文档库 最新最全的文档下载
当前位置:文档库 › 平面向量易错题解析

平面向量易错题解析

平面向量易错题解析
平面向量易错题解析

平面向量易错题解析

1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗?

2.你通常是如何处理有关向量的模(长度)的问题?(利用2

2

||→→

=a a ;22||y x a +=)

3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算)

4.你弄清“02121=+?⊥→

y y x x b a ”与“0//1221=-?→

y x y x b a ”了吗?

[问题]:两个向量的数量积与两个实数的乘积有什么区别?

(1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=?→

→b a ,不能推

出→

→=0b .

(2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→

→→→→→=??=?c a c b b a . (3) 在实数中有)()(c b a c b a ??=??,但是在向量的数量积中)()(→

??≠??c b a c b a ,这是因为

左边是与→

c 共线的向量,而右边是与→

a 共线的向量.

5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形的求值、化简和证明恒等式有什么特点? 1.向量有关概念:

(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))

(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;

(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||

AB AB ±);

(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;

(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直

线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线? AB AC 、

共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。

如下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若AB DC =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC =。(5)若,a b b c ==,则a c =。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5))

2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面的任一向量a 可表示为

(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。如果向量的起点在

原点,那么向量的坐标与向量的终点坐标相同。

3.平面向量的基本定理:如果e 1和e 2是同一平面的两个不共线向量,那么对该平面的任一向量a ,有

且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

如(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(答:1322

a b -);(2)下列向量组中,能作为

平面所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D.

1213

(2,3),(,)24

e e =-=-(答:

B );(3)已知,AD BE 分别是AB

C ?的边,BC AC 上的中线,且,A

D a B

E b ==,则BC 可用向量,a b 表示为_____(答:24

33

a b +);(4)已知ABC ?中,点D 在BC 边上,且?→

??→?=DB CD 2,

?→

??→??→?+=AC s AB r CD ,则s r +的值是___(答:0)

4.实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:

()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,

当λ=0时,0a λ=,注意:λa ≠0。

5.平面向量的数量积:

(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=

()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=

2

π

时,,垂直。

(2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做

a 与

b 的数量积(或积或点积),记作:a ?b ,即a ?b =cos a b θ。规定:零向量与任一向量的数量

积是0,注意数量积是一个实数,不再是一个向量。如(1)△ABC 中,3||=?→

?AB ,4||=?→

?AC ,5||=?→

?BC ,

则=?BC AB _________(答:-9);(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4

π

则k 等于____(答:1);(3)已知2,5,3a b a b ===-,则a b +等于____;(4)已知,a b 是

两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30)

(3)b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0。如已知3||=→

a ,5||=→

b ,且

12=?→

→b a ,则向量→

a 在向量→

b 上的投影为______(答:

5

12

) (4)a ?b 的几何意义:数量积a ?b 等于a 的模||a 与b 在a 上的投影的积。

(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥??=;

②当a ,b 同向时,a ?b =a b ,特别地,2

2

2

,a a a a a a =?==

;当a 与b 反向时,a ?b =

-a b ;当θ为锐角时,a ?b >0,且 a b 、

不同向,0a b ?>是θ为锐角的必要非充分条件;当θ为钝角时,a ?b <0,且 a b 、

不反向,0a b ?<是θ为钝角的必要非充分条件; ③非零向量a ,b 夹角θ的计算公式:cos a b a b

θ?=

;④||||||a b a b ?≤。如(1)已知)2,(λλ=→

a ,

)2,3(λ=→

b ,如果→

a 与→

b 的夹角为锐角,则λ的取值围是______(答:43λ<-或0λ>且1

3

λ≠);(2)

已知OFQ ?的面积为S ,且1=??→

??→?FQ OF ,若2

3

21<

(,)43

ππ

;(3)已知(cos ,sin ),(cos ,sin ),a x x b y y ==a 与b 之间有关系式3,0ka b a kb k +=->其中,①用k 表示a b ?;②求a b ?的最小值,并求此时a 与b 的夹角θ的大小(答:①21

(0)4k a b k k

+?=>;②最

小值为

1

2

,60θ=) 6.向量的运算: (1)几何运算:

①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC 叫做a 与b 的和,即

a b AB BC AC +=+=;

②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如(1)化简:①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____(答:①AD ;②CB ;③0);(2)若正方形ABCD

的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:);(3)若O 是ABC 所在平面一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____(答:直角三角形);(4)若D 为ABC

?的边BC 的中点,ABC ?所在平面有一点P ,满足0PA BP CP ++=,设

||

||

AP PD λ=,

则λ的值为___(答:2);(5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的角C 为____(答:120);

(2)坐标运算:设1122(,),(,)a x y b x y ==,则:

①向量的加减法运算:12(a b x x ±=±,12)y y ±。如(1)已知点(2,3),(5,4)A B ,(7,10)C ,若

()AP AB AC R λλ=+∈,则当λ=____时,点P 在第一、三象限的角平分线上(答:

1

2

);(2)已知1(2,3),(1,4),(sin ,cos )2A B AB x y =且,,(,)22x y ππ∈-,则x y += (答:6π

或2

π-)

;(3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是 (答:(9,1))

②实数与向量的积:()()1111,,a x y x y λλλλ==。

③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如设(2,3),(1,5)A B -,且1

3

AC AB =,3AD AB =,则C 、D 的坐标分别是__________(答:11

(1,

),(7,9)3

-)

; ④平面向量数量积:1212a b x x y y ?=+。如已知向量=(sinx ,cosx ), =(sinx ,sinx ), =(-

1,0)。(1)若x =

3

π

,求向量a 、c 的夹角;(2)若x ∈]4,83[ππ-

,函数b a x f ?=λ)(的最大值为21,

求λ的值(答:1

(1)150;(2)2

或1);

⑤向量的模:222222

||,||a x y a a x y =+==+。如已知,a b 均为单位向量,它们的夹角为60,那

么|3|a b +=_____;

⑥两点间的距离:若()()1122,,,A x y B x y ,则()()

22

2121||AB x x y y =

-+-。如如图,在平面斜坐

标系xOy 中,60xOy ∠=,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+,其中12,e e 分别为与x 轴、y 轴同方向的单位向量,则P 点斜坐标为(,)x y 。(1)若点P 的斜坐标为(2,-2),求P 到O 的距离|PO |;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程。(答:(1)

2;(2)2

2

10x y xy ++-=);

7.向量的运算律:(1)交换律:a b b a +=+,()

()a a λμλμ=,a b b a ?=?;(2)结合律:

()(),a b c a b c a b c a b c ++=++--=-+,()()()a b a b a b λλλ?=?=?;(3)分配律:()(),a a a a b a b λμλμλλλ+=++=+,()a b c a c b c +?=?+?。如下列命题中:①

→→→→→→→

?-?=-?c a b a c b a )(;② →→→→→→??=??c b a c b a )()(;③ 2

()a b →→

-2||a →

=

2

2||||||a b b →

-?+;④ 若0=?→→b a ,则0=→a 或0=→

b ;⑤若,a b

c b ?=?则a c =;⑥22

a a =;⑦

2

a b b a

a

?=

⑧2

2

2()a b a b ?=?;⑨2

2

2()2a b a a b b -=-?+。其中正确的是______(答:①⑥⑨) 提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即c b a c b a )()(?≠?,为什么?

