文档库 最新最全的文档下载
当前位置:文档库 › 汽车钢板弹簧的设计

汽车钢板弹簧的设计

汽车钢板弹簧的设计

一、汽车钢板弹簧的基本特性钢板弹簧的主要功能是作为汽车悬架系统的弹性元件,此外多片弹簧的片间摩擦又起作系统的阻尼作用,多数钢板弹簧通过卷耳和支座兼有导向作用。但就其基本的受力情况及结构特点,钢板弹簧具有以下两个基本特征:1、无论钢板弹簧以什么形式装在汽车上,它都是以梁的方式在工作,也就是说它的主要受力方向垂直于钢板弹簧长度。同时,由于受变形相对其长度很小,因此可以利用材料力学中有关小挠度梁的理论,即线性原理来进行分析计算。2、钢板弹簧装在汽车上所承受的弯矩,基本上是单向载荷,因而其弯曲应力也是单向应力。二、等应力梁的概念椭圆形半椭圆形四分之一椭圆形除早期的汽车采用过椭圆形钢板弹簧,近代汽车绝大多数采用半椭圆形钢板弹簧,只有极少数采用四分之一椭圆形钢板弹簧。无论何种形式的钢板弹簧,就其总成而言,都是根部支承,端部承爱集中载荷,它都是以梁的方式在工作。众所周知,理想的梁应该是一根等应力梁,这样才能获得材料的最佳利用。对于钢板弹簧而言,无论单片或多片,设计者应该努力将它设计成等应力梁或近似于等应力梁。就单片梁而言,当只有单片承爱集中载荷时,有两种轮廓可以满足等应力梁的要求。对于等厚度者,宽度应成

三角形,对于等宽度者,厚度为抛物线形状。当然,从理论上讲,只要截面系数沿片长方向与弯矩成比例变化,都可以成为等应力梁。然而汽车上几乎没有采用同时变厚又变宽的弹簧。上述轮廓线只是对弯曲应力而言,实际上钢板弹簧端部受剪切强度的要求以及卷耳的存在,第一种轮廓只能是在三角形端部加上等宽的矩形或整个宽度成为梯形,而第二种轮廓只能是抛物线端部接上一段等厚度的矩形或厚度按梯形变化的梁。为了简化轧制工艺,对于等宽度者,可用梯形代替抛物线。此外,根部也设计成为平直的,便于与支承座贴合,也就是说,或者由梯形和根部、端部为矩形的三段直线构成。所以,在实际应用上,只能把弹簧设计成为近似的等应力梁。由于结构上的原因,没有人在汽车上采用等厚度变宽度的单片钢板弹簧,但等宽度变厚度的单片钢板弹簧早就得到实际的应用。三、单片钢板弹簧的计算1、计算公式:单片钢板弹簧,就是一根简单的承爱集中载荷的梁,我们可以利用材料力学中分析小挠度梁的方式,寻出计算挠度、刚度、沿长度分布的最大应力以及比应力的公式。当然,梁的轮廓线(断面变化情况)不同,寻出的公式也不同。然而,对它们整理之后,我们可以得到一组形式完全一样的计算公式,仅以形状系数的差异来区别各种不同轮廓线的单片钢板弹簧。可把普通使用的对称半椭圆钢板弹簧当做简支梁来分析,它的计算公式

是:............(1).........(2)......(3)......(4)式中:f-挠度c-刚度σ-根部应力-比应力(单位变形所产生的应力,反映同样f的情况下应力幅的大小)δ-形状系数,Q-弹簧根部负荷,Q=2P,L-弹簧长度,L=2L,E-弹性模数,I0-根部惯性矩,W0-根部断面系数。2、形状系数(1)等厚度,宽度为梯形形状系数由端部与根部之惯性矩比值所确定。 (5)

而式中:I1-端部惯性矩I0-根部惯性矩(2)等宽度,厚度为抛物线加上矩形端部形状系数取决于矩形段长度与总长之比………..(6)式中:-为矩形段单边长度(3)等宽度,厚度为抛物线和端部及根部为矩形三段组成。将根部的矩形段延长,并比理论抛物线根部厚度增大一些,是为了减小根部应力,克服这部位由于接触应力和应力集中导致的早期损坏。对这种单片簧进行分段积分求变形,最后得到的计算公式也具有与上述式(1)….(4)相同形式,但式中之根部惯性矩与断面系数等,均指理论抛物线根部的断面参数,即:而形状系数:………..(7)式中:这种弹簧的最大应力不在根部,而在整个抛物线区段,所指比应力也如此。(4)等宽度,厚度由三段直线组成。为了使轧制工艺和检验方法简便些,可以将上述抛物线区段用直线代替,形成一根由三段直线组成的变断面梁。同样,对这种弹簧

分段积分求变形,经整理后,其计算公式具有与上述式(1)….(4)相同形式,其形状系数………..(8)式中:其中-为弹簧半长按上述式(3)、(4)计算的应力和比应力,均是根部的应力和比应力,但不一定是沿片长的最大应力。从以上公式可以看出,对于理想的等应力梁,若是等厚度的三角形梁,η=0结果δ=1.5,若是等宽度的抛物线梁,λ1=0,λ2=λ3=1,结果δ=2。它们都可以获得最大的形状系数即最大挠度增大系数。对于等宽等厚的矩形梁δ=1为最小值。其它各种轮廓,形状系数都介于这二者之间。3、确定轮廓线的基本原则在实际应用上,如前所述,端部必需要有一个矩形段,而根部由于支承座的工艺方便性,也要有一段平直的矩形段,所以实际的变截面弹簧只能是上述两种轮廓。那么,设计上如何来确定轮廓线呢?①、从设计的合理性讲,基本的原则是使应力分布尽量均匀,也就是尽量接近等应力分布。这里可以引入材料利用率的概念,也就是在相同的最大应力提前下,采用材料利用率最高的轮廓线。所谓材料利用率,就是弹簧的单位体积或重量所贮存的弹性能与理想等应力梁的单位体积

或重量所贮存的弹性能的比值。一般多片簧材料利用率ε=60%,变截面簧ε=75%~85%。②、但在设计时还要根据工艺和成本等因素来决定采用何种轮廓线。即使确定了基本的轮廓线之后,就每一类轮廓而言,也要合理地选择尺寸参

数,使它获得最佳的材料利用率,才不会造成不必要的浪费。当然弹簧不仅仅承受弯曲应力,所以还应综合考虑或计算根部接触应力,端部卷耳应力等。有时为了降低接触应力或卷耳应力,就必须牺牲一定的材料利用率。设计时,除了应力核算外,还要保证所要求的刚度。四、多片钢板弹簧的刚度和工作应力计算计算多片钢板弹簧的目的,也就是为了求得它的刚度,比应力以及承载后的挠度、应力等。此外还要计算总成装配后各片的预应力。多片钢板弹簧的计算,是建筑在一定的假设基础上的。假设不同,计算结果也不同。有两种最典型的,又是截然相反的假设,即共同曲率法和集中载荷法,实际的多片簧,往往不完全符合这两种假设中的某一种,或者在工作过程中介于它们中间变化。1、共同曲率法:按此假设,在任何负荷作用下,钢板弹簧所有叶片彼此沿整个片长上无间隙地相接触,这样,在钢板弹簧的任何截面上,相邻的叶片都具有相同的曲率半径。

如果不计各叶片由于厚度形成的曲率半径的差值按此假设,即同一截面的各叶片在任何负荷下都是曲率半径相同。我们如果将多片的钢板弹簧各片从中心线纵向切开,展成平面,组成一个新的单片弹簧,可以看到,这个单片簧的力学特征和做了共同曲率法假定的多片簧完全一样的,这样,就可以利用单片弹簧的计算方法来计算多片簧。所以共同曲率法又称为展开法。这时,又可以有两种不同的方法来确立

