精制[4]。对样品进行HPLC分析,结果表明纯度为99.5%,符合结构鉴定所需纯度。样品的元素分析测定值(m%)为:C 23.98,H 4.29,N 3.98,P 17.6,与理论值基本符合。 2 结果 2.1 利塞膦酸钠的核磁共振谱 利塞膦酸钠分子结构中有7个碳原子,10个质子,1个氮原子,2个磷原子和7个氧原子, 2.5个结晶水。其13CNMR谱上出现7组碳原子信号。利用一维13CDEPT谱可以确定:无伯碳峰,1组仲碳峰,4组叔碳峰,2组季碳峰,与利塞膦酸钠的分子结构相符。 1HNMR谱显示有5组氢,由低场到高场的积分比例为1∶1∶1∶1∶2,与利塞膦酸钠的结构相符。δ3.33的三重峰,相当于2个氢,为7位亚甲基上的两个H。δ7.79的三重峰,相当于1个氢,为5位氢与4位氢和6位氢发生偶合裂分为三重峰,COSY谱(见图2)显示这两组氢相关。δ8.45的双重峰,相当于1个氢,为4位氢与5位氢发生偶合裂分为双重峰,COSY谱显示这两组氢相关。δ8.47的单峰,相当于1个氢,为6位氢。δ8.61的单峰,相当于1个氢,为2位氢。结构中有一个亚甲基,化学位移在最高场,四个吡啶环上的氢,化学位移在低场,其中2位氢由于受N原子和3位上取代基的影响,化学位移在最低场。6位氢受N原子影响移向低场。

波谱大纲(药本)

广东药学院 教学大纲 课程名称有机化合物波谱解析适用专业药学专业 天然药物化学教研室编 2006年1月

一、课程性质、目的和任务 有机化合物波谱解析是药学专业的必修课。根据药学专业的培养目标的要求,本课程将在学生学习有机化学、分析化学、物理化学等课程的基础上系统讲授紫外光谱(UV)、红外光谱(IR)、核磁共振光谱(NMR)和质谱(MS)这四大光谱的基本原理、特征、规律,以及图谱解析技术,并且介绍这四大光谱解析技术的综合运用,培养学生掌握解析简单有机化合物波谱图的能力,为学习天然药物化学中有效成分结构鉴定打基础。 教材:姚新生.有机化合物波谱解析.中国医药科技出版社,2004 习题:以本教研室陈熔、吕华冲老师编写的《波谱解析习题集》为主,教科书里的习题为辅,在讲授完每章内容后布置习题。 二、课程基本要求 1、本课程应结合目前有机化合物和天然药物结构研究的方法和发展趋势使学生意识到: (1)UV、IR、NMR、MS是目前研究有机化合物和天然化物结构不可缺少的主要工具和方法。 (2)掌握有机化合物重要官能团的光谱特征和规律是解析图谱、推测结构的基础。 2、讲授UV、IR、NMR、MS的基本原理、知识和理论;介绍它们的测定方法、图谱的特征以及基本有机化合物重要官能团在四大光谱中的特征及规律;介绍综合解析图谱的一般方法和技巧,要求学生通过学习做到: (1)掌握UV、IR、NMR、MS的基本原理、知识,了解它们的测定方法;(2)熟悉基本有机化合物重要官能团在UV、IR、NMR、MS光谱中的特征及规律; (3)能够根据有机化合物的结构式,初步推测它们的波谱学主要特征(UV、IR、NMR、MS); (4)掌握图谱解析的一般程序和方法; (5)了解标准图谱的应用。 3、在基本有机化合物波谱学的基础上适当的介词天然药物结构研究的波谱知识