8.向量平行(共线)的充要条件://a b a b λ?=22()(||||)a b a b ??=1212x y y x ?-=0。

如(1)若向量(,1),(4,)a x b x ==,当x =_____时a 与b 共线且方向相同(答:2);(2)已知

(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______(答:4);(3)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 共线(答:-2或11)

9.向量垂直的充要条件:0||||a b a b a b a b ⊥??=?+=- 12120x x y y ?+=.特别地

(

)(

)AB AC AB AC AB

AC

AB

AC

+

⊥-

。如(1)已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = (答:

32

);(2)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=?,则点B 的坐标是________ (答:(1,3)或(3,-1));(3)已知(,),n a b =向量n m ⊥,且n m =,则m 的坐标是________ (答:(,)(,)b a b a --或)

10.线段的定比分点:(教材未有容,适度补充)

(1)定比分点的概念:设点P 是直线P 1P 2上异于P 1、P 2的任意一点,若存在一个实数λ ,使

12PP PP λ=,则λ叫做点P 分有向线段12PP 所成的比,P 点叫做有向线段12PP 的以定比为λ的定比分点;

(2)λ的符号与分点P 的位置之间的关系:当P 点在线段 P 1P 2上时?λ>0;当P 点在线段 P 1P 2

的延长线上时?λ<-1;当P 点在线段P 2P 1的延长线上时10λ?-<<;若点P 分有向线段12PP 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ

。如若点P 分AB 所成的比为3

4,则A 分BP 所成的比为

_______(答:7

3

-)

(3)线段的定比分点公式:设111(,)P x y 、222(,)P x y ,(,)P x y 分有向线段12PP 所成的比为λ,则

121211x x x y y y λλλλ+?=??+?+?=?+?

,特别地,当λ=1时,就得到线段P 1P 2的中点公式121222x x x y y y +?

=???+?=??。在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ。如(1)若M (-3,

-2),N (6,-1),且1MP MN 3--→

--→=-,则点P 的坐标为_______(答:7(6,)3

--);(2)已知(,0),(3,2)A a B a +,

直线1

2

y ax =

与线段AB 交于M ,且2AM MB =,则a 等于_______(答:2或-4) 11.向量中一些常用的结论:

(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;

(2)||||||||||||a b a b a b -≤±≤+,特别地,当 a b 、

同向或有0?||||||a b a b +=+ ≥||||||||a b a b -=-;当 a b 、

反向或有0?||||||a b a b -=+≥||||||||a b a b -=+;当 a b 、不共线?||||||||||||a b a b a b -<±<+(这些和实数比较类似).

(3)在ABC ?中,①若()()()112233,,,,,A x y B x y C x y ,则其重心的坐标为123123,33x x x y y y G ++++?? ???

。如若⊿ABC 的三边的中点分别为(2,1)

、(-3,4)、 (-1,-1),则⊿ABC 的重心的坐标为_______(答:24

(,)33

-);

②1()3

PG PA PB PC =++?G 为ABC ?的重心,特别地0PA PB PC P ++=?为ABC ?的重

心;

③PA PB PB PC PC PA P ?=?=??为ABC ?的垂心;

④向量()(0)||||

AC AB AB AC λλ+≠所在直线过ABC ?的心(是BAC ∠的角平分线所在直线);

⑤||||||0AB PC BC PA CA PB P ++=?ABC ?的心;

(3)若P 分有向线段12PP 所成的比为λ,点M 为平面的任一点,则121MP MP MP λλ

+=

+,特别地P 为12P P 的中点122

MP MP MP +?=

; (4)向量 PA PB PC 、、中三终点A

B C 、、共线?存在实数αβ、使得PA PB PC αβ=+且1αβ+=.如平面直角坐标系中,O 为坐标原点,已知两点)1,3(A ,)3,1(-B ,若点C 满足

=?→?OC ?→

??→?+OB OA 21λλ,其中R ∈21,λλ且121=+λλ,则点C 的轨迹是_______(答:直线AB ) 例题1 已知向量??? ??-=??? ??=2sin ,2cos ,23sin ,23cos x x b x x a ,且,2,0??

?

???∈πx 求

(1) b a ?及b a

+;

(2)若()b a b a x f +-?=λ2的最小值是2

3

-,数λ的值.

错误分析:(1)求出b a

+=x 2cos 22+后,而不知进一步化为x cos 2,人为增加难度;

(2)化为关于x cos 的二次函数在[]1,0的最值问题,不知对对称轴方程讨论.

答案: (1)易求x b a 2cos =? , b a

+=x cos 2 ;

(2) ()b a b a x f +-?=λ2=x x cos 222cos ?-λ=1cos 4cos 22

--x x λ

=()12cos 22

2

---λλx

??

?

???∈2,

0πx []1,0cos ∈∴x 从而:当0≤λ时,()1min -=x f 与题意矛盾,0≤λ 不合题意; 当10<<λ时,()2

1,23

122

min =

∴-=--=λλx f ; 当1≥λ时,(),2341min -=-=λx f 解得8

5

=

λ,不满足1≥λ; 综合可得: 实数λ的值为

2

1. 例题2 在ABC ?中,已知()()k ,1,3,2==,且ABC ?的一个角为直角,数k 的值.

错误分析:是自以为是,凭直觉认为某个角度是直角,而忽视对诸情况的讨论. 答案: (1)若,90?=∠BAC 即AC ⊥

故0=?,从而,032=+k 解得3

2-

=k ; (2)若,90?=∠BCA 即⊥,也就是0=?,而(),3,1--=-=k AB AC BC 故

()031=-+-k k ,解得2

13

3±=

k ; (3)若,90?=∠ABC 即AB BC ⊥,也就是,0=?AB BC 而()3,1--=k BC ,故

()0332=-+-k ,解得.3

11=

k 综合上面讨论可知,32-

=k 或2133±=k 或.3

11=k

例题4 已知向量m=(1,1),向量n →

与向量m →

夹角为π4

3

,且m →·n →

=-1,

(1)求向量n →

(2)若向量n →

与向量q →

=(1,0)的夹角为2π,向量p →=(cosA,2cos 22

c

),其中A 、C 为?ABC 的角,且A 、B 、C

依次成等差数列,试求|n →

+p →

|的取值围。 解:(1)设n →

=(x,y)

则由

>=π43得:cos=n

m n m →→→

??=22

222-

=+?+y x y x ①

由m →·n →

=-1得x+y=-1 ②

联立①②两式得?????-==10y x 或?????=-=0

1

y x

∴n →

=(0,-1)或(-1,0)

(2) ∵

>=

得n →·q →=0 若n →

=(1,0)则n →·q →

=-1≠0故n →

≠(-1,0) ∴n →

=(0,-1) ∵2B=A+C ,A+B+C=π ?B=

3

π ∴C=A -32π

n →

+p →

=(cosA,2cos

2

12

-c

) =(cosA,cosC)

