文档库 最新最全的文档下载
当前位置:文档库 › 常见八木天线的设计

常见八木天线的设计

常见八木天线的设计
常见八木天线的设计

常见八木天线的设计

【摘要】介绍八木天线的基本设计原理,设计思路,各关键指标的确认。满足初学者对八木天线设计知识的初步需求。

【关键词】八木天线基本特性;原理;设计

1.八木天线的基本特性

八木天线又称为引向天线或波渠天线,由一个有源振子与若干无源振子组成。有源振子与馈线直接相连,引向器和反射器都是无源振子。有源振子被馈电后在空问产生电磁波,通过耦合在无源振子上产生感应电流并发生辐射。改变振子长度与问距时,无源振子上感应电流的幅度和相位也随着变化,适当的调整各振子的长度与间距,就可获得良好的方向图、阻抗等电气指标。若无源振子与有源振子的问距小于λ/4,长度短于有源振子时,方向图指向无源振子一侧,相应的无源振子称为引向器,比有源振子长的无源振子称为反射器。八木天线具有结构简单、馈电方便、制作简便等突出优点,广泛用于米波、分米波波段的通信、雷达、电视及其它无线电设备中。八木天线缺点是调整较难,频段较窄,一般在5%以内。

2.八本天线的设计

根据给定的电气指标:增益、波瓣宽度、副瓣电平、前后辐射比、输入端驻波比以及工作带宽等设计天线时,设计任务是确定振子单元数目N,反射器、引向器、有源振子的尺寸和相对位置等,最后要验证是否满足规定的电气指标。天线的指标在工作频带的低端容易达到,而在高端变化较快,因此设计频率通常选为高于中心频率。天线的各部分对各项指标的影响程度不同,有时某些指标之问存在着矛盾,因此设计过程中要折衷处理。

2.1单元数目N的确定

振子数目N主要根据增益或方向性系数来确定。由于八本天线的效率一般达90%以上,因此增益近似等于方向性系数。八木天线是慢波结构的行波天线,因此它的增益可用行波天线公式计算,即G≈10L/λ。

根据增益要求先确定天线总长L/λ,然后利用引向器和反射器常用的间距确定N,或者由经验数据直接选择N。图1的曲线是从大量的实测数据综合出来的,其中图1是天线增益G与N的关系曲线,由G确定N。

通常引向器的振子数目为6~12比较适宜,若再增加引向器数目对提高增益没有显著效果。对于更高的增益要求,可使用八木天线阵列来实现。通常认为单个八木天线总长取L≈(3~3.5)λ,甚至有时为了使天线结构紧凑,阵列中八木天线单元增益限制在10dB左右。

2.4G八木天线的制作方法

2.4G八木天线的制作方法 好长时间没有上来更新了。一则单位事儿多,没空;二则,自己心情也不太好,没兴致。上周查单子时突然发现家里的ADSL快到期了,想想邻居家里的AD是2M的,自己用不了怪可惜的,不如我跟他合用,但是距离太原,无法拉网线,从网上得知可以用无线路由器及无线网卡组件无线局域网,时间长距离的无线传输,于是在网上查找资料,研究可行性。网上这方面的资料还真不少,但是国内的资料大部分都是照抄国外的,于是直接上国外网站查找,国外无线电爱好者对于2.4G的网络研究比国内要早好多年,因此各种数据比较准确,图纸资料也比较全。2.4G的定向天线有很多种:罐头盒式,反射板式,八木天线,卫星天线,裂隙天线,螺旋天线,以及厨房用具的简单天线。根据天线的制作难易程度以及取材方面考虑,罐头盒式和反射式太简单,厨房用具的那些玩玩倒可以不实用,螺旋天线还要分左旋和右旋,卫星天线和裂隙天线太专业,手工制作不现实。最后决定制作八木天线,虽然要求精度也很高,制作精度要求不低于0.1MM,但是取材和工艺还是能满足的。 第一步选材;根据图纸计算材料,1根12MM的有机玻璃棒,市场上没有12.7MM的,这个尺寸没有问题。直径3.3的铜棒,宽4MM厚1MM的铜条,50欧--5的电缆,虽然比不上--7的电缆,但是只需要1米,效果还是能保证的。由于没有3.3的规格的铜棒,只好用3.2的铜焊条挂上一层焊锡,尺寸比较接近了。 第二步钻孔:给有机玻璃棒上钻15个孔,根据图纸用游标卡尺在有机玻璃棒上画好线,标注好孔位置,这一步很关键,孔的位置将直接影响到后续的工艺精度,钻孔时也要注意,要用台钻,一气呵成,保证所有孔在一条直线上,孔的间距要满足尺寸要求,并且孔的垂直度要保证,否则装上振子后就会发现振子不在一个平面上了。钻头用3.2MM的。 第三步制作振子:根据图纸用钢锯将振子裁好,注意尺寸稍微留长一点,然后用锉刀和砂轮将振子长度调整到标准尺寸,要求精度不小于0.1MM。主振子用铜条打磨弯形挂锡,焊上电缆待用。 第四步安装振子:由于孔是3.2MM多一点的,振子也是3.2MM多一点,因此有些振子安装上后会发现松动,无法固定在孔内,这是可以将振子上再挂点锡,用锉刀修磨到能紧配安装。主振子安装时要求距离第一个振子的位置要固定,上下位置也要固定,但是还不用用任何金属材料来固定,我是用短有机玻璃棒根据振子尺寸锯上缺口,使主振子卡在两个振子之间。 第五步装外壳:根据天线的尺寸使用相应的PVC管将之套入,两头用PVC堵头封住,电缆孔用密封胶封住。 到此为止,一个2.4G的八木天线算是大功告成,据说增益能达到15dbi,剩下的事儿就是用设备调试了。 因为还没有相中合适的设备,所以实验还要过几天做。先把部分照片放上,完全是个人爱好,不正之处欢迎拍砖。 材料