这根等效的单片簧。一种是以宽度为梯形状的单片簧来代替多片簧,另一种是保留多片簧各叶片的端部形状,以一种锯齿形(阶梯形状)的单片簧来代替多片簧。(1)单片梯形梁的假设将多片钢板弹簧简化为单片梯形梁,可以很容易地得到计算结果。这时只要对展开后的单片簧,将其端部总宽度和根部总宽度的边缘联成一线,就形成一根梯形梁,见上图。利用材料力学小挠度梁的方法,导出的公式(1)、(2)、(3)、(4)、(5)。可以用来计算多片簧。其中根部惯性矩I0。为各片惯性矩之和,端部惯性矩为主片等长的重叠片之和。当各片厚度即惯性矩都相同时对于各片厚度或惯性矩

不同的多片簧,应该按等效即惯性矩相当的方法来确定各片的展开宽度,也就是展开后的各片厚度都彼此相同,但必须保证展开前后各片惯性矩不变,而宽度可以与原片不同。这样按式(3)和(4)计算出的静应力和比应力,只是根部的当量或平均应力、比应力,并不反映各片根部的应力、比应力。根据共同曲率法的假设,在同一截面上各片曲率半径的变化值相同,则各片所承受的弯矩正比于惯性矩。又根据平衡条件,截面上各片弯矩之和等于外力引起的力矩,可以分别求出各自叶片根部的应力和比应力:…………(8)…………(9)式中:IK-第K片根部惯性矩WK-第K片的断面系数还可以求出各叶片应力沿片长

的分布:……..(10) 式中:-在x长度处各片惯性矩之

和,K为该处的片数。IK、WK-在x长度处所计算叶片之惯性矩,断面系数。(2)单片锯齿形梁的假设(阶梯形)将多片簧的叶片按等效的原则展开成为等厚的单片簧,而各片端部保留原状,就形成一根边缘为锯齿形或阶梯的梁,对于端部不切角不轧薄的叶片,展开后就成为有规则的垂直锯齿状。见上图,同样,可以利用材料力学求小挠度梁变形的方法,利用分段积分,求得梁的变形即挠度,或改写成刚度公式。对于对称的半椭圆钢板弹簧: (11)

式中:而-为主片之半长-为第K片之半长

-为从第一片到第K片的惯性矩之和- 为修正系数

根据我们的经验:端部切角或轧薄头取=0.85~0.87

端部为矩形取=0.88~0.92 以上公式称巴希洛夫斯基公式,有的把它称为计算刚度的精确公式,实际上,此公式并不精确,主要原因是它的数学模型中让叶片端部都承受弯曲,即端点的断面惯性矩都有效,这就违反了各叶端点不能承受弯矩的边界条件,所以利用以上公式计算出来的刚度值要比实际测量值大得多,所以就引用了一个经验系数来修正。对于不对称的半椭圆钢板弹簧:….(12)式中:而、为主片和第K片的另一半长2、集中载荷法与共同曲率法的假设正相反,集中载荷法假设多片簧在任何负荷作用下,各叶片之间只在端点和根部无摩擦地接触,只在这些部位有力的传递。所以,集中载荷法又称端点法。按

照这样的假设,多片簧的力学模型如图所示。这里有n-1个未知力X2….Xn,根据材料力学求梁变形的方法,可以对每个单片求其端点以及与下一片端点接触处的变形,然后,根据变形一致原理,令相邻两片在端点接触处的变形相等,即可得到n-1个方程式,经整理后得:

A2P+B2X2+C2X3=0A3X2+B3X3+C3X4=0…………AK

XK-1+BKXK+CKXK+1=0……An Xn-1+BnXn =0 (13)式中的系数:此方程组为n-1元线性方程,用代入法就可以解出X2….Xn。知道了各单片的受力情况,就更容易求出其它的参数了。例如根据第一片承受的力P和X2,可以算出端点也就是弹簧总成的变形,进而折换成刚

度:……….(14)从式(13)解出X2代入式(14),就得到C位。同样,可求出各单片的应力分布。根部应力:与下一端点接触处的应力:因为各单片只承受集中载荷,故应力分布呈折线状。知道了这两点的应力值,就知道了沿片长的全部应力值了。3、多片弹簧各单片长度的确定在设计多片钢板弹簧时,首先要确定各片长度,才有可能按上述的各种方法来计算刚度和应力。本节所讨论的,是当主片长度确定之后,如何按各片的惯性矩来确定各片的长度。基于上述的两种假设,导出了两种选择长度的方法,展开作图法和集中载荷法,下面主要介绍展开作图法。展开作图法:根据上述等效的原则,对于主片无重叠者,可

根据等应力梁为三角形轮廓的原则,从U型螺栓跨距之半(下侧边)到主片端点(上侧边)连一直线,此直线与各单片上侧边的交点即为各片长度。如果存在与主片等长的重叠片,就按梯形轮廓线来确定各片长度,即U型螺栓跨距之半(下侧边)到最后一个重叠片的端点(上侧边)连一直线,此直线与各叶片的上侧边交点即为各片长度。五、汽车钢板弹簧设计步骤汽车钢板弹簧设计计算过程,大致可分为三个阶段,第一阶段:钢板弹簧基本参数计算;第二阶段:钢板弹簧装车后的参数验算;第三阶段:钢板弹簧结构设计。1、钢板弹簧基本参数计算(1)首先要确定与整车设计相关的基本参数①、弹簧上的载荷(簧上重量、悬架重量)簧上重量主要指作用在车轮以上的重量。根据总布置给定的轴荷减去非悬架重量,就是弹簧上的载荷。非悬架重量是指位于钢板弹簧以下的重量。指车轮、车轴等总成,把车轮与车身联系起来的零件(传动轴、纵拉杆、推力杆)的重量分为两半,一半属于非悬架重量,而另一半属于悬架重量。钢板弹簧的重量,正置装配形式的四分之三属于非悬架重量,平衡悬架钢板弹簧重量的四分之一属于非悬架重量。②、弹簧长度:(支点距)弹簧长度涉及到整车的总布置,须与总布置商定,在总布置可能的情况下,增加弹簧长度可以降低比应力,提高板簧的使用寿命,并能获得良好平顺性和操作稳定性。(双方商定或由主机厂负责悬架系统设计的

给定)③、静挠度f静:弹簧的静挠度是指满载静负荷的弹簧的变形量,它是决定平顺性的基本参数。根据静挠度,初步可以确定前、后悬架的自由振动频率。静挠度和自由振动频率的关系可由下式表示:选取较低的自振频率,可以获得良好的平顺性。但是自振频率过低,也就是说静挠度过大,又会出现一些矛盾。a. 自振频率过低,则弹簧过软,当汽车制动时,便产生严重:“点头”现象,当汽车转弯时,车身侧倾加剧。b. 静挠度增大后,汽车在坏路面行驶时,就会经常碰撞缓冲块,为了避免经常碰撞缓冲块,则要求相应地增加动挠度,这样就会抬高车架各总成的位置,提高了汽车的重心,并引起汽车在不同载荷下车身高度变化较大。c. 静挠度和动挠度增加后,车轮的垂直位移增加,使汽车的操作稳定性变坏。载重汽车在满载时的自振频率和静挠度一般为:前悬架N=100~125次/分,f静=55~90mm。后悬架N=105~130次/分,f静=50~80mm。为了减少汽车行驶过程中产生纵向频簸(纵向角振动),设计悬架时,前、后悬架的自振频率应尽可能接近。一般前、后频率的比值取0.85~1。④、动挠度在动载荷作用下,弹簧从静载荷位置起,变形到结构所容许的最大可能变形量。一般取(载重车)⑤、满载时弹簧弧高一般希望当汽车满载时弹簧平直,使弹簧在对称位置下工作,但考虑到弹簧在使用过程中会产生永久变形,所以通常取弧高为10~30mm。⑥、