∴|n →

+p →

|=C A 22cos cos +=

22cos 122cos 1C A +++=12

2cos 2cos ++C

A

=12

)234cos(

2cos +-+A A π

=122sin 23

22cos 2cos +--

A A A =12

2sin 23

2cos 21+-A

A =

12)32cos(++πA ∵0

32π∴0<2A<34π 35323πππ<

+

π

)<21 ∴|n →

+p →

|∈(

2

5

,

22) 例题5 已知函数f(x)=m |x-1|(m ∈R 且m ≠0)设向量θ2cos ,1(=→

a ),)1,2(=→

b ,)1,sin 4(θ=→

c ,)1,sin 2

1(θ=→

d ,

当θ∈(0,

4

π

)时,比较f(b a →→?)与f(d c →→?)的大小。 解:b a →

→?=2+cos2θ,d c →

→?=2sin 2

θ+1=2-cos2θ f(b a →

→?)=m |1+cos2θ|=2mcos 2

θ,

f(d c →

→?)=m |1-cos2θ|=2msin 2

θ

于是有f(b a →

→?)-f(d c →

→?)=2m(cos 2

θ-sin 2

θ)=2mcos2θ

∵θ∈(0,

4π) ∴2θ∈(0, 2

π

) ∴cos2θ>0 ∴当m>0时,2mcos2θ>0,即f(b a →

→?)>f(d c →

→?)

当m<0时,2mcos2θ<0,即f(b a →

→?)

→?)

例题6 已知∠A 、∠B 、∠C 为?ABC 的角,且f(A 、B)=sin 22A+cos 2

2B-3sin2A-cos2B+2 (1)当f(A 、B)取最小值时,求∠C (2)当A+B=

2

π

时,将函数f(A 、B)按向量p →平移后得到函数f(A)=2cos2A 求p → 解:(1) f(A 、B)=(sin 2

2A-3sin2A+43)+(cos 2

2B-cos2B+4

1)+1 =(sin2A-2

3)2

+(sin2B-21)2+1

当sin2A=

2

3

,sin2B=21时取得最小值,

∴A=30?或60?,2B=60?或120? C=180?-B-A=120?或90?

(2) f(A 、B)=sin 2

2A+cos 2

2(

A -2

π

)-2)2(2cos 2sin 3+--A A π

=22cos 2sin 32cos 2sin 22++-+A A A A

=3)3

3

2cos(23)32cos(2++=++A A π

p →=)3,23(ππk +

例题7 已知向量),1

1

(

),1,(2

x mx mx -=-=(m 为常数)

,且,不共线,若向量,的夹角落< , >为锐角,数x 的取值围.

解:要满足为锐角 只须b a ?>0且b a λ≠(R ∈λ) b a ?=x mx mx --12 = 122-+-mx x mx mx =01

>-mx x

即 x (mx-1) >0

1°当 m > 0时x<0 或m

x 1> 2°m<0时,x ( -mx+1) <0 , 01

><

x m

x 或

3°m=0时

只要x<0

综上所述:x > 0时,),1

()0,(+∞-∞∈m

x x = 0时,)0,(-∞∈x

x < 0时,),0()1

,

(+∞-∞∈ m

x 例题8 已知a =(cos α,sin α),b =(cos β,sin β),a 与b 之间有关系|k a +b |=3|a -k b |,其中k>0,

(1)用k 表示a ·b ;

(2)求a ·b 的最小值,并求此时a ·b 的夹角的大小。

解 (1)要求用k 表示a ·b ,而已知|k a +b |=3|a -k b |,故采用两边平方,得 |k a +b |2

=(3|a -k b |)2

k 2a 2

+b 2

+2k a ·b =3(a 2

+k 2

b 2

-2k a ·b ) ∴8k ·a ·b =(3-k 2

)a 2

+(3k 2

-1)b 2

a ·

b =k

k k 8)13()3(2

222b a -+-

∵a =(cos α,sin α),b =(cos β,sin β),∴a 2

=1, b 2

=1,

∴a ·b =k

k k 813322-+-=k k 41

2+

(2)∵k 2

+1≥2k ,即k k 412+≥k k 42=21,∴a ·b 的最小值为2

1

又∵a ·b =| a |·|b |·cos γ,|a|=|b|=1 ∴2

1

=1×1×cos γ。 ∴γ=60°,此时a 与b 的夹角为60°。

错误原因:向量运算不够熟练。实际上与代数运算相同,有时可以在含有向量的式子左右两边平方,且有

|a +b |2=|(a +b )2|=a 2+b 2+2a ·b 或|a |2+|b |2

+2a ·b 。 例题9 已知向量(cos ,sin )a αα=,(cos ,sin )b ββ=,25

a b -=. (Ⅰ)求cos()αβ-的值; (Ⅱ)若02

π

α<<

,02

π

β-

<<,且5

sin 13

β=-

,求sin α的值. 解(Ⅰ)

()()cos sin cos sin a b ααββ==,,,,

()cos cos sin sin a b αβαβ∴-=--,.

25

5

a b -=

, =

, 即 ()422cos 5αβ--=

. ()3cos 5

αβ∴-=.

(Ⅱ)0,0,0.2

2

π

π

αβαβπ<<

-

<<∴<-<

()3cos 5αβ-=,()4

sin .5αβ∴-=

5sin 13β=-,12

cos .13

β∴=

()()()sin sin sin cos cos sin ααββαββαββ∴=-+=-+-????

412353351351365

??=

?+?-= ???. 例题10 已知O 为坐标原点,点E 、F 的坐标分别为(-1,0)、(1,0),动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =?,1

()2

ON OA OF =

+,//AM ME . (Ⅰ)求点M 的轨迹W 的方程; (Ⅱ)点0(,)2

m

P y 在轨迹W 上,直线PF 交轨迹W 于点Q ,且PF FQ λ=,若12λ≤≤,数m 的围.

解:(Ⅰ)∵0MN AF ?=,1

()2

ON OA OF =+, ∴ MN 垂直平分AF .

又//AM ME ,∴ 点M 在AE 上,

∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,

∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 2

2

2

2

1b a c m =-=-.

∴ 点M 的轨迹W 的方程为22

2211

x y m m +=-(1m >).

(Ⅱ)设11(,)Q x y ∵ 0(

,)2

m

P y ,PF FQ λ=, ∴ 1011(1),2.

m

x y y λλ?-=-???-=? ∴ 1101(1),2

1.m x y y λλλ?=+-???

?=-??