八木天线的原理和制作

八木天线的原理和製作Post By:2008-12-11 22:00:11 八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。 八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装製在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。但折合式振子在业餘条件下,製作较难,而宽频带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。至於无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。 由反射器至最前的一个导向器的距离叫做这个八木天线长度。通常收发机的天线输出端,都只是接到八木天线的有源振子。反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会產生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。当无源振子的长度不同时,呈现的阻抗也不同。适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子產生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上產生的电磁场相加。这样由有源振子幅射的电波,在加入反射器和导向器后,将沿著导各器的方向形成较强的电磁场,亦即单方向的幅射了。导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。而当八木天线各个导向器的长度不同,间距亦不等时叫做非均匀导向八木天线,特点是天线的主瓣较宽,方向系数较少,工作频带内增益不均匀(但在UHF以上波段并不明显),但工作频带较宽。但如果将非均匀的导向八木天线的结构设计合理,则可以显著地压缩副瓣,又不致太大扩宽主瓣和降低方向系数。

八木天线的原理和制作

八木天線的原理和製作 八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。 八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。 由反射器至最前的一个导向器的距离叫做这个八木天线长度。通常收发机的天线输出端,都只是接到八木天线的有源振子。反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。当无源振子的长度不同时,呈现的阻抗也不同。适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。而当八木天线各个导向器的长度不同,间距亦不等时叫做非均匀导向八木天线,特点是天线的主瓣较宽,方向系数较少,工作频带内增益不均匀(但在UHF以上波段并不明显),但工作频带较宽。但如果将非均匀的导向八木天线的结构设计合理,则可以显著地压缩副瓣,又不致太大扩宽主瓣和降低方向系数。

2.4G_各式各样WiFi天线的DIY试验

2.4G WiFi 天线的DIY试验 初学者型奶粉罐天线 一、选型 先上网收集天线资料,看到很多国外的天线DIYER做出来的WIFI天线真是五花八门!有螺旋天线、有八木天线、有菱形天线、有栅网天线、还有罐头天线......让人看得眼花缭乱。经过再三筛选,最终把制作目标锁定在罐头天线上。选择它为DIY对象主要是因为这种天线取材方便、效率高!十分适合初学者制作。 二、制作 圆筒天线之所以取材方便,是由于人人家里必定有铁罐、金属筒之类的东西。笔者就是随便拿了一个奶粉罐制作的。 下面是参照外国WIFI网站的图片而画的制作图。 各数据如下: 中心频点=2.445G 圆筒直径=127mm 圆筒长度=111mm 振子长度=31mm 振子距圆筒底部边距=37mm 从图片可以看出,馈线的屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,当然振子就是馈线的芯线了,芯线与金属筒是绝缘的,这点必须注意! 在参照外国爱好者制作WIFI天线的同时,笔者加入了自己的想法:很多爱好者都喜欢在圆筒加装N座或BNC座,然后在馈线的连接处做对应的N头或BNC头,用于连接。但笔者觉得虽然该方法对使用十分方便,但同时也对信号造成了损耗(估计1-2DBI),尤其在2.4G 的频段更加明显!因此,mr7决定把屏蔽网直接焊在圆筒上(焊接前先把外壳打磨光滑),而作为振子的芯线则保留其原来的泡沫绝缘。这样一来把损耗减到最低。有点专线专用的味

道了! 建议大家最好在焊接前找根直径稍比馈线粗一点的小铜管和热缩套管,先把铜管套在馈线上,然后跟屏蔽网一起焊牢在金属圆筒的外壳上,然后用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这样一来可以很好的减低由于调节天线时给馈线和振子带来的影响!