种植基础知识清单

种植基础知识清单 绪论: 1、种植业的特点:是以土地为重要生产资料,利用绿色植物,通过光合作用把自然界中的二氧化碳、水和矿物质合成有机物质,同时把太阳能转化为化学能贮藏在有机物质中。 2、当前种植业发展主要体现在以下几个方面:在作物产量稳定提高的同时,不断优化种植业结构;种植业发展方式的转变,正在由粗放型向集约型转变;种植业的功能日益拓展,已经由单一保障供给逐步向多样性发展。 3、种植业面临的问题:资源约束日益趋紧;农业灾害威胁加剧; 4、我国人均耕地面积为公顷,仅为世界平均水平的1/3;人均水资源不足200立方米,仅为世界平均水平的1/4;农业灌溉水每立方米平均生产粮食1千克,仅为发达国家的一半。 第一章:植物生长的外部环境 1、太阳光是生物存在的基本能量来源太阳光是取之不尽用之不竭的一种自然能源 2、夜间太阳辐射为零;清晨太阳辐射较弱;正午太阳辐射最强,为最大值;午后逐渐减弱。 3、在一年中,夏季太阳辐射量大,夏至最高;冬季太阳辐射量小,冬至最小。 4、随纬度增高,太阳辐射减小;随纬度降低,太阳辐射增大。 5、海拔高度高,太阳辐射强;海拔低,太阳辐射弱。 6、我国北方地区称为长日照地区,南方地区称为短日照地区。 7、光照度是太阳辐射强度中的可见光部分。在一定范围内,植物的光合作用随着光照度的增强而增强。 8、二十四节气,是根据地球在公转轨道上所处的位置而确定的,起源于黄河流域一带。主要反映黄河中下游地区的1气候特点和农事活动情况。 9、光中能促进植物组织的分化,充足的光照有利于花芽形成、开花结果,强光的照射可使植物花色艳丽。 10、长日照植物包括小麦、油菜、萝卜、白菜、甘蓝;短日照植物有水稻、玉米、棉花、甘薯、菊花、甘蔗;中间性植物有四季豆、番茄、黄瓜等。木本植物对光周期的反应不如草本植物敏感。 11、长日照植物北种南引需要选择早熟品种,南种北引需要选晚熟品种;短日照植物北种南引需选择晚熟品种,南种北引需选择早熟品种。 12、喜光植物有银杏、梅花、向日葵、玉米、谷子、芝麻、花生、棉花;阴生植物有人参、吊兰;耐阴植物有大豆、豌豆、绿豆、红小豆、桧柏、君迁子。 13、植物幼年阶段比较耐阴;湿热条件下耐阴能力强;肥沃土壤植物耐阴能力较强。 14、光能利用率的原因:光的漏射、反射和投射的损失;受光饱和现象的限制;环境条件及作物本身生理状况的影响。 15提高光能利用率途径:选育光能利用率高的品种;合理密植;间套复种;加强田间管理。 16、影响土壤温度变化的外因有纬度、海拔高度、地形和地表覆盖。 17、在正常条件下,一日内土壤表层最高温度出现在13点左右,最低温度出现在日出之前。不同土壤深度,土壤温度日变化的幅度不同.一般情况下,表层土壤的日变温幅度最大,随土层加深,土壤的日变温幅度逐渐减小,在80—100cm深土层日变温幅度为零。 18、一年中,土壤表层月平均最高值出现在7—8月;最低值出现在1—2月份。 19、一天中,气温(离地面高测定)的最高温度出现在下午2—3时,最低温度一般出现在日出请的时间段。 20、一年中,月平均气温最高温度一般出现在7—8月;月最低温度一般出现1—2月。 21、气温随高度的增加而降低。离地面越远,温度就越低。

动力学参数

有阻尼自由度系统的强迫振动 在多自由度的振动系统中,当激振频率达到某些质体单独的固有频率值时,其中的一个质体静止,这种现象就叫反共振现象。此惯性往复近共振筛上下质体动力学的参数就是依据反共振原理来选择的。 一上质体刚度的选择 如图所示为惯性往复近共振筛的力学模型,不考虑阻尼的情况下,系统的运动微分方程为:

设,则振幅向量为: =-1 (1) = 其中: = 由式(1)可知,当,即时,下质体的振幅,即下质体不再振动,这时出现 反共振现象。此时的,所以振动筛下质体此时的位移为: 即,由此可知下质体质量上受到 的激振力恰好被上质体上的弹性恢复力所平衡。 由此得上质体的刚度: 已知则:

二下质体刚度和质量的选择 引入下列参数 , 为下质体单独的固有频率; 为上质体单独的固有频率; 为上质体与下质体的质量比; 为下质体支撑弹簧的静变形; 为激振频率与下质体固有频率的频率比 为上质体与下质体的固有频率比 为下质体动力放大因子; 为上质体动力放大因子; 有(1)式可知: (2) (3) 由(2)、(3)式可以看出,上、下质体的动力放大因子是参数u、a、的函数。

在实际的振动系统中阻尼比、质量比、频率比等动力学参数均会对系统的振幅产生不同程度的影响。但由于实际振动系统中的粘性阻尼系数都很小并且是固定不变的,所以振动机械在稳态工作状态下,系统的阻尼可以忽略不计,因此对系统有影响的只有上、下质体固有频率之比和质量比。以下是在不同的质量比和固有频率之比的情况下,利用matlab画出的上质体和下质体的幅频响应曲线: 当质量比u=1,=1 为蓝色曲线;u=1,a=3 为红色曲线

实用电子磁共振波谱学

21世纪科学版化学专著系列 实用电子磁共振波谱学———基本原理和实际应用 徐元植 编著 北 京

内 容 简 介 本书主要论述电子磁共振波谱学的基本原理和实际应用。在论述基本原理的同时着重引导读者学会如何“解谱”。除在书中穿插一些应用实例外,还专门用5章的篇幅介绍了电子磁共振在相关领域中的应用、过渡金属离子及其配合物的电子磁共振波谱、固体催化剂及其催化体系中的电子磁共振波谱、电子磁共振在医学和生物学中的应用、便携式电子磁共振谱仪及其开发应用等与应用密切相关的内容。 本书适合非物理专业出身的电子磁共振波谱领域的科研工作者阅读,也可作为高等院校相关专业的研究生教材。  图书在版编目(CIP)数据  实用电子磁共振波谱学:基本原理和实际应用/徐元植编著.—北京:科学出版社,2008  ISBN978唱7唱03唱020211唱6  Ⅰ畅实… Ⅱ畅徐… Ⅲ畅电磁场-磁共振谱法 Ⅳ畅O441畅4O657畅2 中国版本图书馆CIP数据核字(2007)第166301号 责任编辑:周巧龙 吴伶伶 王国华/责任校对:张 琪 责任印制:钱玉芬/封面设计:王 浩  出版 北京东黄城根北街16号 邮政编码:100717 http://www畅sciencep畅com 印刷 科学出版社发行 各地新华书店经销 倡 2008年1月第 一 版 开本:B5(720×1000) 2008年1月第一次印刷印张:341/2 印数:1—2500 字数:633000 定价:98畅00元 (如有印装质量问题,我社负责调换枙环伟枛)

21st Century SP摧s Series in Chemistry APPLIED ELECTRON MAGNETIC RESONANCE SPECTROSCOPY Elementary Principle&Practical Applications XU Yuanzhi Science Press Beijing

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

波谱解析试题and答案

波普解析试题 一、名词解释(5*4分=20分) 1.波谱学 2.屏蔽效应 3.电池辐射区域 4.重排反应 5.驰骋过程 一.1.波谱学是涉及电池辐射与物质量子化的能态间的相互作用,其理论基础是量子化的能量从辐射场向物质转移。 2.感生磁场对外磁场的屏蔽作用称为电子屏蔽效应。 3. γ射线区,X射线区,远紫外,紫外,可见光区,近红外,红外,远红外区,微波区和射频区。 4.在质谱裂解反应中,生成的某些离子的原子排列并不保持原来分子结构的关系,发生了原子或基团重排,产生这些重排离子的反应叫做重排反应。 5.要想维持NMR信号的检测,必须要有某种过程,这个过程就是驰骋过程,即高能态的核以非辐射的形式放出能量回到低能态,重建Boltzmann分布的过程。 二、选择题。( 10*2分=20分) 1.化合物中只有一个羰基,却在1773cm-1和1736cm-1处出现两个吸收峰 这是因为:(C ) A、诱导效应 B、共轭效应 C、费米共振 D、空间位阻 2. 一种能作为色散型红外光谱仪的色散元件材料为:( D ) A、玻璃 B、石英 C、红宝石 D、卤化物晶体 3.预测H2S分子的基频峰数为:( B ) A、4 B、3 C、2 D、1 4.若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何变化的:(B) A、不变 B、逐渐变大 C、逐渐变小 D、随原核而变 5.下列哪种核不适宜核磁共振测定:( A ) A、12C B、15N C、19F D、31P 6.在丁酮质谱中,质荷比质为29的碎片离子是发生了( B ) A、α-裂解 B、I-裂解 C、重排裂解 D、γ-H迁移 7.在四谱综合解析过程中,确定苯环取代基的位置,最有效的方法是( C ) A、紫外和核磁 B、质谱和红外 C、红外和核磁 D、质谱和核磁