骑马螺栓中心距主要用来计算装车状态时的刚度。若骑马螺栓是斜直布置,骑马螺栓中心距取上下的平均值。(2)钢板弹簧基本参数和尺寸的确定钢板弹簧总成的刚度,比应力和自由弧高一旦确定,这个钢板弹簧的基本面貌也就确定了。这三个参数只取决于弹簧的尺寸规格,与外负荷的变化无关,故称之谓钢板弹簧的基本参数。①、刚度的确定当静挠度确定以后,钢板弹簧期望的刚度C就可以由下式决定。钢板弹簧设计最理想的是设计成等应力梁材料利用率最高,但实际上由于制造和结构上的原因,钢板弹簧不可能做成等应力梁,而是介于等截面梁和等应力之间,实际钢板弹簧展开面是接近于梯形,因此计算时极近似于梯形多片钢板弹簧的公式。对于半椭圆式钢板弹簧根据期望的刚度C来计算弹簧的几个主要尺寸。a. 形状系数δ:而。先确定主片的重叠片数n1,然后估计总片数n。根据两者惯性矩的比值η,在代入上式。或者查表求出形状系数δ。b. 初定无效长度LS 我们把夹紧部位中的一部份看成不起作用的,称为无效长度。因为夹紧零件不可能是绝对刚性的,所以不可能将骑马螺栓中心距内的全部长度当做无效长度。一般说,无效长度与骑马螺栓中心距S成正比,但又和下列因素有关。1、弹簧底座和盖板长度及端部园角。2、盖板和弹簧之间是否留有间隙。3、盖板和底座本身的刚性。4、弹簧和底座盖板之间是否有软垫。5、骑马螺栓的拉伸刚度,

取决于直径和长度。6、骑马螺栓的拧紧力矩。这些影响因素无法用数学公式表达,我们只能将无效长度表示为:式中α——无效长度系数α取决于上述的各因素,只能靠试验来确定,从测定夹紧前、后的刚度变化来确定,或参数类似夹紧结构来确定。α一般小于1,一般情况下取α=0.5。根据确定的螺马螺栓中心距S,参数类似的结构初定无效长度系数α,根据给定支点距L,按下式计算有效长度。c. 总成总的惯性矩I。对于各片断面相同的弹簧钢板,其中n为总的片数,I为每片断面惯性矩。对于断面不同的钢板弹簧,其中IK表示各片自己的断面惯性矩,。对于矩形断面:d. 材料的弹性模数E:对于合金钢一般均可取②、比应力的计算比应力是单位变形所产生的应力,反映在同样挠度情况下应力幅值的大小,是直接影响钢板弹簧总成疲劳寿命的参数。对于半椭圆形钢板弹簧:式中总的惯性矩与总的断面系数之比,对于矩形断面,即为钢板厚度的一半。建议比应力值按以下范围选取:一般载重车前、后簧=450~550kgf/cm2/cm 越野车平衡悬架簧

=650~800kgf/cm2/cm 载重车后悬架付簧

=750~800kgf/cm2/cm 如果所得的比应力值不合适,就应修改片厚和片数。修改后应使根部总惯性矩尽量少变化,即刚度无明显改变。最后按修改值再重算一次刚度。③、总成自由弧高的确定根据悬架布置要求所确定的满载弧高

H。按下式计算无载夹紧弧高H1:H1=fm+Ho 钢板弹簧总成自由弧高:由于骑马螺栓夹紧后,将引起钢板弹簧总成的弧高发生变化,其弧高变化量为,可以参照已有的类似弹簧的变化量或按下式计算夹紧所引起的弧高变化量。2、钢板弹簧装车后的参数验算。经过上面的计算,钢板弹簧总成的基本规格(长度、宽度、厚度、片数)和基本参数(刚度、比应力、自由弧高)就确定了。以下就根据所确定的基本参数来核算装车后的状况。(1)系统的自振频率:

按已知的弹簧负荷P和已选定的夹紧刚度C,先算出该负荷下的静挠度。这样就可以算出该负荷下的自振频率

(次/分)一般要计算满载和空载两种工况。(2)静应力按已确定的比应力,即可算出对应某静挠度f的静应力。

片厚不同的单片,比应力不同,因此根部静应力也不同,主要计算满载时的静应力。对于钢板弹簧表面经喷丸处理后,推荐满载静应力值处在下列范围:前簧:后主簧:后付簧:平衡弹簧:由于材料和工艺条件的不断进步,设计所用的许用应力值有逐步提高的趋势。(3)极限应力钢板弹簧达到极限动行程的应力值称极限应力。极限应力由下式计算:极限应力的许用值为:一般弹簧:≤平衡弹簧:<极限动行程的大小和汽车的使用条件以及所选用的满载静挠度值fm有关,可用下式表示:系数d的范围可取城市用车辆d=2~2.5公路用车辆d=2~3.5越野

车辆d>3.5 可见,越柔软的弹簧(fm越大),就应选择较小的比应力,才能保证弹簧的静强度。弹簧的软硬不能用C反映,最终要与承载负荷联系在一起。(4)前簧在最强制动时的强度校核:(纵扭校核)设计前钢板弹簧时,还必须校核强制动时的强度,以免根部纵扭塑变或卷耳损坏。这对重心较高、轴距较短的汽车,以及长度较短的前簧更为突出。①、工况的确定:我国载重汽车的制动系统习惯采用较低同步附着系数,也就是说,在好路面上,都是后轮先抱死。我们从试验结果知道,制动拖印后,轮胎对地面的附着系数约下降20%。从这点出发,我们都按后轮附着系数下降20%来计算。都是把后轮制动力按0.8ф计算,对于前轮,存在三种情况:a. 前轮压印,未抱死,附着系数全部利用,(最强制动状态)。b. 前轮拖印,也抱死,附着系数也下降20%,。 c. 前制动器较小,达不到压印程度,这时按制动器的最大力矩来计算。ф=0.7 ф--轮胎对地面的附着系数ф0=0.4 ф0--同步附着系数②、计算步骤:①前轴转移负荷G1d:制动时前轴负荷要变大,按平衡条件,列出∑X=0. ∑Y=0. ∑M=0. 而静止状况时:车的重心:G=G1+G2G(L-a)=G1L式中:T——重心处的总惯性力

T1——前轮制动力(双边)G1d——前轴转移后负荷

G2d——后轴转移后负荷G1 ——前轴静负荷

G2 ——后轴静负荷L ——轴距 a

——重心至前轴距离hg ——重心离地高前轮压印时:代入①式导出:前轮拖印抱死时,前轮制动力达不到压印时:式中:MK ——前制动器最大制动力矩(单边)R ——前轮半径以上根据具体车型制动器的参数,决定计算何种工况。若第三种工况的T1小于第一种工况,则按第三种工况计算,否则按一、二种工况计算。b. 轴荷转移后的前簧垂直负荷式中:Gu1——前悬架的非簧载重量

G1d——分别被三种Ⅰ况计算c. 前簧承受的纵扭力矩

将作用在地面的制动力T1对第一片取矩得:M=0.5T1(R+A1+∑h)式中:A1——前轮中心至弹簧底面距离∑h——前簧总厚度引用三种工况的计算结果,就可以分别算出三种工况下的前簧纵扭力矩。(4)前簧根部的纵扭平均应力①、根部取U螺栓全部减掉Lr=L-S②、纵扭力矩均匀地分摊到根部的前、后两端。③、按共同曲率法,只算平均(当量)应力。这样计算的结果σr很高。我们认为取φ=0.7,并设定货物重心高于车箱地板300mm来计算整车重心高度hg,这样所得的应力值,如不高于材料的屈服极限σs可认为是安全的。[σr]≤σs(12500~13000kgf/cm2)③、前簧卷耳应力按所求到的前轮制动力T1,来核算卷耳根部应力,它由弯曲应力和拉应力合成,即式中:r——耳孔半径a1——主片中性层至受拉面距离,W1——主片断面系数F1——主片断面积卷耳的许

