文档库 最新最全的文档下载
当前位置:文档库 › 常用声学基础知识

常用声学基础知识

音质评价是专业人士的基本功之一。主观评价硬件和软件,也是最能体现专业水平的标志。声音所反映的内容往往是清晰的、具体的和客观的,但音质和音色却极为抽象、主观和不便交流。要搞好音质的评价,感觉就需要约定、归纳、升华。正如味觉是约定俗成的,大家都说糖是甜的,于是人们就把吃糖的感觉称作“甜”,再遇到这种味觉的东西,即便它不是糖大家也说是甜的。

音质评价的术语很多,丰富中也显繁杂,必须抓住主要的和关键的加以规范,才方便我们的表现和交流。

1.清晰与浑浊音响系统发出的声音要令人感到清晰,频率响应要宽而均匀,尤其是中高频有密度,混响适当,能够较好地分辨出乐器的音色和位置,反之便叫做浑浊。

2.圆润与发毛圆润是指失真,特别是中高频失真极小的声音,这类声音感觉愉快、悦耳。低音不浑浊,中音不生硬,高音不剌耳。发毛与圆润相对,主要感觉是声音粗糙,有可闻的失真。声音中如果有5%的失真,一般人就有发毛的感觉,专业人士可以听至3%。

3.丰满与干瘪声音厚实、响度大,中高频量感好,混响较足,瞬态响应好叫做丰满,反之则为干瘪。

4.明亮与灰暗明亮是指在整个声域内高、中、低音平衡的基础上,中高音略微突出,而且有丰富的谐音,混响适度,失真小。灰暗则指严重缺乏中高音,低音松弛,解析力差。

5.宽广与单薄宽广的声音频率响应好,高音明亮,低音充足,单薄的声音往往白缺乏低音或高音。

6.干与湿主要指混响效果。混响时间短、深度不足表现为干。混响过分,表现为湿。声音的干湿有时是由软件所决定的,也可由听音环境引起。

7.现场感声音明亮、扩散好,有一定的混响,特别是800~5000Hz内声音较为密集,最接近于音乐厅的效果,称为现场感好。

8.平衡感频率范围宽,尤其是声箱各单元频率的衔接平滑,无凹凸,整个声音融合、宽广,听起来轻松、愉快,称为平衡。

9.冷暖感声音的冷暖感有较大的个体差异。冷的声音失真极小,非常平衡,器材有很好的物理指标。而暖的声音是在声音平衡、失直较小的基础上,更带一些圆润、丰满的个性。一般采用晶体管放大器的声音偏冷一些,电子管则有迷人的暖色。声音的冷艳与温暖都不是贬义词,偏爱哪种音色因人而异。

在音质评价术语中,还有一些颇具针对性的字眼,如干净表示信噪比高,音乐信号之间相互干扰小:声音飘,反映声音不固定,混响过分:发沙,指有瞬失真存在,高次谐波多;发闷,指缺乏中高音:尖、粗反映了频率响应不均匀等等。

对音质的感觉评价,有时受到了的年龄、身体状况、心理状态、听音环境等方面的影响。等响度,这个人们生理上固有的因素也是应当十分重视的。只有声压达到90db时,人们对于高、中、低音响度上的感觉才是一致的,低于这一声压,人耳对高音和低音就感觉迟钝。为此,一些放大器中都加有等响度电路,用以补偿人耳的这一缺陷。当然,鄣质的评价最好是在规定的声压下进行。