高增益微带八木天线的设计

高增益微带八木天线的设计

高增益微带八木天线的设计 【摘要】本文基于八木天线的结构设计并制作了一个准八木高增益微带天线,利用电磁仿真软件CST进行仿真设计。通过增加引向器的个数来增加增益随着引向器的增加,增益由4.15dBi增加到8.2dBi;通过增加x方向的单元数,压缩E 面的方向性进而提高增益,其增益由8.2dBi提高到12.7dBi。最终设计出一款工作于5.8GHz,增益约为12.7dBi,前后比为26dB的天线,实测与仿真结果基本吻合。 1、微带八木天线的设计原理 随着微波技术的发展,微带准八木天线由于其结构简单易于加工实现而成为国内外的一个研究热点。微带准八木天线的工作原理如图,采用180°相位差的微带传输线作为馈线,馈入八木天线的两臂的信号刚好等幅反向。八木天线可看作是端射式行波天线,其波瓣图可近似为间距λ/4,相位递减90°的电源端射阵。在微带八木中要实现输入端的阻抗匹配很关键,2单元6元阵子在馈电微带的阻抗匹配计算如图1所示 图1 阻抗匹配计算 八木天线的地板作为反射器,馈电后的主阵子向空间辐射电磁波,同时引向阵子由于耦合作用产生了感应电流,也向外辐射电磁波,引向器和反射器的相互作用能将有源振子辐射的能量集中到主辐射方向。引向器的数目在一定的范围内越多,方向性越强,增益就越高。有源振子的长度一般取半波长,通过调整阵子间的间距以及无源振子的长度,可以改变无源振子上产生的交变感应电流的相位和幅度,使得电磁场在主方向上叠加,从而达到增强天线辐射方向性的目的,进而提高天线的增益和辐射效率。不同数量引向阵子对应增益增量如表1所示。 表1 不同单元八木天线的增益值

调频信号八木天线制作

八木五单元FM天线的制作 发表日期:2003年12月21日出处:调频发烧作者:甘铭晓【编辑录入:飞奔】 天线是接收机捕捉信号的工具,用于远程调频广播接收的天线大部分采用八木(YAGI)天线,八木天线的单元数接影响了接收范围,单元数越多,则方向越尖锐,增益越高,直距离越远. 中国的调频广播频段为87.5-108MHZ,而电视五频道的中心频率为88MHZ,所以五频道天线基本适合于远程调频广播接收.爱好者可购五频道电视天线代用,要求高的爱好者可将五频道电视天线稍加改后用.我建议用五单元的好,它具有较高的增益,且体积不大.普通的五频道五单元八木天线才十多元,购后改动最合算. 以下我介绍我使用天线的一些处理方法: 1.天线的匹配问题,一般天线的输出为300欧,而电缆多为75欧,阻抗不同就得进行匹配,否则高频信号是很难传输的.天线匹配器多为变压器式和U型半波环式,变压器式匹配器制作较复杂,线和磁环的选取直接影响匹配系数.而U型半波环式只需一段75欧的电缆就可以了.我应用时觉得U型半波环式好些. 2.天线的调试问题,安装好天线后并不是就有立杆见影的效果,需进行调试后才有不可思义的效果.首先要确定要接收电台的方向(因为天线为定向天线),将天线引子的方向对准电台方向.用接收机试收电台,然后找相应方向的一个最弱的信号调节天线的高度,找一个信号最强的位置后将天线定住. 3.使用天线放大器应注意的问题,目前市场上的天线放大器多为两个9018组合的,由于9018的工作噪声较大,要"发烧"最好将9018改用C3358或C3355低噪管.若使用放大器时在多个频点上出现不明的数码声(音频脉冲)干扰其它电台的信号,这是传呼发射台的谐波再生造成的,是由于天线放大器的滤波器问题,最好在输入端加一个BPF(88-108MHZ滤波器),可从旧的调频收音机上拆(形状如电视6.5MHZ滤波器).亦可在第一级放大器的耦合电容前对地加一个5-45P的电容. 4.天线与电缆的接头应注意防锈,天线一般架设在天台,日晒风吹后天线接口很易生锈,这样会影响信号的传输和天线的匹配,使接收效果变差.若有天线放大器的天线极易使放大器自激,最好在天线安装时将接口涂上防锈漆. 5.电缆安装时尽量拉直不要卷在一起,引入屋后最好在刚入屋处安个插座,打雷时可很快拔下. 6.天线架设时应注意防雷,高层建筑一般都有避雷针,避雷范围是以针尖为原点与针成45度角的伞形空间,天线应在此空间内才安全. 7.天线的保养,由于天线受风吹,日晒,雨淋后很快会被氧化,有时间可一年将天线洗一次,我是一年换一付天线的.电缆的所有接口一样要用95%的酒精清洗. 8.天线的反射器,振子和引向器不能和支架导通,要用塑料隔开! 9.大部分收音头是300欧输入的,可以将收音头里的300-75欧的匹配器断开成75欧接口. 一个调频接收系统并不是有了好天线,高级电缆就有很好的接收效果.而是要在天线,电缆和接收机相互配合下才可能的.就如我们音响发烧一样,音源,功放,线材,音箱相互搭配好才有好的效果一样.我们选择接收机时应注意,目前市场上的很多收音机都不适宜进行远程调频接收,普通的微型收音机主要是设计为了能收本地和邻近电台,它在调谐的工艺上花较少的工夫,邻频处理不好,它主要花在外形设计上.普通的收音头我认为手调的要比数调的好,目前国产的普通数调收音头主要设计在它的功能上,而不是求它的高灵敏度,手调收音机是我国民族工业的成熟产品,显然普通手调收音头比数调的好.但一些国产的数调机还是不错的,已可和一些进口产品比美了.在我的使用中发现汽车调频接收机相当好,不论是手调的还是数调的,它的灵敏度和邻频处理都很好,中强度信号在0.2MHZ完全可分离,主要它是用了一体化调谐器,一体调谐器不象普通调谐一样与中放和立体声解调设计在同一块板上,而是由专业厂家另外生产的,它不论工艺还是技术都是较好的.使用WALKMEN时,我认为手调的比数调的好,比如松下,爱华,索尼的收音功