用应力[σd]<3500kgf/cm2 必要时后簧也要进行制动工况和最大驱动工况的卷耳强度校核。3、钢板弹簧的结构设计结构设计的任务:由选型设计已知的规格尺寸及总成弧高,进行具体的零件结构和尺寸的设计,并计算有关的参数。结构设计的内容:(1)选择各单片的长度,求各单片的弧高、曲率半径(首先求出总成的曲率半径)。(2)设计全部零件的结构、尺寸、参数。(3)完成全部零件的工作图。(一)、各片长度的确定:(1)确定长度的目的:尽可能使应力在片间和片长方向的分布合理,使寿命可能的提高。(2)确定长度的方法:①展开作图法②计算法(共同曲率法)(3)片长的修正①主片的修正:a. 若两端是滑板结构(载重车的付簧、平衡悬架后簧)要增加足够的滑动长度。

b. 有时还将端部制成与主片曲率不同的特殊曲率,以满足主片与滑板接触点的变化要求。

c. 若主片前端是卷耳,后端是滑板结构,那末第二片前端应是包耳结构,后端的第二片或第三片最好要制成弯钩,防止弹簧从滑板支架溜出,弯钩的位置及尺寸取决于反跳限位行程。

d. 主片两端为卷耳结构,为了加强主片和保护卷耳,第二片前端常采用包耳结构,以防止卷耳折断后发生事故,第二片后端有时采用包1/4。②夹子片的修正:当总成作用长度比较小,片数较多时,可能出现夹子布置位置比较小,有干涉现象,这是长度应进行适当调整。修正方法:a. 夹子片长度增加,夹子片下一片的长度

减小。b. 缩短铆钉孔至端部的距离(最小20mm)。c. 控制公差。③从应力测定或使用中发现应力分布不均匀,在使用中经常某片某处断裂,可适当的修正长度以调整应力分布。(4)片端形状的确定:在确定片长的同时,应根据要求,考虑片端所采用的形状。①、端部为矩形:制造简单,在载重汽车上广泛使用。但是,这种簧片因压力集中,将引起各片应力分布不均,因而增加了它们之间的摩擦和磨损。并有噪音,另外,也增加了自重。②、端部为梯形:与等应力梁较为近似,在某种程度上克服了矩形端的缺点,重量轻、端部接触比较柔和、摩擦磨损比较小、应力分布有所改善、噪音比矩形小。但在制造上增加了一边剪切工序,在载重汽车上也使用得较多。③、端部轧扁成斜锥(或加衬垫):是按等应力梁的原则压延其端部而得到必要的变截面形状。这样改善了应力分布情况,增加了片间的弹性,减少了片间的摩擦,降低了噪音,也减轻了自重,目前在我厂已较为广泛的采用。(二)各片工作应力的计算:(1)计算各片工作应力的目的:①检查片长的设计合理性。计算结果与应力测定进行比较。②为选取各单片,装配后的预应力σok提供参考尺度。(2)各片工作应力的计算方法:①集中载荷法:如果是为了选取预应力,采用此种方法比较合适,因短片的根部应力往往比较高,而用集中载荷法确定的各片σk,短片符合实际的情况。②共同曲率法:如果是为了与应力测

定值比较,进而评价弹簧的设计,不妨同时用集中载荷法与共同曲率法进行计算比较。(三)各单片弧高的确定:(1)确定的原则:①各单片装配成总成后,选取合适的预应力σok,以达到较高的使用寿命。②各单片组装成总成后,总成的自由弧高H。符合选型设计的要求。(2)确定的方法:

①由给定的总成自由弧高Ho,长度L确定总成曲率半径R。

②确定各单片组装成总成后的预应力σok。③根据求出R。、σok确定各单片的自由弧高hK。(四)确定总成自由状态的曲率半径R。:(1)总成为两端都是卷耳结构的已知:总成自由弧高δo(计入卷耳半径),第一片的伸直长度L卷耳孔半径r。方法:H。(不计卷耳半径)=δo(计入卷耳半径)-r (2)总成两端都是滑板结构(假定为整圆弧)已知:总成的自由弧高H。总成作用弦长Lo,Lo=2b方法:(勾股弦定理)(3)前端为卷耳,后端为滑板。已知:总成自由弧高δo(计入卷耳半径)总成作用弦长Lo,Lo=2b 卷耳半径r方法:(不计入卷耳半径)- (五)确定各片预应力的分配(1)确定各片预应力的目的:①总成中片厚不等,往往主片厚度大于小片(短片)厚度。这时:长片(主片)>(短片)那么:σ长片>σ短片结果:长片的寿命<短片的寿命因此就采用施加预应力的办法。σok长片+σ长片工作应力=σ合成应力σok短片+σ短片工作应力=σ合成应力满足自平衡条件:②总成各片厚度相同长片=(短片)

又因:主片、长片受力复杂,制动时、起步、侧滑时都有一个附加力。主片寿命<短片寿命因此:σok 主片取负值σok 短片取正值满足自平衡条件:最后保证:长片寿命>短片寿命为什么要要求主片寿命>短片寿命[1] 主片、长片成本高[2] 主片受力复杂、易断、易发生事故③使单片装入总成后,片间贴合良好,易保证在任何工作条件下,各片都参加工作。片间、片长应力分布均匀。(2)确定各片预应力的方法:用集中载荷法(列表计算)得到各片的根部力σ根k,作为比较尺度。①第1~4片预应力为负值,其绝对值是递减的。②第5~最末片二片预应力为正值,绝对值是递增的最末二片要减一些。③主片σ根主+σok主≈3000kg/cm2左右,末片σmax+σok<7500~8000kgf/ cm2。满足自平衡条件:六、各单片在自由状态下曲率半径Rk和弧高hk的计算利用材料力学的公式:式中:Rk——各单片在自由状态下的曲率半径R0——总成曲率半径ak——

断面中性层到受拉面的距离各片的弧高:

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参 数的选取、计算、验证等作出较详细的工作模板。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的 修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究 是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991汽车钢板弹簧技术条件 QC/T 517-1999汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984汽车悬挂系统的固有频率和阻尼比测定方法 3符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013汽车操纵稳定性术语及其定义 GB 7258-2017机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999汽车操纵稳定性指标限值与评价方法 QC/T 474-2011客车平顺性评价指标及限值 GB/T 12428-2005客车装载质量计算方法 GB 1589-2016道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置 (减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的 振动,保证汽车的正常行驶。悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种

QCC-JT---汽车钢板弹簧技术条件

QCC-JT---汽车钢板弹簧技术条件

————————————————————————————————作者:————————————————————————————————日期:

Q/CC x x汽车股份有限公司企业标准 Q/CC JT018—2008 代替Q/CC JT018—2006 汽车钢板弹簧技术条件 Technical Requirements of Leaf Spring Used on Vehicle 2008-09-06发布2008-12-01实施xx汽车股份有限公司发布

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (1) 5 检验和试验方法 (3) 6 检验规则 (3) 7 标志、包装、贮存 (4) 8 质量保证 (4) 附录A (规范性附录)汽车用钢板弹簧台架试验方法 (5)

前言 本标准是对Q/CC JT018—2006《汽车钢板弹簧技术条件》的修订。本标准在修订过程中主要参考了GB/T 19844-2005《钢板弹簧》。本标准与Q/CC JT018—2006相比,主要变化如下: ——增加了“3术语和定义”; ——增加了“附录A(规范性附录)”; ——增加了“4.4热处理”中洛氏硬度的数值要求; ——修订了“5 检验和试验方法”细化了具体方法; ——对相关条款进行调换和规范; ——删除了旧版中有关产品“断裂数据”方面的内容。 本标准自实施之日起代替Q/CC JT018—2006。 本标准由xx汽车股份有限公司技术研究院提出。 本标准由xx汽车股份有限公司技术研究院标准化科归口。 本标准由xx汽车股份有限公司技术研究院K-底盘部负责起草。 本标准主要起草人:纪国锋、宗召波。