音频测试信号频率说明表

音频测试信号频率说明表》频率说明 <80Hz 80Hz以下主要是重放音乐中以低频为主的打击乐器,例如大鼓、定音鼓,还有钢琴、大提琴、大号等少数存在极低频率的乐器,这一部分如果有则好,没有对音乐欣赏的影响也不是很大。这一部分要重放好是不容易的,对器材的要求也较高。许多高级的器材,为了表现好80(或80左右)Hz 以上的频段的音乐,宁愿将80(或80左右)Hz以下的频率干脆切除掉,以免重放不好,反而影响主要频段的效果。极低频20Hz为人耳听觉下限,可测试您的器材低频重放下限,低频中的25Hz、31.5Hz、Hz、40Hz、50Hz和63Hz是许多音箱的重放下限,如果您的音箱在这些频率中某处声音急剧下降,则表明这个频率就是您的音箱低频重放下限。 80-160Hz 在80-160Hz频段的声音主要表现音乐的厚实感,音响在这部分重放效果好的话,会感到音乐厚实、有底气。这部分表现得好的话,在80Hz以下缺乏时,甚至不会感到缺乏低音。如果表现不好,音乐会有沉闷感,甚至是有气无力。是许多低音炮音箱的重放上限,具此可判断您的低音炮音箱频率上限。 300-500Hz 在300-500Hz频段的声音主要是表现人声的(唱歌、朗诵),这个频段上可以表现人声的厚度和力度,好则人声明亮、清晰,否则单薄、混浊。 800Hz 800Hz这段一般设备都容易播好,但是要注意不要过多。这段要是过多的话会感到音响的频响变窄,高音缺乏层次,低频丰满度不够。 1000Hz 1 kHz是音响器材测试的标准参考频率,通常在音响器材中给出的参数是在1 kHz下测试。 1200Hz 1.2kHz可以适当多一点,但是不宜超过3dB,可以提高声音的明亮度,但是,过多会是声音发硬。 2000-4000Hz 2~4kHz对声音的亮度影响很大,这段声音一般不宜衰减。这段对音乐的层次影响较大,有适当的提升可以提高声音的明亮度和清晰度,但是在4kHz时不能有过多的突出,否则女声的齿音会过重。 8000-12000Hz 8~12kHz是音乐的高音区,对音响的高频表现感觉最为敏感。适当突出(5dB以下)对音响的的层次和色彩有较大帮助,也会让人感到高音丰富。但是,太多的话会增加背景噪声,例如:系统(声卡、音源)的噪声会被明显地表现出来,同时也会让人感到声音发尖、发毛。如果这段缺乏的话,声音将缺乏感染力和活力。 14000Hz 14kHz以上为音乐的泛音区,如果缺乏,声音将缺乏感染力和高贵感,例如小提琴将没有“松香味”。这一部分也不宜过多,基本平直或稍有衰减(不超过-3dB)即可。 20000Hz 20 kHz 为人耳听觉上限,可测试您的器材高频重放上限。16 kHz-20 kHz可能在一些器材中消失,此时有可能是您的器材无法重放此段频率,如果您是年纪较大者,也有可能是您的听觉衰减所至。正弦波扫频信号 20Hz-20kHz正弦波

扫频信号是从20Hz到20kHz频率自动平滑改变播放,通过播放此段测试信息可快速判断何处频率存在问题。如觉得某一频段特别刺耳或特别弱,则表明器材频率响应不直,可对器材中的每一环节进行分析,找出有问题的器材;如器材无问题,可能是该频带引起室内产生驻波,导致共振,您可通过移动音箱,调整音箱摆位看能否有所改善。

音响发烧友对喇叭线的选择大有讲究,曾经听说过不乏有人花一万多元买一条线的。喇叭线的另外一个极端是随便找一条电线连上,出声就行。让我们离开这两个极端,从技术的角度看喇叭线的选择。过细的导线显然不会有好结果,因为细线的电阻大,更多的功率将消耗在导线的电阻上,低音的损失尤其严重。过粗的导线虽然电阻小,但是造成材料和金钱的浪费。通常认为导线上的损失(插入损耗)在0.5dB以下是可以容忍的。从功放输出到音箱的这部分电路中,喇叭的阻抗,导线的长度,导线的粗细都很重要,一般的做法是根据导线长度和喇叭阻抗来推算出导线的粗细。下面的数字显示100英尺(约30米)导线的线径、扬声器阻抗和插入损耗之间的关系。例如30米18号线,4欧姆阻抗扬声器,插入损耗是2.5dB,够大的了。大家知道,3dB的损失就意味着功放的输出损失一半! 10 AWG: 4 Ohm = .44 dB, 8 Ohm = .22 dB, 16 Ohm = .11 dB 12 AWG: 4 Ohm = .69 dB, 8 Ohm = .35 dB, 16 Ohm = .18 dB 14 AWG: 4 Ohm = 1.07 dB, 8 Ohm = .55 dB, 16 Ohm = .28 dB 16 AWG: 4 Ohm = 1.65 dB, 8 Ohm = .86 dB, 16 Ohm = .44 dB 18 AWG: 4 Ohm = 2.49 dB, 8 Ohm = 1.33 dB, 16 Ohm = .69 dB 下面的数据是JBL提出的建议,一些工程师认为过于保守,我们不妨把它当做最低标准看待(原来的英尺距离已经换算为米)。• 3米, 4, 8 & 16 Ohm 负载 = 20 AWG • 7.6米, 4 Ohm 负载 = 15 - 20 AWG • 7.6米, 8 & 16 Ohm 负载 = 20 AWG • 15.24米, 4 Ohm 负载 = 10 - 15 AWG • 15.24米, 8 Ohm 负载 = 15 AWG • 15.24米, 16 Ohm 负载 = 15 - 20 AWG • 30米, 4 Ohm 负载 = 10 AWG • 30米, 8 Ohm 负载 = 10 - 15 AWG • 30米, 16 Ohm 负载 = 15 - 18 AWG • 45.72米, 4 Ohm 负载 = 8 AWG • 45.72米, 8 Ohm 负载 = 12 AWG • 45.72米, 16 Ohm 负载 = 15 AWG • 60米, 4 Ohm 负载 = 5 - 8 AWG • 60米, 8 Ohm 负载 = 10 AWG • 60米, 16 Ohm 负载 = 10 - 15 AWG 在功率大,距离长的场合,一定不要在喇叭线上吝啬,试想1000瓦功率的输出,如果有很小的0.5 dB插入损耗,结果是丢失100瓦的输出,太划不来。注:本文中的AWG——American Wire Gauge(美国线径标准)是国际通用的线规,为了帮助大家对线规有进一步的了解,特附上AWG与直径、电阻率对照表。