基于HFSS的双频微带天线仿真及设计

基于HFSS的双频微带天线仿真及设计 随着无线通信技术的快速发展,无线通信已经广泛应用到雷达"移动通信"卫星定位"无线局域网络"卫星电视等诸多领域!而天线则是无线通信系统中信号发射和接收的关键部分,它直接影响着无线通信的性。随着移动通信中跳频"扩频等通信技术的发展,同时为了满足与多个终端的通信要求,实现多系统共用和收发共用等功能,这就要求天线在不同频段下工作。因此天线的多频段通信技术成为现代无线通信领域迫切需要研究的问题。 微带天线有多种馈电方式,其中同轴线馈电是一种最常用的馈电方式!同轴线馈电是将同轴插座安装在接地板上,本文在一种常用的2.45GHz同轴馈电微带天线的基础上,利用HFSS三维电磁仿真软件合理设计同轴馈电的位置及改变辐射贴片的尺寸,使天线获得一个新的谐振频率,大小为 1.9GHz,且输入阻抗为50Ω左右,并且对仿真结果进行了详细的分析。最后根据仿真结果制作天线实物,在实际的电磁环境下对天线的驻波比进行测试,得到较好的效果。 1 2. 45 GHz同轴馈电微带天线参数 一种常用的2. 45 GHz同轴馈电微带天线的原理图如图1和图2所示

图1 中L0为辐射贴片X轴长度,L0= 27.9 mm; W0为辐射贴片Y 轴长度宽度,W0= 40 mm; L1为同轴馈电点离辐射贴片中心距离,L1 = 6.6 mm。图 2 中介质基片厚度H = 1. 6 mm; 介质基片介电常数ε = 4.4。 2双频微带天线设计 在 2. 45 GHz 微带天线中的辐射贴片在 X 轴方向的长度为 27. 9 mm,同轴线馈电点( A 点) 离辐射贴片中心距离为 6. 6 mm。只需在此基础上分析给出微带天线的辐射贴片在Y轴方向的长度和同轴线馈电点 ( B 点) 的位置,能够使天线能够工作于9 GHz,然后过 A 点和 B 点的垂直相交点( C 点) 即为需要找到的双频馈电点。X轴上的 A 点为激发2. 45 GHz 工作频率的馈电点,其输入阻抗为 50 Ω左右,由于 A 点位于辐射贴片Y轴方向的中心线上,因此不会激发Y轴上的工作频率。同时,Y轴上的 B 点为激发 1. 9 GHz 工作频率的馈电点,其输入阻抗为50 Ω左右,由于位于辐射贴片X方向的中心线上,因此不会激发X轴上的工作频率。如果将馈电点放置于C点位置,此时天线可以同时激发X轴的工作频率和Y轴的工作频率,且在这两种模式下均能得到50 Ω左右的输入阻抗,那么此时天线就可以实现双频工作。 扩展1. 95 GHz谐振频率后的馈电点(C点)位置如图3所示。

微波课设八木天线设计

微波课设八木天线设计文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课设报告 课程名称:微波技术与天线 课设题目:八木天线的仿真设计 课设地点:电机馆跨越机房 专业班级:信息1002班 学号: 学生姓名: 指导教师: 2013/6/27 目录 1、设计摘要 2、设计原理 3、八木天线参数选择及设计要求 4、八木天线的HFSS10仿真 (1)建立模型 (2)确认设计 (3) S参数(反射参数) (4)2D辐射远区场方向图 (5)3D Polar 5、仿真结果分析 6、实验中的问题 7、心得体会