由点P 、Q 均在椭圆W 上,

∴ 2

2

2

20

222211,41

1(1) 1.2(1)y m y m m

m λλλ?+=?-???+-+=?-? 消去0y 并整理,得2211m m m λ-+=-, 由22

1

121

m m m -+-≤≤及1m >,解得12m <≤. 基础练习题

1.设平面向量a =(-2,1),b =(λ,-1),若a 与b 的夹角为钝角,则λ的取值围是( )

A 、),2()2,21(+∞?-

B 、),2(+∞

C 、),21(+∞-

D 、)21,(--∞

答案:A

点评:易误选C ,错因:忽视a 与b 反向的情况。

2.O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足

),0[|

||

|(

+∞∈+

+=λλAC AB ,则P 的轨迹一定通过△ABC 的( )

(A)外心 (B)心 (C)重心 (D)垂心 正确答案:B 。 错误原因:对),0[|

||

|(

+∞∈+

+=λλAC AB |

|AB |

|AC +

与∠BAC 的角平分线有关。

3.若向量 a =(cos α,sin α) , b =()ββsin ,cos , a 与b 不共线,则a 与b 一定满足( )

A . a 与b 的夹角等于α-β

B .a ∥b

C .(a +b )⊥(a -b )

D . a ⊥b

正确答案:C 错因:学生不能把a 、b 的终点看成是上单位圆上的点,用四边形法则来处理问题。 4.已知O 、A 、B 三点的坐标分别为O(0,0),A(3,0),B(0,3),是P 线段AB 上且 AP =t AB (0≤t ≤1)则

OA ·OP 的最大值为

A .3

B .6

C .9

D .12

正确答案:C 错因:学生不能借助数形结合直观得到当|OP |cos α最大时,OA ·OP 即为最大。 5.在ABC ?中,?===60,8,5C b a ,则?的值为 ( )

A 20

B 20-

C 320

D 320-

错误分析:?==60C ,从而出错. 答案: B

略解: ?=120,

故?202185-=??

?

??-??=. 6.已知向量 a =(2cos ?,2sin ?),?∈(ππ

,2

), b =(0,-1),则 a 与 b 的夹角为( )

A .π3

2

-?

B .

2

π

+? C .?-

2

π D .?

正确答案:A 错因:学生忽略考虑a 与b 夹角的取值围在[0,π]。 7.如果,0a b a c a ?=?≠且,那么 ( )

A .b c =

B .b c λ=

C . b c ⊥

D .,b c 在a 方向上的投影相等

正确答案:D 。

错误原因:对向量数量积的性质理解不够。

8.已知向量(2,0),(2,2),(2cos )OB OC CA a a ===则向量,OA OB 的夹角围是( ) A 、[π/12,5π/12] B 、[0,π/4] C 、[π/4,5π/12] D 、 [5π/12,π/2] 正确答案:A

错因:不注意数形结合在解题中的应用。

9.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( )

① 存在一个实数λ,使a =λb 或b =λa ; ② |a ·b |=|a | |b |; ③

2

1

21y y x x =; ④ (a +b )//(a -b ) A 、1个 B 、2个 C 、3个 D 、4个 答案:C

点评:①②④正确,易错选D 。

10.以原点O 及点A (5,2)为顶点作等腰直角三角形OAB ,使

90=∠A ,则的坐标为( )。

A 、(2,-5)

B 、(-2,5)或(2,-5)

C 、(-2,5)

D 、(7,-3)或(3,7)

正解:B

设),(y x AB =,则由222

2

25||||y x AB OA +=+?= ①

而又由AB OA ⊥得025=+y x ②

由①②联立得5,25,2=-=-==y x y x 或。 )

,(-或52)5,2(-=∴ 误解:公式记忆不清,或未考虑到联立方程组解。 11.设向量),(),,(2211y x y x ==,则

2

121y y

x x =是//的( )条件。 A 、充要 B 、必要不充分

C 、充分不必要

D 、既不充分也不必要 正解:C 若

2

121y y

x x =则b a y x y x //,01221∴=-,若//,有可能2x 或2y 为0,故选C 。 误解:b a //?01221=-y x y x ?

2

121y y

x x =,此式是否成立,未考虑,选A 。 12.在?OAB 中,)sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA ,若5-=?OB OA ,

则OAB S ?=( )

A 、3

B 、

23 C 、35 D 、2

35 正解:D 。

∵5-=?OB OA ∴5cos ||||-=??V OB OA (LV 为OA 与OB 的夹角)

()()5cos sin 5)cos 5()sin 2(cos 22

222-=?+?

+V ββαα

∴2

1

cos =

V ∴23sin =V ∴235sin ||||21=??=?V S OAB

误解:C 。将面积公式记错,误记为V OB OA S OAB sin ||||??=?

13.设平面向量a )()1,()1,2(R b ∈-=-=λλ,,,若a 与b 的夹角为钝角,则

λ的取值围是

(A )

A 、),(),(∞+?-2221

B 、(2,+)∞

C 、(—),∞+21

D 、(-),2

1-∞

错解:C

错因:忽视使用0

14.设c b a ,,是任意的非零平面向量且互不共线,以下四个命题:

①()

0)(=??-??b a c c b a ②a b a b +>+ ③()()垂直不与c b a c a c b ??-?? ④若c b a b a 与则?⊥,不平行

其中正确命题的个数是

( ) A 、1个 B 、2个 C 、3个 D 、4个 正确答案:(B)

错误原因:本题所述问题不能全部搞清。

15.若向量a =)(x x 2,,b =)(2,3x -,且a ,b 的夹角为钝角,则x 的取值围是______________.

错误分析:只由b a

,的夹角为钝角得到,0

180时也有,0

正确解法: ,的夹角为钝角, ()?+-?=?∴x x x b a 23 04322

<+-=x x

解得0

4

>

x (1) 又由b a ,共线且反向可得3

1

-=x (2)

由(1),(2)得x 的围是 ?

????

-∞-31,??

?

??+∞??? ??-

,340,31 答案: ?

????

-∞-31,??

?

??+∞??? ??-

,340,31 . 16.已知平面上三点A 、B 、C 满足AB CA CA BC BC AB CA BC AB ?+?+?===则,5||,4||,3||的值等于 ( C )

A .25

B .24

C .-25

D .-24

17.已知AB 是抛物线)0(22

>=p py x 的任一弦,F 为抛物线的焦点,l 为准线.m 是过点A 且以向量

)1,0(-=为方向向量的直线.

(1)若过点A 的抛物线的切线与y 轴相交于点C ,求证:|AF|=|CF|;

(2)若B A p OB OA ,(02=+?异于原点),直线OB 与m 相交于点P ,求点P 的轨迹方程; (3)若AB 过焦点F ,分别过A ,B 的抛物线两切线相交于点T ,求证:,BT AT ⊥且T 在直线l 上. 解:(1)设A (),11y x ,因为导数p

x k p x

y AC 1,==

'所以,

则直线AC 的方程:).,0(:0),(111

1y C x x x p

x y y -=-=

-得令

由抛物线定义知,|AF|=1y +

2p ,又|CF|=2p -(-1y )=1y +2

p

,故|AF|=|CF|. (2)设),,(),,(),,(2211y x P y x B y x A

由04)(,0,02

2

221212

21212

=++∴=++=+?p p

x x x x p y y x x p

得2

212p x x -=. ①

直线OB 方程:,22

x p

x y =

② 直线m 的方程:1x x =, ③

由①②③得y =-p ,故点P 的轨迹方程为y =-p (x ≠0).