汽车钢板弹簧悬架的参数化建模及可靠性计算

万方数据

万方数据

所需参数的复选框或单击“selectAll”选项,选择“Donesel”选项; e.输入必要的参数: f.软件按输入的参数自动更新模型。即可完成该钢板弹簧的设计建模(如图4)。 圈4铜板弹簧建梗图 3可靠性计算 3.1计算理论 各种车辆的钢板弹簧大部分为中心受载的筒支叠板弹簧(图 4),按一定的宽度将其截开重叠使用。其工作应力为: 3尸f 仃2石丽 式中,尸为载荷,6、JIl和,分别为板簧的宽度、厚度和长度,Ⅳ为板簧的钢板片数。 严格来说,应考虑叠板之间的摩擦对工作应力的影响.不过工程计算中采用这种近似设计方法是允许的,因此在车辆中的钢板弹簧设计里大多会采用这种近似方法。 根据应力一强度千涉理论,以应力极限状态表示的状态方程 为: 艄一器=尺一砘 式中,,为钢板弹簧的材料强度,基本随机参数向量胙n只‘反^17。 向量瑚均值目的和方差及协方差VamD均为已知,并可视其为服从正态分布的相互独立的随机变量。根据状态函数g㈤对向量朋勺一阶和二阶偏导数,可解出∥批)和DfVar国),然后代人可靠性指标公式,由卢邓。红,经推导整理得到可靠性指标为Ⅲ: 式中:彳=券+器%2+券×o.…2 庐器审+貉砰+将订+静×o.吣2 3.2增加计算关系 在参数设计中已设定了包括板簧基本尺寸、载荷以及材料性能等方面的各项计算必要参数,根据公式(1)的计算关系,在模型“工具”菜单下的“关系”中设置好计算可靠性指标的公式语句如下: TECHNICFoRUM A=3宰LoadE+LengthE/(2+WidmE木N)+3’LoadE+Len垂hE/(2+WidthE“2木N)}WidthS“2+9幸LoadE幸LengthE+O.015^2/ (2+WidthE+N) B=9+LengthE“2+LoadS^2/(4幸WidthE^2+N^2)+9?LoadE^2?LengthS^2/(4夺WidthE^2+N^2)+9木LoadE^24Len西hE^2宰 WidthS^2“4+WidthE“2+N^2)+9+LoadE^2幸Len垂hE^2? O.015“2“WidthE“2+N“2) C=sqn((S仃engtllE^2?N^4—2+StrengthE卑A掌N^2+A^2)/(B+s仃engthS“2+N“4)) 由参数c得到可靠性指标卢,对照正态分布表,则可查出对应的可靠度R。 4实际应用及改进 某车辆的钢板弹簧几何尺寸如表2所示。 表2板簧尺寸、藏荷及材料参数 打开钢板弹簧的建模文件,按2.4.2参数设计运行的步骤输入表2中的数据对模型进行更新,此时钢板弹簧的宽度、片数及跨距发生了变化,在窗口参数栏内,参数c显示为3.377,即可靠性指标卢=3.377,对照正态分布表查得对应的可靠度尺=O.9996,则可根据此结果进行设计处理,如生成零部件工程图、进行设计参数校核等。这与以前根据参数重新建模或修改模型、然后计算可靠性指标的工作流程相比,节省了大量时间、大大减少了繁琐的重复性工作。 针对平台的特点及设计的可逆性要求,此计算流程尚未实现优化设计,如输入可靠度便能计算出可靠性指标、优化板簧的某些尺寸等,这要涉及到复杂的微积分编程,并且还要能满足不同厚度钢板弹簧总成及其他结构形式板簧的建模与计算需求,这些内容有待在后续的设计中完善和提高。 参考文献 【1]张洪欣.汽车设计【M】.北京:机械工业出版社,1996. 【2】陈家瑞.汽车构造fM】.北京:人民交通出版社,1999. 【3】赵殿华,李兰英,朱杉等.钢板弹簧平衡悬架的设计计算程序化【J】.机械工程师,2006.07:50.53. 【4】张义民.汽车零部件可靠性设计【M】.北京:北京理工大学出版社,2000.09. 收稿日期:2008一12.15 2009.04氢辫61万方数据

后钢板弹簧悬架的结构设计

1 引言 1.1 汽车工业的发展 几千年来人们一直生活在马车时代。马拖着车厢在乡村田埂上颠簸行驶,在城市的大街小巷中踢踏的慢跑。人们的生活节奏缓慢,既沉重又舒展。18世纪,瓦特打破了这种平静,蒸汽机的发明掀起了工业革命的浪潮。随后,法国人尼克.卡歌楼特将蒸汽机装在马车上,第一辆“动力车”诞生了。1885年德国人卡尔.奔驰将汽油机装在车上,就出现了“汽车”。在19世纪末到20世纪初,蒸汽车、电动车、汽油车相互竞争,形成三足鼎立之势。汽油机不干净而且危险,于是电动汽车的销量占据上风,但是在以后的20年间,电动汽车由于速度慢、行程短等缺点,渐渐的被淘汰。而汽油机慢慢的变成了最可靠和最方便的发动机,这样汽车才成为主导的交通工具。 自1886年世界上第一辆汽车诞生以来,汽车已经历了120多年的发展来历程。随着科学技术日益发展,汽车的各项性能也日臻完善。现代汽车已经成为世界各国国民经济和社会生活中不可缺少的交通运输工具。 在汽车发展的短短一百多年的历史中,出现了三次革命。第一次革命是19世纪末发生在欧洲的汽车手工制作革命。随着蒸汽机、汽油机、柴油机等动力机械的出现,人们开始将这些机械装在马车上,就诞生了各种各样的汽车。那时的汽车都是一件一件的用手工制作,在一个作坊里或一个小车间里,就可以生产一部汽车。这种单一的生产模式使得汽车生产成本昂贵,所以汽车只是富豪们的享受品。即便在汽车制造完全机械化的今天,欧洲人还保留着这种生产模式,并生产出像“劳斯莱斯”这样的超豪华车。 汽车的第二次工业革命是汽车的大规模生产。1914年,亨利.福特发明了生产线,流水线大大地降低了汽车的安装时间和成本。福特汽车公司生产出价廉物美的T型车,这是汽车走向大众的起点。流水线的发明不仅是汽车历史上的一次革命,也给人类带来了工业历史上的一次革命。 汽车的第三次革命是20世纪70年代发生在日本的精益生产。20世纪60年代,日本实现了经济腾飞,汽车行业也随之发展。到70年代,日本一下子自成为世界上第二汽车生产大国。80年代,其产量还一度超过美国。 汽车是国民经济的支柱产业。汽车带动着很多行业的发展,如加油站、公路等。汽车发展到今天,已经不再是简单的交通运输工具,而且成为一种时尚。公路上奔驰着各种各样的汽车,

钢板弹簧课程设计46546

目录 1.汽车钢板弹簧结构选择 (4) 2.钢板弹簧结构设计计算 (5) 3.初定片数、截面尺寸 (7) 4.按作图法求各片弦长 (8) 5.挠度计算 (8) 6.钢板弹簧各片应力计算 (8) 7.加预紧力 (9) 8.钢板弹簧各片实际弦长的计算 (13) 9.在自由状态下各片的曲率半径计算 (14) 10.钢板在极限工作下的强度验算 (16) 11.卷耳和销的计算 (17) 12.参考文献 (18) 13.附表1 14.附图

汽车设计课程设计题目 设计题目:汽车钢板弹簧设计 主要技术和性能参数(第二组) 前轴轴负荷(N)空载15144 满载19344 前轴非簧载质量(kg)420 钢板弹簧作用距离L(mm)1300 两个”U”型螺栓中心距S(mm)110 静绕度f c(mm)(满载) 80-90 动绕度f a(mm) 56 钢板弹簧满载时弧高F 28 钢板弹簧卷耳固定点至路面距离C 550

汽车钢板弹簧简介 钢板弹簧是汽车悬架中应用最广泛的一种元件。它是由若干片等宽但不等长(厚度可以相等,也可不等),曲率半径不等的合金弹簧片组合而成的一根近似等强度的弹簧梁。钢板弹簧的第一片(最长的一片)称为主片,其两端弯成卷耳,内装青铜或塑料、橡胶、粉末冶金制成的村套,以便用弹簧销与固定在车架上的之家或吊耳作铰链连接。钢板弹簧主要由主片、副片、弹簧夹、螺栓、套管、螺母等组成。钢板弹簧的中部一般用U形螺栓固定在车桥上。汽车钢板弹簧的材料一般用60Si2Mn、55SiMnVB。

一、汽车钢板弹簧结构选择 1.选择断面形状 有矩形,T形,单面有抛物线边缘,单面有双槽等断面形式 为了提高疲劳强度,选用60Si2Mn材料即最常用的板簧材料为热轧弹簧扁钢。 因为矩形断面钢板弹簧的中性轴,在钢板断面的堆成位置上。工作时,一面受拉应力、另一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。故选择矩形断面形式。 2.长度圆整 圆整为“0”“5”尾数 3.叶片端部形状 选用矩形: 4.卷耳、吊耳的结构方案 ①吊耳②卷耳③包耳