一、设计摘要 八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线。其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中。 六元八木天线示意图 八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配。主要作用是提高辐射能量。无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向。 二、设计原理: 八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射。改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图。若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱。比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波。通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%。 本设计就是基于八木天线的基本理论的基础上,设计一个六元八木天线。三、八木天线参数选择及设计要求

八木天线470MHZ

一、设计说明:作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。作为一款经典的定向天线,八木天线在HF、VHF以及UHF波段应用十分广泛,它全称为“八木/宇田天线”,英文名Y AGI,是由上世纪二十年代日本东北帝国大学的电机工程学教授八木秀次,在与他的学生宇田新太郎研究短波束时发明的。相对于基本的半波对称振子或者折合振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。通常八木天线由一个激励振子(也称主振子)、一个反射振子(又称反射器)和若干个引向振子(又称引向器)组成,相比之下反射器最长,位于紧邻主振子的一侧,引向器都较短,并悉数位于主振子的另一侧,全部振子加起来的数目即为天线的单元数,譬如一副五单元的八木天线就包括一个主振子、一个反射器和三个引向器,结构如图1所示。主振子直接与馈电系统相连,属于有源振子,反射器和引向器都属无源振子,所有振子均处于同一个平面内,并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。 二、系统规划传输方式:单向传输节目源:本系统电视节目包括无线电视和自办节目(一套)等。无线电视无线电视无线电视无线电视::::通过八木天线接收到的信号送到电视机,收看电视机节目。示意图如下(图一): 三、技术参数天线的性能直接影响电视机收看电视节目的质量重要因素,主要的技术参数有输入阻抗、工作频率、天线增益及方向性等。A.输入阻抗在谐振状态,天线如同一只电阻接在馈线端。常用馈线阻抗为50 ,如果天线输入阻抗也是50 ,那就达到了“匹配”,就能将天上的信号全部接收下来,所以在制作天线的时候一定要注意阻抗匹配的问题。二分之一波长偶极天线的输入阻抗约为67 ,二分之一波长折合振子的输入阻抗则高于前者4倍,当加了引向器、反射器后,阻抗关系就变得复杂起来了,总的来说八木比仅有基本振子的阻抗要低很多,且八木各单元间距大则阻抗高,反之阻抗变低,同时天线效率降低。有资料介绍,引向器与主振子间距0.15波长时阻抗最低,0.2-0.25时阻抗高,效率提高。这

HFSS双频微带天线设计说明

一设计容简介 双频工作是微带天线设计的重要课题之一,相关的设计包括使用多层金属片,具槽孔负载之矩形金属片,具矩形缺口的正方形金属片,具短金负载的金属片,倾斜槽孔耦合馈入的矩形金属片等。其中,获得双频工作的一种最简单的方法是辐射贴片的长度对应一个频率谐振,其宽度对应另一个频率谐振,然后从对角线的一角馈电,就能使同一个辐射贴片工作于两个频率上。其结构如图1所示。 图1 故在这个设计中,L1是表示馈电点长度方向的x坐标的变量,其值为7mm,表示的中心频率为2.45GHZ,输入阻抗为50欧姆。L2是表示馈电点的y坐标的变量,其值为10mm,表示的中心频率为1.7GHZ。输入阻抗为50欧姆。 设计模型的中心在坐标原点上,辐射贴片的长度方向是沿着x轴方向,宽度 方向是沿着y方向的。介质基片的大小是辐射贴片的两倍,参考地面辐射贴片使用理想薄导体。因为使用50欧姆的同轴线馈电,这里使用半径为0.6mm的材质 为pec的圆柱体模型。而与圆柱体相接的参考地面需挖出一个半径为1.5mm的圆孔,将其作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50欧姆。 HFSS仿真设计过程 1.新建工程文件 (1)运行HFSS并新建工程:双击快捷图标,启动HFSS软件。新建一个工程文件,工程名为Dual_Patch.hfss文件。 (2)设置求解类型:选择hfss→Solution Type,选中Driven Modal,然后点击OK。(3)设置模型长度:选择Modeler→Units选项设置为mm。点击OK。