(3)设).,(),,(),,(002211y x T y x B y x A 则p

x k p x k BT AT 21,==

因为AB 是焦点弦,设AB 的方程为:,22

2py x p

kx y =+

=代入 得.,1,,0222122k k p x x p pkx x BT AT ⊥-=-=∴=--故于是

由(1)知直线AT 方程:.,,0110101011py py x x y x p

x

y y x p x y =--=∴-=

同理直线BT 方程:.,,022*******py py x x y x p

x

y y x p x y =--=∴-=

所以直线AB 方程:00py py x x =-,

又因为AB 过焦点,2

,2002p

y py p -==∴即,故T 在准线上. 18.如图,已知直线l 与半径为1的⊙D 相切于点C ,动点P 到直线l 的距离为d ,若.||2PD d = (Ⅰ)求点P 的轨迹方程;

(Ⅱ)若轨迹上的点P 与同一平面上的点G 、M 分别满足

0,3,2=?+?==PM GM PG GM PD MP DC GD ,

求以P 、G 、D 为项点的三角形的面积.

解:(Ⅰ)).1,0(2

2

|||,|2∈=∴

=

d PD PD d ∴点P 的轨迹是D 为焦点,l 为相应准线的椭圆.

由.1.1,2,1,222

====-=

=b c a c c

a a c e 于是解得又

以CD 所在直线为x 轴,以CD 与⊙D 的另一个交点O 为坐标原点建立直角坐标系.

∴所求点P 的轨迹方程为.12

22

=+y x (Ⅱ)∴==,2||,2GD DC GD G 为椭圆的左焦点. 又.0)(,0=+?∴=?+?PM PG GM PM GM PG GM

由题意,0,0≠+≠PM PG GM (否则P 、G 、M 、D 四点共线与已经矛盾) .||3||||.0,0)()(2

2

PD MP PG PG PM PM PG PG PM ==∴=-=+?-∴

又∵点P 在椭圆上, .22

3

||,22||,222||||====+∴

a 又 90,

,2||=∠?∴=PDG Rt PDG 为

.2

2

22221=??=

∴?PDG S 19.已知O 是△ABC 所在平面的一定点,动点P 满足 sin ||sin ||(

C

AC B

AB ++

+=λ,),0(+∞∈λ,则动点P 的轨迹一定通过△ABC 的 (D )

A .心

B .垂心

C .外心

D .重心

20.已知向量b a ,是两个不共线的非零向量, 向量c =

.则向量c 用向量b a ,一定可以表示为

(C )

A. b n a m c +=且1,,=+∈n m R n m .

B. ????-=||||b a c λ R ∈λ

C. ?

???+

=||||b a c λ R ∈λ D. ????-=||||b a λ R ∈<λλ,0, 或 ?

???+=||||b a λ R ∈>λλ,0

平面向量历年高考题汇编难度高

数 学 平面向量 平面向量的概念及其线性运算 1.★★(2014·辽宁卷L) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b∥c ,则a∥c ,则下列命题中真命题是 ( ) A .p ∨q B .p ∧q C .)()(q p ?∧? D .)(q p ?∨ 2.★★(·新课标全国卷ⅠL) 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与AC → 的夹角为________. 3.★★(2014·四川卷) 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( ) A .-2 B .-1 C .1 D .2 4. ★★ (2014·新课标全国卷ⅠW)设D 、E 、F 分别为△ABC 的三边BC 、CA 、AB 的中点,则=+FC EB ( ) A . B. 21 C. D. 2 1 5. ★★(2014福建W)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OD OC OB OA +++等于 ( ) A .OM B. OM 2 C. OM 3 D. OM 4 6. ★★(2011浙江L )若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的 平行四边形的面积为 1 2 ,则α与β的夹角θ的取值范围是 。 7. ★★(2014浙江 L )记,max{,},x x y x y y x y ≥?=?

最新全国卷-高考—平面向量试题带答案

5.平面向量(含解析) 一、选择题 【2015,2】2.已知点A (0,1),B (3,2),向量(4,3)AC =--,则向量BC =( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 【2014,6】设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+( ) A . B . 21 C .2 1 D . 二、填空题 【2017,13】已知向量()1,2a =-,(),1b m =,若向量a b +与a 垂直,则m = . 【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______. 【2012,15】15.已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________. 【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数, 若向量+a b 与向量k -a b 垂直,则k = . 2011—2017年新课标全国卷2文科数学试题分类汇编 4.平面向量 一、选择题 (2017·4)设非零向量,a b ,满足+=-a b a b 则( ) A .a ⊥b B. =a b C. a ∥b D. >a b (2015·4)向量a = (1,-1),b = (-1,2),则(2a +b )·a =( ) A. -1 B. 0 C. 1 D. 2 (2014·4)设向量b a ,满足10||=+b a ,6||=-b a ,则=?b a ( ) A .1 B .2 C .3 D .5 二、填空题 (2016·13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. (2013·14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?=uu u r uu u r _______. (2012·15)已知向量a ,b 夹角为45o,且|a |=1,|2-a b |b |= . (2011·13)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k = .

平面向量高考试题精选

平面向量高考试题精选(一) 一.选择题(共14小题) 1.(2015?河北)设D为△ABC所在平面内一点,,则() A. B. C. D. 2.(2015?福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21 3.(2015?四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6 4.(2015?安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是() A.||=1 B.⊥C.?=1D.(4+)⊥ 5.(2015?陕西)对任意向量、,下列关系式中不恒成立的是() A.||≤|||| B.||≤|||﹣||| C.()2=||2D.()?()=2﹣2 6.(2015?重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A. B. C. D.π 7.(2015?重庆)已知非零向量满足||=4||,且⊥()则的夹角为() A. B. C. D. 8.(2014?湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D 满足||=1,则|++|的取值范围是() A.[4,6] B.[﹣1,+1] C.[2,2] D.[﹣1,+1] 9.(2014?桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于() A.2 B. C. D.1 10.(2014?天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若?=1,?=﹣,则λ+μ=() A. B. C. D. 11.(2014?安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若?+?+?+?所有可能取值中的最小值为4||2,则与的夹角为() A. B. C. D.0

高考数学平面向量及其应用习题及答案 百度文库

一、多选题1.题目文件丢失! 2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ?≤ B .若a b c b ?=?且0b ≠,则a c = C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向 D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是 5,3??-+∞ ??? 3.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( ) A .2 AB AB AC B .2 BC CB AC C .2AC AB BD D .2 BD BA BD BC BD 4.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( ) A .8+33 B .83161+ C .8﹣33 D .83161- 5.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( ) A .2 2 OA OD ?=- B .2OB OH OE +=-

C .AH HO BC BO ?=? D .AH 在AB 向量上的投影为22 - 6.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形 7.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1 ()2 AD AB AC = + C .8BA BC ?= D .AB AC AB AC +=- 8.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b = B .a b = C .a 与b 的方向相反 D .a 与b 都是单位向量 9.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥c B .若PA PB PB P C PC PA ?=?=?,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向 D .若a ∥b ,则存在唯一实数λ使得a b λ= 10.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b += B .a b ⊥ C .() 4a b b +⊥ D .1a b ?=- 11.(多选)若1e ,2e 是平面α内两个不共线的向量,则下列说法不正确的是( ) A .()12,e e λμλμ+∈R 可以表示平面α内的所有向量 B .对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ有无数多对 C .1λ,1μ,2λ,2μ均为实数,且向量1112e e λμ+与2212e e λμ+共线,则有且只有一个实数λ,使() 11122122e e e e λμλλμ+=+ D .若存在实数λ,μ,使120e e λμ+=,则0λμ== 12.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( ) A .A B D C = B .AB D C = C .AB DC > D .BC AD ∥