钢板弹簧悬架系统设计规范--完整版

1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

汽车设计(课程设计)钢板弹簧(DOC)

汽车设计——钢板弹簧课程设计 专业:车辆工程 教师:R老师 姓名:XXXXXX 学号:200XYYYY 2012 年7 月3 日

课程设计任务书 一、课程设计的性质、目的、题目和任务 本课程设计是我们在完成基础课、技术基础课和大部分专业课学习后的一个教学环节,是培养我们应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。 1、课程设计的目的是: (1)进一步熟悉汽车设计理论教学内容; (2)培养我们理论联系实际的能力; (3)训练我们综合运用知识的能力以及分析问题、解决问题的能力。 2、设计题目: 设计载货汽车的纵置钢板弹簧 材料选用60Si2MnA ,弹性模量取E=2.1×10MPa 3、课程设计的任务: (1)由已知参数确定汽车悬架的其他主要参数; (2)计算悬架总成中主要零件的参数; (3)绘制悬架总成装配图。 二、课程设计的内容及工作量 根据所学的机械设计、汽车构造、汽车理论、汽车设计以及金属力学性能等课程,完成下述涉及内容: 1.学习汽车悬架设计的基本内容 2.选择、确定汽车悬架的主要参数 3.确定汽车悬架的结构 4.计算悬架总成中主要零件的参数 5.撰写设计说明书 6.绘制悬架总成装配图、零部件图共计1张A0。 设计要求: 1. 设计说明书 设计说明书是存档文件,是设计的理论计算依据。说明书的格式如下: (1)统一稿纸,正规书写; (2) 竖订横写,每页右侧画一竖线,留出25mm空白,在此空白内标出该页中所计算的主要数据; (3) 附图要清晰注上必要的符号和文字说明,不得潦草; 2. 说明书的内容及计算说明项目 (1)封面;(2)目录;(3)原始数据及资料;(4)对设计课题的分析;(5)汽车纵置钢板弹簧简图;(6)设计计算;(7)设计小结(设计特点及补充说明,鉴别比较分析,个人体会等);(8)参考文献。 3. 设计图纸 1)装配总图、零件图一张(0#);

汽车钢板弹簧悬架设计方案

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。 变形 载荷变形 载荷变形载荷 图1 图2 ②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。 ③两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c 所示。

多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹簧的强度要求。 3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c δ。选取悬架静挠度值时,希望后悬架静挠度值2c δ小于前悬架静挠度值1c δ,并且两值最好接近,一般推荐:

钢板弹簧悬架设计

专业课程设计说明书题目:商用汽车后悬架设计 学院机械与汽车学院 专业班级 10车辆工程一班 学生姓名 学生学号 201030081360 指导教师 提交日期 2013 年 7 月 12 日 1

一.设计任务:商用汽车后悬架设计 二.基本参数:协助同组总体设计同学完成车辆性能计算后确定 额定装载质量5000KG 最大总质量8700KG 轴荷分配 空载前:后52:48 满载前:后32:68 满载校核后前:后33::67 质心位置: 高度:空载793mm 满载1070mm 至前轴距离:空载2040mm 满载2890mm 三.设计内容 主要进行悬架设计,设计的内容包括: 1.查阅资料、调查研究、制定设计原则 2.根据给定的设计参数(发动机最大力矩,驱动轮类型与规格,汽车总质量和使用工况,前后轴荷,前后簧上质量,轴距,制动时前轴轴荷转移系数,驱动时后轴轴荷转移系数),选择悬架的布置方案及零部件方案,设计出一套完整的后悬架,设计过程中要进行必要的计算。 3.悬架结构设计和主要技术参数的确定 (1)后悬架主要性能参数的确定 (2)钢板弹簧主要参数的确定 (3)钢板弹簧刚度与强度验算 2

(4)减振器主要参数的确定 4.绘制钢板弹簧总成装配图及主要零部件的零件图 5.负责整车质心高度和轴荷的计算和校核。 *6.计算20m/s车速下,B级路面下整车平顺性(参见<汽车理论>P278 题6.5之第1问)。 四.设计要求 1.钢板弹簧总成的装配图,1号图纸一张。 装配图要求表达清楚各部件之间的装配关系,标注出总体尺寸,配合关系及其它需要标注的尺寸,在技术要求部分应写出总成的调整方法和装配要求。 2.主要零部件的零件图,3号图纸4张。 要求零件形状表达清楚、尺寸标注完整,有必要的尺寸公差和形位公差。在技术要求应标明对零件毛胚的要求,材料的热处理方法、标明处理方法及其它特殊要求。 3.编写设计说明书。 五.设计进度与时间安排 本课程设计为2周 1.明确任务,分析有关原始资料,复习有关讲课内容及熟悉参考资料0.5周。 2.设计计算0.5周 3.绘图0.5周 4.编写说明书、答辩0.5周 3

解放牌汽车后钢板弹簧吊耳课程设计.doc

目录 目录 (1) (一)零件的分析 一、零件的分析 (2) 二、零件的工艺分析 (3) (二)机械加工工艺规程制订 一、确定生产类型 (4) 二、确定毛坯制造形式 (5) 三、选择定位基准 (6) 四、选择加工方法 (7) 五、制定工艺路线 (9) 六、确定加工余量及毛坯尺寸 (10) 七、确定工序尺寸 (13) 八、选择加工设备与工艺装备 (14) 九、确定切削用量和基本时间 (15) 十、本章小结 (21) (三)后钢板弹簧吊耳内侧端面夹具设计 一、接受任务、明确加工要求 (22) 二、确定定位方案、选择定位元件 (23) 三、定位误差分析 (24) 四、铣削力与夹紧力计算 (24) 五、定向键与对刀装置设计 (25) 六、塞尺尺寸 (27) 七、夹紧装置及夹具体设计 (28) 八、夹具设计及操作的简要说明 (28) 九、本章小结 (31) 参考文献 (32)

(一)零件分析: 一、零件的作用: 题目所给定的零件是CA10B解放牌汽车后钢板弹簧吊耳。后钢板弹簧吊耳的主要作用是载重后,使钢板能够得到延伸和伸展,能够起到正 常的缓冲作用。因此骑车后钢板弹簧吊耳零件的加工质量会影响骑车的 工作精度、使用性能和寿命。汽车后钢板弹簧吊耳的主要作用是减震功 能、阻尼缓冲和导向功能。 二、零件的工艺分析: 后钢板弹簧吊耳有两组加工表面,它们之间有一定的位置要求。现分述如下: 1.以Φ60mm两外圆面为加工中心的加工面 2.以Φ30 0+0.045mm孔为中心的加工表面

由以上分析可知:该零件的主要加工表面是平面及孔系。一般来说,保证平面的加工精度要比保证孔系的加工精度容易。因此,对于该零件 来说,加工过程中的主要问题是保证平面的尺寸精度以及孔的尺寸精度 及位置精度,处理好孔和平面之间的相互关系。 该类零件的加工应遵循先面后孔的原则:即先加工零件的基准平面,以基准平面定位加工其他平面。然后再加工孔系。后钢板弹簧吊耳的加 工自然应遵循这个原则。这是因为平面的面积大,用平面定位可以确保 定位可靠夹紧牢固,因而容易保证孔的加工精度。其次,先加工平面可 以先切去铸件表面的凹凸不平。为提高孔的加工精度创造条件,便于对 刀及调整,也有利于保护刀具。 后钢板弹簧吊耳零件的加工工艺应遵循粗精加工分开的原则,将孔与平面的加工明确划分成粗加工和精加工阶段以保证孔系加工精度。 对该零件图进行工艺审核后,可知该零件图视图正确、完整,尺寸、公差及技术要求齐全,加工要求合理,零件的结构工艺性较好。 (二)机械加工工艺规程制订 一、确定生产类型 1)零件年生产纲领 N=Qn(1+α%+β%) =4000×(1+8%+1%)=4360件 2)确定生产类型 查《机械制造工艺学》表1-5,确定该批零件为中批生产类型 二、确定毛坯制造形式 考虑零件在工作过程中要承受交变载荷压力(冲击压力),为增强其强度和冲击韧性,故考虑选用锻件(材料为35号钢,硬度HBS149-187),