声学基础知识

1、人耳能听到的频率范围是20—20KHZ。

2、把声能转换成电能的设备是传声器。

3、把电能转换成声能的设备是扬声器。

4、声频系统出现声反馈啸叫,通常调节均衡器。

5、房间混响时间过长,会出现声音混浊。

6、房间混响时间过短,会出现声音发干。

7、唱歌感觉声音太干,当调节混响器。

8、讲话时出现声音混浊,可能原因是加了混响效果。

9、声音三要素是指音强、音高、音色。

10、音强对应的客观评价尺度是振幅。

11、音高对应的客观评价尺度是频率。

12、音色对应的客观评价尺度是频谱。

13、人耳感受到声剌激的响度与声振动的频率有关。

14、人耳对高声压级声音感觉的响度与频率的关系不大。

15、人耳对中频段的声音最为灵敏。

16、人耳对高频和低频段的声音感觉较迟钝。

17、人耳对低声压级声音感觉的响度与频率的关系很大。

18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。

19、等响曲线中,每条曲线上标注的数字是表示响度级。

20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。

21、响度级的单位为phon。

22、声级计测出的dB值,表示计权声压级。

23、音色是由所发声音的波形所确定的。

24、声音信号由稳态下降60dB所需的时间,称为混响时间。

25、乐音的基本要素是指旋律、节奏、和声。

26、声波的最大瞬时值称为振幅。

27、一秒内振动的次数称为频率。

28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。

29、人耳对1~3KHZ的声音最为灵敏。

30、人耳对100Hz以下,8K以上的声音感觉较迟钝。

31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用。

32、观众席后侧的反射声对原发声起回声作用,属有害反射作用。

33、声音在空气中传播速度约为340m/s。

34、要使体育场距离主音箱约34m的观众听不出两个声音,应当对观众附近的补声音箱加0.1s延时。

35、反射系数小的材料称为吸声材料。

36、透射系数小的材料称为隔声材料。

37、透射系数大的材料,称为透声材料。

38、全吸声材料是指吸声系数α=1。

39、全反射材料是指吸声系数α=0。

40、岩棉、玻璃棉等材料主要吸收高频和中频。

41、聚氨酯吸声泡沫塑料主要吸收高频和中频。

42、薄板加空腔主要吸收低频。

43、薄板直接钉于墙上吸声效果很差。

44、挂帘织物主要吸收高、中频。

45、粗糙的水泥墙面吸声效果很差。

46、人耳通过声源信号的强度差和时间差,可以判断出声源的空间方位,称为双耳效应。

47、两个声音,一先一后相差5ms--50ms到达人耳,人耳感到声音是来自先到达声源的方位,称为哈斯效应。

48、左右两个声源,声强级差大于15dB,听声者感到声源是在声强级大的声源方位,称为德波埃效应。

49、一个声音的听音阈因为其它声音的存在而必须提高,这种现象称为掩敝效应。

50、厅堂内某些位置由于声干涉,使某些频率相互抵消,声压级降低很多,称为死点。

51、声音遇到凹的反射面,造成某一区域的声压级远大于其它区域称为声聚焦。

52、声音在室内两面平行墙之间来回反射产生多个同样的声音,称为颤动回声。

53、由于反射使反射声与直达声相差50ms以上,会出现回声。

54、房间被外界声音振动激发,从而按照它本身的固有频率振动,称为房间共振。

55、房间出现几个共振频率相同的重叠现象,称为共振频率的简并。

56、由于简并等原因使原声音信号频谱发生改变而被赋予外加的音色导致失真,称为声染色。

57、声场中直达声声能密度等于混响声声能密度的点与声源的距离称为混响半径。

58、听音点在混响半经以内时,直达声起主要作用。

59、听音点在混响半经以外时混响声起主要作用。

60、声源振动使空气产生附加的交变压力,称为声波。

61、质点振动方向与波的传播方向相垂直,称为横波。

62、质点振动方向与波的传播方向相平行,称为纵波。

63、一般点声源在空间幅射的声波,属于球面波。

64、声波在不同物质中传播,速度最快的是金属。

65、声波在不同物质中传播速度最慢的是空气。