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》专项训练及解析答案

新数学《三角函数与解三角形》高考知识点 一、选择题 1.在ABC ?中,060,10,A BC D ∠==是边AB 上的一点,2,CD CBD =?的面积为 1, 则BD 的长为( ) A .32 B .4 C .2 D .1 【答案】C 【解析】 1210sin 1sin 25 BCD BCD ???∠=∴∠= 2 2 2 2102210425 BD BD ∴=+-??? =∴=,选C 2.在ABC ?中,角,,A B C 的对边分别为,,a b c ,且ABC ?的面积25cos S C =,且 1,25a b ==,则c =( ) A .15 B .17 C .19 D .21 【答案】B 【解析】 由题意得,三角形的面积1 sin 25cos 2 S ab C C ==,所以tan 2C =, 所以5cos C = , 由余弦定理得2222cos 17c a b ab C =+-=,所以17c =,故选B. 3.如图,边长为1正方形ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至 BC ,在旋转的过程中,记([0,])2 ABP x x π ∠=∈,BP 所经过的在正方形ABCD 内的区 域(阴影部分)的面积为()y f x =,则函数()f x 的图像是( )

A . B . C . D . 【答案】D 【解析】 【分析】 根据条件列()y f x =,再根据函数图象作判断. 【详解】 当0,4x π?? ∈???? 时,()112y f x tanx ==??; 当,42x ππ?? ∈ ??? 时,()11112y f x tanx ==-??; 根据正切函数图象可知选D. 【点睛】 本题考查函数解析式以及函数图象,考查基本分析识别能力,属基本题. 4.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.

平面向量测试题,高考经典试题,附详细答案

平面向量高考经典试题 一、选择题 1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与 b A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与 b 垂直,则=a ( ) A .1 B C .2 D .4 3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ?+?=______; 答案:3 2 ; 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(, sin ),2 m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 5、(山东理11)在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???=

6、(全国2 理5)在?ABC 中,已知D 是AB 边上一点,若AD =2DB , CD =CB CA λ+3 1 ,则λ= (A) 3 2 (B) 3 1 (C) - 3 1 (D) - 3 2 7、(全国2理12)设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FC FB FA ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6 (C) 4 (D) 3 8、(全国2文6)在ABC △中,已知D 是AB 边上一点,若 1 23 AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .1 3 - D .2 3 - 9(全国2文9)把函数e x y =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x + B .e 2x - C .2 e x - D .2 e x + 10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 11、(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有 A 、1个 B 、2个 C 、3个 D 、4个 12、(福建理4文8)对于向量,a 、b 、c 和实数,下列命题中真命题是 A 若 ,则a =0或b =0 B 若 ,则λ=0或a =0 C 若=,则a =b 或a =-b D 若 ,则b =c 13、(湖南理4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条

全国卷2011-2017高考—平面向量试题带答案

新课标全国卷Ⅰ文科数学分类汇编 5.平面向量(含解析) 一、选择题 【2015,2】2.已知点A (0,1),B (3,2),向量(4,3)AC =--u u u r ,则向量BC =u u u r ( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 【2014,6】设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+FC EB ( ) A .AD B . AD 21 C .BC 2 1 D .BC 二、填空题 【2017,13】已知向量()1,2a =-r ,(),1b m =r ,若向量a b +r r 与a r 垂直,则m = . 【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______. 【2012,15】15.已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ||b =r _________. 【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = . 2011—2017年新课标全国卷2文科数学试题分类汇编 4.平面向量 一、选择题 (2017·4)设非零向量,a b ,满足+=-a b a b 则( ) A .a ⊥b B. =a b C. a ∥b D. >a b (2015·4)向量a = (1,-1),b = (-1,2),则(2a +b )·a =( ) A. -1 B. 0 C. 1 D. 2 (2014·4)设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=?b a ρρ( ) A .1 B .2 C .3 D .5 二、填空题 (2016·13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. (2013·14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?=uu u r uu u r _______.

平面向量测试题_高考经典试题_附详细答案

平面向量高考经典试题 海口一中高中部黄兴吉同学辅导内部资料 一、选择题 1.(全国1文理)已知向量(5,6)a =-r ,(6,5)b =r ,则a r 与b r A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 解.已知向量(5,6)a =-r ,(6,5)b =r ,30300a b ?=-+=r r ,则a r 与b r 垂直,选A 。 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1 B .2 C .2 D .4 【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得: 2(3,)(1,)303n n n n ?-=-+=?=±, 2=a 。 3、(广东文4理10)若向量,a b r r 满足||||1a b ==r r ,,a b r r 的夹角为60°,则a a a b ?+?r r r r =______; 答案:3 2 ; 解析:1311122 a a a b ?+?=+??=r r r r , 4、(天津理10) 设两个向量22 (2,cos )a λλα=+-r 和(,sin ),2 m b m α=+r 其中,,m λα为 实数.若2,a b =r r 则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 【答案】A 【分析】由22 (2,cos )a λλα=+-r ,(,sin ),2 m b m α=+r 2,a b =r r 可得 2222cos 2sin m m λλαα+=??-=+?,设k m λ =代入方程组可得222 22cos 2sin km m k m m αα+=??-=+?消去m 化简得2 2 22cos 2sin 22k k k αα??-=+ ? --?? ,再化简得

(word完整版)四年级《三角形试题分析及易错题分析》

四年级数学三角形考题分析与易错题分析 以盘龙区小学2016学年下学期期末四年级数学试题进行分析:三角形这一单元知识占11%,所考知识点主要有:锐角三角形、直角三角形、钝角三角形,等腰三角形等边三角形的定义,三角形三边的关系,高的做法,会求三角形和多边形的内角和。如: 近三年考题分析 4、请你想办法求出下面这个多边形的内角和。

考查目的:三角形内角和和钝角三角形的特征。 15.画出下面三角形指定边上的高。 考查目的:三角形高的含义,会正确画不同三角形指定底边上的高。 掌握高的方法。 16、等腰三角形的一个内角是60°,其他两个内角各是多少度?这是()三角形。考查目的:综合三角形内角和、等腰三角形的特点及等边三角形的特点解决问题。

三角形单元检测卷 一、填空(40分) 个钝角三角形,()个等腰三角形。 7、在一个三角形的三个角中,一个是50度,一个是80度,这个三角形既是()三角形,又是()三角形。 二、选择(18分) 1.下面第()组中的三根小棒不能拼成一个三角形。 2.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是()。 A.3 cm B.4 cm C.7 cm 3.下面各组角中,第()组中的三个角能组成三角形。 A.60°,70°,90° B.50°,50°,50° C.80°,95°,5° 4.钝角三角形的两个锐角之和()90°。 A.大于 B.小于 C.等于 5、一个等腰三角形中,其中一底角是75度,顶角是()。 A、75度 B、45度 C、30度 D、60度 6、下面长度的小棒中(单位:cm),能围成三角形的是()。 A. 3.5、7.5、4 B . 5、2.8、6 C. 10、4.2、5.6 三、判断(8分) 1、一个内角是80度的等腰三角形,一定是一个钝角三角形。() 2、等腰三角形一定是等边三角形。() 3、等腰三角形一定是锐角三角形。()