2.添加和定义设计变量 在HF SS →Design Propertied 命令,打开设计属性对话框,然后单击对话框。在Name文本框中输入第一个变量名称H,在value文本框中输入该变量的初始值为1.6mm。 使用相同的方法,分别定义变量L0,W0,L1,length,L2。其初始值分别为28mm,37.26mm,7mm,30mm,10mm点击确定。设计属性对话框如图所示。 3.设计建模 (1)创建介质基片:在主菜单中选择Draw→Box命令,进入创建长方体的状态,然后三维模型窗口创建任意一个长方体。打开新建长方体属性对话框,把长方体的名称修改为Substrate,设置材质为FR4_epoxy,设置透明度为0.6.再双击历史树Substrate下的CreateBox选项,打开Command选项卡,在position文本框中输入顶点位置坐标为(-L0,-W0,0),在Xsize,Ysize和Zsize文本框中分别输入长方体的长宽高为2*L0,2*W0,H。如图3-1所示。这时就创建好了名称为Substrate 的介质基片模型。然后按Ctrl+D 全屏显示物体模型。 图3-1介质基片模型 (2)创建辐射贴片:在主菜单中选择Draw →rectangle命令,进入创建矩形面的状态,然后任意创建一个矩形面。双击Solids节点下的rectangle1选项,打开新建矩形面属性对话框的Attribute选项卡,把矩形面的名称修改为Patch,设置透明度为0.4.再双击历史树Substrate下的Createrectangle选项,打开Command 选项卡,在position文本框中输入顶点位置坐标为(-L0/2,-W0/2,H),在Xsize,Ysize文本框中分别输入矩形面的长宽为L0,W0。如图3-2所示。这时就创建好了名称为patch辐射贴片模型。然后按Ctrl D 全屏显示物体。

天线原理与设计习题集

天线原理与设计习题集 第一章 天线的方向图 1.如图1为一元天线,电流矩为Idz ,其矢量磁位表 示为A r j 0r 4Idz ?βπμ?=e z A ,试求解元天线的远区辐射电磁场。 ?θH E ,2.已知球面波函数r e r j /βψ?=,试证其满足波动方程: 022=+?ψβψ 3.如图2所示为两副长度为λ=A 2的对称线天线,其上的电流分别为均匀分布和三角形分布,试采用元天线辐射场的叠加原理,导出两天线的远区辐射场,方向图函数?θH E ,),(?θf 和归一化方向图函数),(?θF ,并分别画出它们在yoz 平面和xoy 平面内的方向图的示意图。 4.有一对称振子长度为,其上电流分布为:A 2|)|(sin )(z I z I m ?=A β试导出: (1) 远区辐射场; ?θH E ,(2) 方向图函数),(?θf ; (3) 半波天线(2/2λ=A )的归一化方向图函数),(?θF ,并分别画出其E 面 和H 面内的方向图示意图。 (4) 若对称振子沿y 轴放置,导出其远区场表达式和E 面、H 面方向图 函数。 H E , 5.有一长度为2/λ=A 的直导线,其上电流分布为,试求该天线的 方向图函数z j e I z I β?=0)(),(?θF ,并画出其极坐标图。 6.利用方向性系数的计算公式: ∫∫ = ππ ? θθ?θπ 20 2 sin ),(4d d F D 计算:(1) 元天线的方向性系数; (2) 归一化方向图函数为 ???≤≤≤≤=其它,0 0,2/,csc ),(0 0??πθθθ?θF 的天线方向性系数。

(3) 归一化方向图函数为: ?? ?≤≤≤≤=其它,0 20,2/0,cos ),(π ?πθθ?θn F n=1和2时的天线方向性系数。 7.如图3所示为二元半波振子阵,两单元的馈电电流关系为/212j I I e π=,要求导出二元阵的方向图函数),(?θT f ,并画出E 面(yz 平面)和H 面(xy 平面)方向图。 8.有三付对称半波振子平行排列在一直线上,相邻振子 间距为d ,如图4所示。 (1) 若各振子上的电流幅度相等,相位分别为 ββ,0,?时,求xy 面、yz 面和H 面方向图函数。 (2) 若4/λ=d ,各振子电流幅度关系为1:2:1,相位 关系为2/,0,2/ππ?时,试画出三元阵的E 面和H 面方向图。 9. 由四个元天线组成的方阵,其排列如图5所示。每个单元到阵中心的距离为8/3λ,各单元的馈电幅度相等,单元1和2同相,单元3和4同相但与1和2反相。试导出该四元阵的方向图函数及阵因子,并草绘该阵列xoy 平面内的方向图。 10. 设地面为无限大理想导电平面。图6所示为由等幅同相馈电的半波振子组成的水平和垂直二元阵,试求其 E 面方向图函数,要求: (1) 对图(a)求出xz 面和yz 面方向图函数,并画出xz 面的方向图; (2) 对图(b) 求出xz 面、yz 面 和xy 面方向图函数,并画出这三个面内的方向图;。 11.一半波对称振子水平架设在理想导电平面上,架设高度为。试分别画出h 0.25,0.5h λλ=两种情况下的E 面和H 面方向图,并比较所得结果。 12.由长为4/λ=A 的单极天线组成的八元天线阵如图7所示,各单元垂直于地