汽车钢板弹簧悬架设计(doc41页).doc

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦 还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹 簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ① 通多片钢板弹簧,如图1-a 所示,这种弹簧主要用在载货汽车和大型客车上, 弹簧弹性特性如图2-a 所不,呈线性特性。 图1 图2 ② 少片变截面钢板弹簧,如图1-b 所不,为减少弹簧质量,弹簧厚度沿长度方向 制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a 。这种弹簧主要用于 轻型货车及大、中型载货汽车前悬架。 ③ 两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽 车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载 荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④ 渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车 后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特 性,如图2-c 所示。 多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要 求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹 簧的强度要求。 荷 载 V :

3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量, 得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c。选取悬架静挠度值时,希望后悬架静挠度值c2小于前悬架静挠度值ci,并且两值最好接近,一般推荐:

汽车钢板弹簧设计计算

。 1.1单个钢板弹簧的载荷 已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷: Fw1=(G1-Gu1)/2=1357.5 kg (1) 进而得到: Pw1=Fw1×9.8=13303.5 N (2) 1.2钢板弹簧的静挠度 钢板弹簧的静挠度即静载荷下钢板弹簧的变形。前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。一般汽车弹簧的静挠度值通常如表1[2]所列范围内。 本方案中选取fc1=80 mm。 1.3钢板弹簧的满载弧高 满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。当H0=0时,钢板弹簧在对称位置上工作。考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。本方案中H01初步定为18mm。 1.4钢板弹簧的断面形状 板弹簧断面通常采用矩形断面,宜于加工,成本低。但矩形断面也存在一些不足。矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。本方案中选用矩形断面。 1.5钢板弹簧主片长度的确定

空气悬架汽车钢板弹簧技术条件

汽车钢板弹簧技术条件 1 主题内容与适用范围 本标准规定了汽车钢板弹簧的材料、尺寸精度、性能要求、试验方法和检验规则等。 本标准适用于各类汽车及挂车的钢板弹簧。 2 引用标准 GB 1222 弹簧钢 JB 3782 汽车钢板弹簧金相检验标准 ZB T06 001 汽车钢板弹簧喷丸处理规程 JB 3383 汽车钢板弹簧台架试验方法 3 一般要求 3.1 汽车钢板弹簧总成应符合本标准的要求,并按照经规定程序批准的图样和技术文件制造,有特殊要求的汽车钢板弹簧,应与制造单位另订协议,并在产品图样中注明。 3.2 汽车钢板弹簧片不应有对使用有害的过热过烧等缺陷。 3.3 汽车钢板弹簧片,应在拉伸表面按ZB T06 001规定进行喷丸处理。 3.4 汽车钢板弹簧片的摩擦面上装配前应涂以石墨润滑脂(片间有垫片的除外)。 3.5 汽车钢板弹簧总成应涂漆。但卷耳衬套(装橡胶衬套的除外),不得涂漆,该处应采取其他防锈措施。 4 材料 4.1 汽车钢板弹簧片所用的材料为热轧弹簧钢,按GB 1222的规定选用。 4.2 汽车钢板弹簧片经热处理后,硬度为HB 375~444。

4.3 汽车钢板弹簧片的金相组织应符合JB 3782中的有关规定。 4.4 汽车钢板弹簧片,每边总的脱碳层(铁素体+过渡层)深度不得超过表1的规定。 表 1 片厚,mm 脱碳层深度与片厚的百分比 ≤8 3 >8 5 尺寸精度 5.1 汽车钢板弹簧卷耳装入衬套后,卷耳轴线的倾斜(如图1的两个方向上)的偏差不大于1%。 5.2 汽车钢板弹簧总成夹紧后,在U型螺栓夹紧距离及支架滑动范围内的总成宽度应符合表2的规定。 表 2 mm 总成宽度宽度偏差 ≤100+ >100 + 5.3 汽车钢板弹簧总成(平直时)两卷耳轴心距的偏差不大于±3mm,一端卷耳至弹簧片中心孔(或定位凸包)的偏差,不大于±1.5mm。 5.4 汽车钢板弹簧总成,在静负荷下的弧高偏差不大于±6mm,重型汽车不大于±8mm。

汽车钢板弹簧的性能、计算和试验

汽车钢板弹簧的性能、计算和试验 东风汽车公司技术中心陈耀明 1983年3月初稿 2005年1月再稿

目录 前言(2) 一.钢板弹簧的基本功能和特性(3) 1.汽车振动系统的组成(3) 2.悬架系统的组成和各元件的功能(6) 3.钢板弹簧的弹性特性(7) 4.钢板弹簧的阻尼特性(12) 5.钢板弹簧的导向特性(14) 二.钢板弹簧的设计计算方法(17) 1.单片和少片变断面弹簧的计算方法(17) 2.多片钢板弹簧的刚度和工作应力计算(24) 3.多片弹簧各单片长度的确定(32) 4.多片弹簧的弧高计算(36) 5.钢板弹簧计算中的几个具体问题(43)三.钢板弹簧的试验(46) 1.钢板弹簧的静刚度测定(46) 2.钢板弹簧的动刚度测定(50) 3.钢板弹簧的应力测定(52) 4.钢板弹簧单片疲劳试验(53) 5.钢板弹簧总成疲劳试验(54)

前言 本文是为汽车工程学会悬架专业学组所办的“减振器短训班”撰写的讲义,目的是让汽车减振器的专业人员对钢板弹簧拥有一些基本知识,以利于本身的工作。内容分为三部分:钢板弹簧的基本功能和特性,设计计算方法,以及试验等。因为这部分内容非本次短训班的重点,所以要求尽量简单扼要,也许有许多不全面的地方,只供学习者参考。有关钢板弹簧较详细的论述,可参考本学组所编的“汽车悬架资料”。

一.钢板弹簧的基本功能和特性 1.汽车振动系统的组成 汽车在道路上行驶,由于路面存在不平度以及其它各种原因,必然引起车体产生振动。从动态系统的观点来看,汽车是一个多自由度的振动系统。其振源主要来自路面不平度的随机性质的激振,此外还有发动机、传动系统以及空气流动所引起的振动等等。 为改善汽车的平顺性,也就是为减小汽车的振动,关键的问题是研究如何对路面不平度的振源采取隔振措施,这就是设计悬架系统的根本目的。换言之,就是在一定的道路不平度输入情况下,通过悬架系统的传递特性,使车体的振动输出达到最小。 当研究对象仅限于悬架系统时,人们往往把车体当为一个刚体来看待。即使这样,汽车仍然是一个很复杂的多自由度系统,见图1。如果不涉及汽车的横向振动和角振动,可以将左右悬架合并,使汽车振动系统进一步简化,见图2。在一定条件下,也就是当质量分配系数等于1,即前后悬架的输出与输入各自的相干特性达到最大值时,就可以将前、后悬架分开,单独看成一个两自由度振动系统。这时,组成每一个振动系统的元素就是质量(簧载质量与非簧载质量),弹性元件(悬架弹簧和轮胎)和阻尼元件(悬架阻尼元件和轮胎阻尼),见图3。