2020年高考数学平面向量专题复习(含答案)

2020年高考数学平面向量专题练习 一、选择题 1、P是双曲线上一点,过P作两条渐近线的垂线,垂足分别为A,B 求的值() A. B. C. D. 2、向量,,若,且,则x+y的值为() A.-3 B.1 C.-3或1 D.3或1 3、已知向量满足,若,则向量在方向上的投影为A. B. C.2 D.4 4、.如图,为等腰直角三角形,,为斜边的高,为线段的中点,则 () A.B. C.D. 5、在平行四边形中,,若是的中点,则() A. B. C. D. 6、已知向量,且,则()

A. B. C. D. 7、已知是边长为2的等边三角形,D为的中点,且,则( ) A. B.1 C. D. 3 8、在平行四边形ABCD中,,则该四边形的面积为 A. B. C.5 D.10 9、下列命题中正确的个数是() ⑴若为单位向量,且,=1,则=;⑵若=0,则=0 ⑶若,则;⑷若,则必有;⑸若,则 A.0 B.1 C.2 D.3 10、如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为() 二、填空题 11、已知向量与的夹角为120°,且,则____. 12、若三点满足,且对任意都有,则的最小值为________. 13、已知,,则向量在方向上的投影等于___________. 14、.已知,是夹角为的两个单位向量,,,若,则实数的值为 __________.

15、已知向量与的夹角为120°,,,则________. 16、已知中,为边上靠近点的三等分点,连接为线段的中点,若 , 则__________. 17、已知向量为单位向量,向量,且,则向量的夹角为. 18、在矩形ABCD中,已知E,F分别是BC,CD上的点,且满足,。若 (λ,μ∈R),则λ+μ的值为。 三、简答题 19、已知平面直角坐标系中,向量,,且. (1)求的值;(2)设,求的值. 20、已知向量=(sin,cos﹣2sin),=(1,2). (1)若∥,求的值; (2)若,0<<,求的值. 21、已知向量,.(1)若在集合中取值,求满足的概率;(2)若 在区间[1,6]内取值,求满足的概率. 22、在平面直角坐标系xOy中,已知向量, (1)求证:且; (2)设向量,,且,求实数t的值.

高考数学平面向量及其应用习题及答案百度文库

一、多选题1.题目文件丢失! 2.若a →,b →,c → 是任意的非零向量,则下列叙述正确的是( ) A .若a b →→ =,则a b →→ = B .若a c b c →→→→?=?,则a b →→ = C .若//a b →→,//b c →→,则//a c →→ D .若a b a b → → → → +=-,则a b →→ ⊥ 3.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A b B a =,则该三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 4.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且 02 C << π ,4b =,则以下说法正确的是( ) A .3 C π = B .若72 c = ,则1cos 7B = C .若sin 2cos sin A B C =,则ABC 是等边三角形 D .若ABC 的面积是4 5.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点 时,点P 的坐标为( ) A .4,23?? ??? B .4,33?? ??? C .()2,3 D .8 ,33?? ??? 6.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 7.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立

历年平面向量高考试题汇集学习资料

历年平面向量高考试 题汇集

高考数学选择题分类汇编 1.【2011课标文数广东卷】已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实 数,(a +λb)∥c ,则λ=( ) A.14 B .1 2 C .1 D .2 2.【2011·课标理数广东卷】若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c·(a +2b)=( ) A .4 B .3 C .2 D .0 3.【2011大纲理数四川卷】如图1-1,正六边形ABCDEF 中,BA →+CD →+EF →= ( ) A .0 B.BE → C.AD → D.CF → 4.【2011大纲文数全国卷】设向量a ,b 满足|a|=|b|=1,a·b =-1 2,则|a +2b|=( ) A. 2 B. 3 C. 5 D.7 . 5.【2011课标文数湖北卷】若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A .-π4 B.π6 C.π4 D.3π4 6.【2011课标理数辽宁卷】若a ,b ,c 均为单位向量,且a·b =0,(a -c)·(b -c)≤0,则|a +b -c|的最大值为( ) A.2-1 B .1 C. 2 D .2 【解析】 |a +b -c|=(a +b -c )2=a 2+b 2+c 2+2a·b -2a·c -2b·c ,由于a·b =0,所以上式=3-2c·(a +b ),又由于(a -c)·(b -c)≤0,得(a +b)·c ≥c 2=1,所以|a +b -c|=3-2c·(a +b )≤1,故选B. 7.【2011课标文数辽宁卷】已知向量a =(2,1),b =(-1,k),a·(2a -b)=0,则k =( ) A .-12 B .-6 C .6 D .12

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》难题汇编及答案

【高中数学】单元《三角函数与解三角形》知识点归纳 一、选择题 1.若,2παπ??∈ ??? ,2cos2sin 4παα?? =- ???,则sin 2α的值为( ) A .7 8 - B . 78 C .18 - D . 18 【答案】A 【解析】 【分析】 利用二倍角公式及两角差的正弦公式化简得到cos sin αα+=,再将两边平方利用二倍角正弦公式计算可得; 【详解】 解:因为2cos2sin 4παα?? =- ??? 所以( ) 22 2cos sin sin cos cos sin 4 4 π π αααα-=- 所以()())2cos sin cos sin cos sin 2 αααααα-+= - ,cos sin 02παπαα??∈-≠ ??? Q , 所以cos sin 4 αα+= 所以()2 1cos sin 8αα+=,即22 1cos 2cos sin sin 8αααα++=,11sin 28 α+= 所以7sin 28 α=- 故选:A 【点睛】 本题考查两角和差的正弦公式、二倍角公式的应用,属于中档题; 2.已知ABC V 的三条边的边长分别为2米、3米、4米,将三边都增加x 米后,仍组成一个钝角三角形,则x 的取值范围是( ) A .102 x << B . 1 12 x << C .12x << D .01x << 【答案】D 【解析】 【分析】

根据余弦定理和三角形三边关系可求得x 的取值范围. 【详解】 将ABC V 的三条边的边长均增加x 米形成A B C '''V , 设A B C '''V 的最大角为A '∠,则A '∠所对的边的长为()4x +米,且A '∠为钝角,则 cos 0A '∠<, 所以()()()()()2222342340x x x x x x x ?+++<+? +++>+??>? ,解得01x <<. 故选:D. 【点睛】 本题考查利用余弦定理和三角形三边关系求参数的取值范围,灵活利用余弦定理是解本题的关键,考查计算能力,属于中等题. 3.小赵开车从A 处出发,以每小时40千米的速度沿南偏东40?的方向直线行驶,30分钟后到达B 处,此时,小王发来微信定位,显示他自己在A 的南偏东70?方向的C 处,且A 与C 的距离为15 3千米,若此时,小赵以每小时52千米的速度开车直线到达C 处接小王,则小赵到达C 处所用的时间大约为( ) ( ) 7 2.6≈ A .10分钟 B .15分钟 C .20分钟 D .25分钟 【答案】B 【解析】 【分析】 首先根据题中所给的条件,得到30BAC ∠=?,20AB =,153AC =,两边和夹角,之后应用余弦定理求得5713BC =≈(千米),根据题中所给的速度,进而求得时间,得到结果. 【详解】 根据条件可得30BAC ∠=?,20AB =,153AC =, 由余弦定理可得2222cos30175BC AB AC AB AC ?=+-??=, 则5713BC =≈(千米),