八木天线的原理和制作tm

八木天线的原理和制作 t m 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

八木天线的原理和制作 八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。 八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。至于无源振子根据它的功能可以分为反射器(Reflecto r)和导向器(Director)两种。通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。 由反射器至最前的一个导向器的距离叫做这个八木天线长度。通常收发机的天线输出端,都只是接到八木天线的有源振子。反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。当无源振子的长度不同时,呈现的阻抗也不同。适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。而当八木天线各个导向器的长度不同,间距亦不等时叫做非均匀导向八木天线,特点是天线的主瓣较宽,方向系数较少,工作频带内增益不均匀(但在UHF以上波段并不明显),但工作频带较宽。但如果将非均匀的导向八木天线的结构设计合理,则可以显着地压缩副瓣,又不致太大扩宽主瓣和降低方向系数。

引向天线研究与设计

引向天线的研究与设计 摘要:天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换,它是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。本文主要介绍引向天线的设计以及其MATLAB 仿真,并且讲解了天线的基础知识以及引向天线的重要参数等,让大家对引向天线有更多的认识。 关键词:引向天线、方向系数、方向图 To the antenna's research and design Abstract: the antenna is a kind of converter, it spread on a transmission of guided wave, transform into in the unbounded media (usually free space) propagation of electromagnetic waves, or opposite transformation, it is the transmission and reception of electromagnetic wave important radio equipment, no antenna there would be no radio communication. This paper mainly introduces to the antenna design and the MATLAB simulation, and explained the basic knowledge of antenna and the important parameters to antenna, giving you the right to antenna have more understanding. Keywords: to antenna, direction coefficient, direction chart 一 、天线的基础知识 1.1 基本振子的辐射 1.1.1 电基本振子的辐射 电基本振子(Electric Short Dipole )又称电流元,它是指一段理想的高频电流直导线,其长度l 远小于波长λ,其半径a 远小于l ,同时振子沿线的电流I 处处等幅同相。用这样的电流元可以构成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天线辐射特性的基础。 在电磁场理论中,已给出了在球坐标系原点O 沿z 轴放置的电基本振子在无限大自由空间中场强的表达式为 (1―1―1) (1―1―2) 式中,E 为电场强度,单位为V /m ;H 为磁场强度,单位为A/m ;场强的下标r 、θ、φ表示球坐标系中矢量的各分量;e r,e θ,e φ分别为球坐标系中沿r 、θ、φ增大方向的单位矢量;ε0=10-9/(36π)(F/m),为自由空间的介电常数;μ0=4π×10-7(H/m),为自由空间导磁率; 为自由空间相移常数,λ为自由空间波长。式中略去了时间因子e j ωt 。 1.1.2 磁基本振子的辐射 22302 2300 1sin ()421cos()411sin ()40r jkr jkr r jkr H H Il k H j e r r Il k E j e r r Il k k E A j j e r r r E θ?θ?θππωεθπωε---=?? =??=+? ???=-???=+-?? =?? r r E E e E e H H e θθ?? =+? ?=? 2/k ωπλ==

八木天线制作教程

八木天线制作教程 八木天线是一种引向天线,由一个有源振子和多个无源振子放臵在同一平面上,并且垂直于连接它们中心的金属杆。一般一个无源振子为反射器,其余的无源振子为引向器。因为金属杆通过振子上的压波节点,并垂直于天线,所以,金属杆对天线的近场影响很小。而有源振子必须与金属杆绝缘。 通过下表的数据可以看到,八木天线的增益高于垂直天线及偶极天线。(摘自《天线与电波传播》,北方交通大学徐坤生、蒋忠涌编著) 天线形式反射器数引向器数有源振子数方向性系数 偶极0010dB 二单元八木1013~4.5dB 二单元八木0013~4.5dB 三单元八木1116~8dB 四单元八木1217~10dB 五单元八木1319~11dB 从上表上可知,八木天线的单元越多,方向性越强。但是单元的增加不与方向性成正比。单元过多时,导致工作频带变窄,整个天线尺寸也将偏大。 在短波波段,波长较长,自制八木天线比较困难,在超短波波段(V/U),因波长短,可以比较方便的自制低成本的八木天线。 八木天线的数学计算复杂,不过很多工程或理论书籍都给出它的尺寸,只要依照这些数据,就可以自制出一副不错的YAGI!五单元八木天线的尺寸如图1