汽车钢板弹簧的应用及其发展趋势

1 车用钢板弹簧概述 车用钢板弹簧又称为叶片弹簧,它是汽车悬架中应用广泛的一种弹性元件。它由若干片长度不等、曲率半径不同、厚度相等或不等的弹簧钢片叠合在一起,组成一根近似等强度的弹性梁。钢板弹簧的断面形状除采用对称断面外,还有采用上下对称的特殊断面。这样可改善弹簧的受力状况,不仅提高了其疲劳强度,还节约了金属材料。 钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可使车架的振动衰减。各片之间处于干摩擦,同时还要将车轮所受冲击力传递给车架,因此增大了各片的磨损。所以在装合时,各片之间要涂上较稠的石墨润滑脂进行润滑,并应定期维护。钢板弹簧本身还起导向装置的作用,可不必单设导向装置,使结构简化。有些高级轿车的后悬架也采用钢板弹簧作弹性元件。目前一些汽车上采用变厚度的单片或2~3片的钢板弹簧,可以减小片与片之间的干摩擦,同时减轻了重量。 2 钢板弹簧的功能结构 在采用传统弹簧的吸震式悬架设计上,弹簧起支持车身以及吸收不平路面和其他施力对轮胎所造成的冲击的作用,而这里所谓的其他施力包含加速、减速、制动、转弯等对弹簧造成的施力。更重要的是在消除振动的过程中要保持轮胎与路面的持续接触,维持车辆的循迹性。如果弹簧很软,则很容易出现“坐底”的情况,即将悬架的行程用尽。假如在转弯时发生坐底情况,则 可视为弹簧的弹力系数变成无限大 (已无压缩的空间),车身会立即产 生质量转移,使循迹性丧失。如果 这辆车有着很长的避振行程,那么 或许可以避免“坐底”,但相对的车 身也会变得很高,而很高的车身意 味着很高的车身重心,车身重心的 高低对操控表现有决定性的影响, 所以,太软的弹簧会导致操控上的 障碍。 如果路面的崎岖度较大,那就 需要比较软的弹簧才能确保轮胎与 路面接触,同时弹簧的行程也必须 增加。弹簧的硬度选择要由路面的 崎岖程度来决定,越崎岖要越软的 弹簧,但要多软则是个关键的问题, 通常这需要经验的累积。一般来说, 软的弹簧可以提供较佳的舒适性以 及行经较崎岖的路面时可保持比较 好的循迹性;但是,在行经一般路 面时,却会造成悬架系统较大的上 下摆动,影响操控。而在配备有良 好空气动力学组件的车辆上,软的 弹簧在速度提高时会使车高发生变 化,造成低速和高速时不同的操控 特性。一般载货汽车均采用钢板弹 簧作为弹性元件的非独立悬架,因 钢板弹簧既有缓冲、减振的功能,又 起传力和导向的作用,使得悬架结 构大为简化。 为了充分利用材料,钢板弹簧 做成接近于应力粱的形式,分为2种 类型:一种是等厚度,宽度呈现两 端狭,中间宽,即多片钢板弹簧,传 统的钢板弹簧就是这一类型。这种 钢板弹簧由多片长度不等、宽度一 样的钢片迭成,现在多数大客车、货 车都使用这种钢板弹簧。另一种是 等宽度、两端薄、中间厚的。常见 的少片钢板弹簧就是这一类型,多 用于轻中型汽车。 多片钢板弹簧的各片钢板叠加 成倒三角形状,钢板的片数与支承 汽车的质量和减振效果相关,钢板 越多越厚越短,弹簧刚性就越大;但 是,当钢板弹簧挠曲时,各片之间 就会互相滑动摩擦产生噪声,摩擦 还会引起弹簧变形,造成行驶不平 顺,因此,在承载量不是很大的汽 车上,就出现了少片钢板弹簧,以 消除多片钢板弹簧的缺陷。少片钢 板弹簧的钢板截面变化大,从中间 到两端的截面是逐渐不同,因此轧 制工艺比较复杂。为了减轻质量和 轧制工艺难度,目前出现了一种纤 维增强塑料(FRP)代替钢板,质量 可减少1/2以上。 钢板弹簧的中部一般固定在车 桥上。主片卷耳受力严重、是薄弱 处,为改善主片卷耳的受力情况,常 将第二片末端也弯成卷耳,包在主 片卷耳的外面(亦称包耳)。为了使 得在弹簧变形时各片有相对滑动的 可能,在主片卷耳与第二片包耳之 间留有较大的空隙。有些悬架中的 钢板弹簧两端不做成卷耳,而采用 其他的支承连接方式(如非独立悬 架)。中心螺栓用来连接各种弹簧 片,并保证各片装配时的相对位置。 中心螺栓到两端卷耳中心的距离可 以相等,也可不相等者。 钢板弹簧端部有三种结构型 式:端部为矩形的钢板,其制造简 单,广泛应用在载货汽车上;端部 为梯形的钢板,其质量小、节省钢 材,较多的用在载货汽车上;端部 为椭圆形的钢板,这种结构改善了 汽车钢板弹簧的应用及其发展趋势 肖 军

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

汽车钢板弹簧作业

汽车钢板弹簧 服役条件:弹簧在冲击、振动或长期交应力下使用,所以要求弹簧钢有高的抗拉强度、弹性极限、高的疲劳强度。在工艺上要求弹簧钢有一定的淬透性、不易脱碳、表面质量好等碳素弹簧钢即含碳量WC在0.6%-0.9%范围内的优质碳素结构钢。合金弹簧钢主要是硅锰系钢种,它们的含碳量稍低,主要靠增加硅含量W、si提高性能;另外还有硌、钨、钒的合金弹簧钢。近年来,结合我国资源,并根据汽车、拖拉机设计新技术的要求,研制出在硅锰钢基础上加入硼、铌、钼等元素的新钢种,延长了弹簧的使用寿命,提高了弹簧质量。 性能要求:弹簧钢应具有优良的综合性能,如力学性能(特别是弹性极限、强度极限、屈强比)、抗弹减性能(即抗弹性减退性能,又称抗松弛性能)、疲劳性能、淬透性、物理化学性能(耐热、耐低温、抗氧化、耐腐蚀等)。为了满足上述性能要求,弹簧钢具有优良的冶金质量(高的纯洁度和均匀性)、良好的表面质量(严格控制表面缺陷和脱碳)、精确的外形和尺寸。 失效形式一是永久变形,即总成自由弧高降低至严重影响车的性能,二是钢板弹簧断裂,如汽车钢板弹簧(如图)在汽车行驶过程中承受各种应力的作用。其中以反复弯曲应力为主,绝大多数是疲劳破坏。 性能要求有弹簧钢应较高强度以及适当的韧性。有高的弹性极限以及弹性减

退抗力好,较高的屈强比,为防止在交变应力下发生疲劳和断裂,弹簧应具有高的疲劳强度和耐蚀等性能通常为σ0.2≥1160MPa , σb≥1280MPa ,δ10≥5% ,ψ≥25% 。同样材料处理是否正确,其寿命相差也很大。 因而材料通常为淬火得到马氏体后进行回火处理,得到碳化物尚未发生明显的聚集长大,保持弥散的分布状态的回火组织。淬火所造成的第二类内应力几乎全部消除,但未发生再结晶,仍保留马氏体针状结构和强化效果,故而有较高的弹性极限。 材料选择20Cr 碳C:0.18~0.24,硅Si:0.17~0.37,锰Mn:0.50~0.80,铬Cr:0.70~1.00 该钢是我国目前产量最大的几个合金结构钢之一,用途广泛。硬度较高。且此钢比相同含碳量的碳素钢具有较好的淬透性、强度和韧度。为了提高该模具钢的耐磨性,常进行渗碳处理(注意:渗碳时钢的晶粒有长大倾向),然后进行淬火和低温回火,从而保证模具表面具有很高硬度、高耐磨性而心部具有很好的韧度。其中Cr是中强碳化物形成元素,加热时溶入奥氏体的Cr能强烈地提高淬透性。钢中的Cr一部分形成碳化物,另一部分溶入基体产生固溶强化,提高钢的强度和硬度。Cr不仅能使C曲线明显地右移,而且使珠光体和贝氏体转变的C曲线明显分开。常用于制造截面小于30mm的、形状简单的、转速较高的渗碳件或氰化件,如活塞销、小轴等;也可以用于调制钢零件 60Si2Mn碳C :0.57~0.65,硅Si:1.50~2.00,锰Mn:0.60~0.90,铬Cr:≤0.35 Si本身不仅有固溶强化作用,而且能改变钢回火时析出碳化物的数量、尺寸和形态等,提高钢的回火稳定性,因此,对提高材料强度、硬度有好处。当合金元素和C含量在一定的范围内时,Si对弹性减退抗力的贡献居各

相关文档
相关文档 最新文档