波谱学复习题

波谱学复习题 1. 某化合物(F)C 4H 7ClO 2,其核磁共振有a 、b 、c 三组峰,a 在δ1.25处有一个三重峰,b 在3.95处有一个单峰, c 在4.21处有一个四重峰。红外光谱在1730cm-1区域有一强的吸收峰。化合物(G)C 5H 10O ,其核磁共振有a’、b’二组峰, a’在δ1.05处有一个三重峰,b’在 2.47处有一个四重峰,红外光谱在1700cm-1附近有特征吸收峰。 (F)与(G)在Zn 作用下于苯中反应,然后再水解得化合物(H)C 9H 18O 3, (H)在H +催化作用下加热得(I)C 9H 16O 2, (H)先用NaOH 水溶液处理,然后再酸化得化合物(J)C 7H 14O 3。请根据上述事实推测化合物(F) (G) (H) (I) (J)的结构简式。 F O O Cl G: O H: O OH O I: O O J: OH O OH 2. 分子式为C 4H 8O 2的化合物A ,溶于CDCl 3中,测得NMR 谱,δ=1.35(双峰,3H),δ=2.15(单峰, 3H),δ = 3.75(单峰, 1H), δ = 4.25(四重峰, 1H )。如溶在D 2O 中测NMR 谱,其谱图相同,但在3.75的峰消失。此化合物的IR 在1720cm -1处有强吸收峰。请写出此化合物的结构式。 A OH O 3. 化合物A 的实验式为C 3H 6O ,NMR 数据:δ1.2(6H )单峰,δ2.2(3H )单峰,δ2.6(2H )单峰,δ 4.0(1H )单峰。IR 数据:在1700cm -1及在3400cm -1处有吸收带。试推测化合物A 的结构。 A OH O 4. 根据所提供的分子式及IR 、NMR 数据,推测相应化合物的构造式。 B: O O C: HOOCCH 2CH 2CH 2COOCH 3 5. 某化合物B 的分子式为C 8H 16O ,不与金属Na ,NaOH 及KMnO 4反应,能与浓HI 溶液反应生成化合物C (C 7H 14O ),C 与浓硫酸共热生成化合物D (C 7H 12)。D 经臭氧化水解后得产物E (C 7H 12O 2)。E 的IR 在1750-1700 -1cm 处有强吸收峰,而在1H NMR 图中有两组峰具有如下特征:一组为δ =10(三重峰, 1H ),另一组为δ =2.0(单峰, 3H )。D 在过氧化物存在下与氢溴酸作用得F (C 7H 13Br ),F 经水解得到化合物C 。试写出化合物B 、C 、D 、E 、F 的结构式。 B: OCH 3 C: OH D:

土壤学实习心得体会

八、心得体会 土壤是在岩石风化的基础上受五大成土因素即气候、地形、母质、植被、时间以及人为因素综合作用下形成的,只有认清这些土壤形成因素对土壤发育和土壤性质作用,才能够在生产实践中通过控制土壤形成因素并发挥有力的因素的作用,是土壤的的生产力得到充分的发挥。因此,了解岩石特性、土壤发生发展规律及土壤性质与外界条件之间的内在关系,摸清土地资源的数量与质量,是我们认识土壤本质,促进合理开发土地资源和保证土地资源的可持续利用的科学基础。 通过这次的实习,让我收益颇多。从原先了解的关于土壤单方面的理论知识到实践。在实习过程把理论与实践相结合,巩固和提高了我们在课堂上所学的理论知识,也增加我们对土壤学新的认识。本次实习令我们加深了对所学课程的了解,更深刻认识到了学习该课程的意义,巩固了学习成果,体会到“学以致用”的道理。知识从感性认识升华到了理性认识,从抽象变得具体起来,我学习到了很多书上没有的东西,了解土壤学对实际农林生产的重要性。初步了解了花溪主要地质地貌和所发育而成的土壤类型。在这里深深的感谢老师们的认真指导。 在实习中初步掌握了土壤调查的基本技能和方法。外出实习要对考察对象做一定的了解,合理安排考察路程和考察内容,注意研究的方法和工具的使用,一些考察的细节,充分认识到土壤剖面观测的必要性和艰苦性,激发了我们自己考察家乡和各地的典型地质地貌和土壤的兴趣。在自己动手实践了一番之后,我们对挖剖面有了深刻的体会,找好挖剖面的适合位置,大致的范围,挖的深度,是否垂直这些关系着能否挖好一个剖面。不断在实践中总结技巧,灵活运用,是实践方法,也锻炼学习的能力,更是对可课本知识的良好巩固。同时,懂得和小组成员合作的重要性。这些都将对我们日后的学习乃至工作起到积极的作用。

动力学方程

1问题一:什么是非等温试验? 通常有等温法(也称静态法)和非等温法(也称动态法), 等温法是较早研究化学动力学时普遍采用的方法,该法的缺点在于比较费时,并且研究物质分解时,往往在升到一定的试验温度之前物质己发生初步分解,使得结果不很可靠。在非等温法中,试样温度随时间按线性变化,它在不同温度下的质量由热天平连续记录下来。非等温法是从反应开始到结束的整个温度范围内研究反应动力学,测得的一条热重曲线与不同温度下测得的多条等温失重曲线提供的数据等同,相比于等温法,非等温法只需一个微量的试验样品,消除了样品间的误差以及等温法将样品升至一定温度过程中出现的误差,并节省了试验时间。在目前的热重分析中常采用非等温法来进行动力学的研究。 问题二:文献中常用热解动力学表达式 d (a)/dt=kf(a) ——(1) a为t时刻的分解率(材料的失重百分率)又称转化率。a=(m0-m)/(m0-m∞) k=A exp(-E/RT)——(2)β=dT/dt ——(3) 采用coats-Readferm积分法推到 Ln[g(a)/T2]=ln(AR/βE)-E/RT f(a)=(1-a)2 f(a)为分饵的固体反应物与反应速率的函数关系。设Y= Ln[g(a)/T2] X=1/T 做X,Y直线曲线,求出斜率即可得到活化能E,同时得到结局求出指前因子A。 确定g(a)的值就能得到活化能E,常用g(a)的形式很多,有的是模型,有的是反应级数,总之尝试多种方法,找到最合适的,得到更精确的线性关系。 问题三: 1单条升温速率曲线的Coats-Redfern法,跟上述方程表达式一样,可得, ln[-ln( 1 -a)/T 2] = ln[AR/βE( 1-2RT/ E) ]-E/RT( n = 1) ,(4) ln[-( 1 -a)1 -n/T2( 1 -n ) ] = ln [AR/βE (1-2RT/ E) ]-E/RT( n≠1) . (5) 因为,一般活化能 E 的数值远大于温度T,所以(1?2RT/E)≈1,则式(4)和式(5)右端第1项几乎是常数。因此,可分别取n等于0.5, 0.6, 0.7, 0.8, 1.0, 1.2和1.5,结合热重实验的数据得到式(4)和式(5)的左端数值,并对1/T作图,得到这些直线的线性相关系数和标准误差数据,通过对比确定出线性较好的直线,由其斜率得到活化能E。 2,多条升温速率曲线的Flynn-Wall-Ozawa 法 Flynn-Wall-Ozawa(FWO)法通过多条升温速率曲线确定动力学参数,是等转化率法、积分法的一种。 根据式(1)(2)(3)进行移项积分得到, Logβ=log[AE/RG(a)]-2.315-0.4567E/RT 由不同升温速率βi的TG 实验数据,在同一反应深度a下,找到相应的温度Ti,则lgβi 与Ti可以拟合得到一条直线,由其斜率可以得到活化能E,并且可以得到活化能随反应深度a的变化关系。(例如excel蒙古栎的四种升温速率)

相关文档