如果自制四单元八木天线,只要不安装引向器D就可以,天线也会显得小巧一点。如果想做成七单元,在上图的基础上加两个引向器单元,长度分别是半波长的84%,82%。新加的单元的间隔仍是波长的0.2倍。 我做的70CM波段八木天线,最初是四单元的,各个振子及其连接的金属杆,用BG4RUV提供的铜焊条(直径2.5mm)制成。大约一个月后,买了一段2米长,直径4mm的铜条,又制了一可拆卸的四单元八木天线(找到一段矩形铜管作为连接各个振子的支杆,各个振子均用螺丝与支杆固定,便于携带)。第一支天线的谐振点比预计的中心频率(435兆赫)低了约2兆赫,但在430至440兆赫内的SWR不高,最低的SWR〈1.1,最高的SWR也不大于1.4。第二支天线的SWR在整个70CM频段内的起伏不大,最高约1.2。后来,我对这支可拆卸的天线作一些改动,利用剩下的材料又作成三个引向器,就这样我的这支天线既可以拼装成四单元八木天线,也可以拼装成七单元八木。如果想做一支八木天线,但不要求方向性强,可以试试,动手做一支三单元八木天线。在此给处其尺寸(图2)。

HFSS双频微带天线设计

一设计内容简介 双频工作是微带天线设计的重要课题之一,相关的设计包括使用多层金属片,具槽孔负载之矩形金属片,具矩形缺口的正方形金属片,具短金负载的金属片,倾斜槽孔耦合馈入的矩形金属片等。其中,获得双频工作的一种最简单的方法是辐射贴片的长度对应一个频率谐振,其宽度对应另一个频率谐振,然后从对角线的一角馈电,就能使同一个辐射贴片工作于两个频率上。其结构如图1所示。 图1 故在这个设计中,L1是表示馈电点长度方向的x坐标的变量,其值为7mm,表示的中心频率为2.45GHZ,输入阻抗为50欧姆。L2是表示馈电点的y坐标的变量,其值为10mm,表示的中心频率为1.7GHZ。输入阻抗为50欧姆。 设计模型的中心在坐标原点上,辐射贴片的长度方向是沿着x轴方向,宽度 方向是沿着y方向的。介质基片的大小是辐射贴片的两倍,参考地面辐射贴片使 用理想薄导体。因为使用50欧姆的同轴线馈电,这里使用半径为0.6mm的材质 为pec的圆柱体模型。而与圆柱体相接的参考地面需挖出一个半径为1.5mm的圆孔,将其作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口 归一化阻抗为50欧姆。 HFSS仿真设计过程 1.新建工程文件 (1)运行HFSS并新建工程:双击快捷图标,启动HFSS软件。新建一个工程文件,工程名为Dual_Patch.hfss文件。 (2)设置求解类型:选择hfss→Solution Type,选中Driven Modal,然后点击OK。

(3)设置模型长度:选择Modeler→Units选项设置为mm。点击OK。 2.添加和定义设计变量 在HFSS →Design Propertied 命令,打开设计属性对话框,然后单击对话框。在Name文本框中输入第一个变量名称H,在value文本框中输入该变量的初始值为1.6mm。 使用相同的方法,分别定义变量L0,W0,L1,length,L2。其初始值分别为28mm,37.26mm,7mm,30mm,10mm点击确定。设计属性对话框如图所示。 3.设计建模 (1)创建介质基片:在主菜单中选择Draw→Box命令,进入创建长方体的状态,然后三维模型窗口创建任意一个长方体。打开新建长方体属性对话框,把长方体的名称修改为Substrate,设置材质为FR4_epoxy,设置透明度为0.6.再双击历史树Substrate下的CreateBox选项,打开Command选项卡,在position文本框中输入顶点位置坐标为(-L0,-W0,0),在Xsize,Ysize和Zsize文本框中分别输入长方体的长宽高为2*L0,2*W0,H。如图3-1所示。这时就创建好了名称为Substrate 的介质基片模型。然后按Ctrl+D 全屏显示物体模型。 图3-1介质基片模型 (2)创建辐射贴片:在主菜单中选择Draw →rectangle命令,进入创建矩形面的状态,然后任意创建一个矩形面。双击Solids节点下的rectangle1选项,打开新建矩形面属性对话框的Attribute选项卡,把矩形面的名称修改为Patch,设置透明度为0.4.再双击历史树Substrate下的Createrectangle选项,打开Command 选项卡,在position文本框中输入顶点位置坐标为(-L0/2,-W0/2,H),在

木天线的原理和制作tm

八木天线的原理和制作 八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。 八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4 个导向器的长度通常比有源振子顺序递减2~5%。 由反射器至最前的一个导向器的距离叫做这个八木天线长度。通常收发机的天线输出端,都只是接到八木天线的有源振子。反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。当无源振子的长度不同时,呈现的阻抗也不同。适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。而当八木天线各个导向器的长度不同,间距亦不等时叫做非均匀导向八木天线,特点是天线的主瓣较宽,方向系数较少,工作频带内增益不均匀(但在UHF以上波段并不明显),但工作频带较宽。但如果将非均匀的导向八木天线的结构设计合理,则可以显着地压缩副瓣,又不致太大扩宽主瓣和降低方向系数。

相关文档