平面向量高考真题精选一

平面向量高考真题精选(一) 一.选择题(共20小题) 1.(2017?新课标Ⅱ)设非零向量,满足|+|=|﹣|则() A.⊥B.||=||C.∥D.||>|| 2.(2017?新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则?(+)的最小值是() A.﹣2 B.﹣ C.﹣ D.﹣1 3.(2017?浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=?,I2=?,I3=?,则() A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3 4.(2017?新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为() A.3 B.2 C.D.2 5.(2016?四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是() A.B.C. D. 6.(2016?新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=() A.﹣8 B.﹣6 C.6 D.8 7.(2016?天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、

BC的中点,连接DE并延长到点F,使得DE=2EF,则?的值为()A.﹣ B.C.D. 8.(2016?山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为() A.4 B.﹣4 C.D.﹣ 9.(2016?四川)在平面内,定点A,B,C,D满足==,?=?=?=﹣2,动点P,M满足=1,=,则||2的最大值是() A.B.C. D. 10.(2016?新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120° 11.(2015?新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B. C.D. 12.(2015?新课标Ⅰ)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=() A.(﹣7,﹣4)B.(7,4) C.(﹣1,4)D.(1,4) 13.(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.6 14.(2015?山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2 D.a2 15.(2015?四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N

高考平面向量及其应用专题及答案百度文库

一、多选题 1.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是 ( ) A .() 0a b c -?= B .() 0a b c a +-?= C .()0a c b a --?= D .2a b c ++= 2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ?≤ B .若a b c b ?=?且0b ≠,则a c = C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向 D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是 5,3??-+∞ ??? 3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且 02 C << π ,4b =,则以下说法正确的是( ) A .3 C π = B .若72 c = ,则1 cos 7B = C .若sin 2cos sin A B C =,则ABC 是等边三角形 D .若ABC 的面积是4 4.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知 cos cos 2B b C a c =-, ABC S = △b = ) A .1cos 2 B = B .cos 2 B = C .a c += D .a c +=5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=

平面向量及其应用高考真题复习doc

一、多选题 1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 2.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=, 2QA QB =,记APQ 的面积为S ,则下列说法正确的是( ) A .//P B CQ B .2133 BP BA BC = + C .0PA PC ?< D .2S = 3.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 4.已知点()4,6A ,33,2B ??- ??? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2?? ??? C .14,33?? - - ??? D .(7,9) 5.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( ) A .1122AE A B A C → →→ =+ B .2AB EF →→ = C .1133 CP CA CB → →→ =+ D .2233 CP CA CB → →→ =+ 6.在ABC 中,AB =1AC =,6 B π =,则角A 的可能取值为( ) A . 6 π B . 3 π C . 23 π D . 2 π 7.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立 D .在ABC 中, sin sin sin +=+a b c A B C 8.下列关于平面向量的说法中正确的是( )

平面向量高考试题含详细答案

6 . ( 2015?重庆)若非零向量 S 满足|叫 --I - 夹角为( ) 7T ~2 C . 平面向量高考试题精选(一) 一 ?选择题(共14小题) 1. ( 2015?可北)设D ABC 所在平面内一点,’-:’丨,则( ) 2.( 2015?畐建)已知忑匚心 I A B 1^-- I AC I 二t ,若P 点是△ ABC 所在平面内一点, 且7p- 4-4^-,则PB-PC 的最大值等于( ) |AB| |AC| A . 13 B . 15 C . 19 D . 21 3. (2015?四川)设四边形 ABCD 为平行四边形,『:|=6, $ >|=4,若点M 、N 满足卩", 则川-【」;=( ) A . 20 B . 15 C . 9 D . 6 4. (2015?安徽)△ ABC 是边长为2的等边三角形,已知向量 …,满足「丨,=2“,U 「=2i+.?, 则下列结论正确的是( ) A .卩 |=1 B . -ah C . ?,=1 D . (4 |+[ ■)丄 5. ( 2015?陕西)对任意向量 I 、烏下列关系式中不恒成立的是( ) A .丨「忡计| '| B .丨-:冋十卩,|| ―* ―? —? ――* —S- —* C .(日 + b ) 2=|旦+ b |2 D . (n+b ) ? (,-¥)=耳2—H 2 A . B .

7. ( 2015?重庆)已知非零向量 辽, b 满足l b |叫|,且且 丄 ( 2 a + b )则呂与b 的夹角 为( ) A 7T A.— B . — C . — D . — 3 2 3 6 & ( 2014?湖南)在平面直角坐标系中, O 为原点,A (- 1, 0), B (0 ,(5), C ( 3, 0), 动点D 满足「|=1,则| ;+飞+ 一丁|的取值范围是( ) A ? [4, 6] B . [ . - 1 , l'i+1] C . [2 一;,2 ? ] D . [. - - 1 , +1] 9. ( 2014?桃城区校级 模拟)设向量;,E , 7满足 |十币|二 1,二?二—斗 v ;, g ■;> =60°则|岀的最大值等于( ) A . 2 B . C ..二 D . 1 中的最小值为4|.『,则d 与「的夹角为( ) (1, 2), b = (4, 2), C =m 3+bi (m€R ),且 d 与占的夹角等 —? — 于 与?■的夹角,贝U m=( ) A . - 2 B . - 1 C . 1 D . 2 13. (2014?新课标I )设D , E , F 分别为△ ABC 的三边BC , CA , AB 的中点,则卜?+卜’= 10. 上, 11. (2014?安徽)设1丨,为非零向量,|l ,|=2|.i|,两组向量??-.,「,「,― <■和 ?」,丁;,均由2个:和2个排列而成,若 + 巧 12. (2014?四川)平面向量?■<= (2014?天津)已知菱形 ABCD 的边长为2, / BAD=120 °点E 、F 分别在边 BC 、DC 廿尸( B . D .

【精选】八年级数学三角形解答题易错题(Word版 含答案)

【精选】八年级数学三角形解答题易错题(Word 版 含答案) 一、八年级数学三角形解答题压轴题(难) 1.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动. (1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小. (2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值. (3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数. 【答案】(1)135°;(2)67.5°;(3)60°, 45° 【解析】 【分析】 (1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1 ABE ABO 2 ∠=∠,由三角形内角和定理即可得出结论; (2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=? ,故PAB MBA 270∠+∠=?,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠= ∠,1 ABC ABM 2 ∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知 CDE DCE 112.5∠+∠=?,进而得出结论; (3))由∠BAO 与∠BOQ 的角平分线相交于E 可知 1EAO BAO 2∠=∠,1 EOQ BOQ 2 ∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论. 【详解】 (1)∠AEB 的大小不变, ∵直线MN 与直线PQ 垂直相交于O ,

相关文档 最新文档