66、声波在不同物质中传播,其速度快慢依次为金属>木材>水>空气。

67、回声的产生是由于反射声与直达声相差50ms以上。

68、颤动回声的产生是由于声音在两个平行光墙之间来回反射。

69、声聚焦的产生是由于声音遇到凹的反射面。

70、声扩散的产生是由于声音遇到凸的反射面。

71、在礼堂某坐位听到台上讲话变成两个重复的声音,其可能原因是由于反射声与直达声相差50ms 以上。

72、人耳对不同频率的听觉特性是对中音最敏感,其次是高音,频率越低越不敏感。

73、不同频率声波的指向性特点为高音指向性强,低音指向性弱。

74、不同频率声波的绕射能力为低音容易绕射,高音不易绕射。

75、音箱布局通常的做法是高音音箱挂高,并调好角度;低音音箱靠近地面。

76、厅堂低频混响过长,较有效的措施是墙上装带空腔的薄板。

77、隔音效果最好的材料是双层砖墙,中间留空气层。

78、50HZ非正弦周期信号,其4次谐波为200HZ

79、100HZ非正弦周期信号的3次谐波为300HZ。

80、300HZ非正弦周期信号的5次谐波为1500HZ。

81、80HZ非正弦周期信号的5次谐波为400HZ。

82、要使体育场距离主音箱约17m的观众听不出两个声音,应当对观众附近的补声音箱加50ms延时。

83、均衡器按63、125、250、500、1K、2K、4K、8K、16K划分频段,是1/1倍频程划分。

84、均衡器按50、200、800、3.2K、12K、划分频段,是4倍频程划分。

85、均衡器按40、50、63、80、100、125、160、200、250、315、400…20K划分频段,是1/3倍频程划分。

86、最佳混响时间选择最长的场所是音乐厅。

87、最佳混响时间选择最短的场所是多轨分期录音棚。

88、适宜设计混响时间可调节的场所是多功能厅。

89、赛宾公式适用于计算吸声系数较小的房间的混响时间。

90、艾润公式适用于计算各类房间的混响时间。

91、赛宾公式的内容为:混响时间等于0.161X房间容积/房间表面积X吸声系数。

92、为减少房间的简并现象,避免声染声,房间最佳的长:宽:高比例为2:3:5。

93、在大型剧场中,最易听到回声的坐位是前座。

94、解决大型剧场前座观众听到回声的主要方法是观众席后墙加强吸声。

95、分贝的正确写法是dB。

96、音乐简谱中的1与ⅰ之间相距一个倍频程。

97、音乐简谱中的1与2之间相距1度。

98、声速C、声波频率?、声波波长λ,其间关系是C=fxλ。

99、声波频率?与声波周期Τ的关系是f=1/T。

几种曲型人声的调音手法

对主持人的调音

主持人多为小姐,其语音特性是清晰流畅,富于表情。她可以影响观众的情绪,因此要把她的音色调好。

低语调型:轻声细语、感情细腻,可采取近距离拾音,话筒与口型很近,这样可增加亲切感,可拾取纤细、微弱的声调。其缺点是存在近讲效应,低频过强。

具体处理手段:

要衰减LF:在100Hz附近衰减6dB左右,最大可衰减到10dB。

对于MID:在250Hz-2kHz提升3-6dB。250Hz-2kHz是语言的重要频段。

对HF:6KHz以上频段衰减3-6dB,以减小高频噪声

主持人的话筒不要使用效果处理器进行混响(REV)和回声(ECHO)处理,否则会失去真实感和亲切感。

2:对普通人的调音:

在歌厅里,有一些歌唱爱好者和业余歌手,也有一些人仅是娱乐消遗,他们多为自己演唱。其中有的人没有受过基本专业训练,缺乏演唱技巧,甚至有噪音不好和不会使用话筒的人,其中,男声易出现喉音和沙哑,女声易出现气息噪音和声带噪声。

为消除以上现象采用如下具体处理手段。

在100Hz以下要切除,消除低频噪声,使音色更加纯净。

在500-800Hz要小量衰减,使音色不要太生硬。

在MID频段提升3-6dB,以增强明亮度,使声音清晰、明亮;

一般人声音都较低,而且缺乏响度,所以音量要开得大一些;亦可把200-300Hz范围频率加以提升,

以增加声音的响度。

业余歌手动态范围不大,勿用自动音量控制。

3:对专业歌手的调音:

歌厅里常有专业歌手,被朋友邀请到歌厅里做客,有时唱上两曲为朋友和客人们助兴。专业歌手有响亮的歌喉,从发声、叹息、吐字、共鸣演唱基本功都具有一定的水平,而每人都具有一定的演唱风格。

调音要求:

要了解歌手的音色特点、网络流派,高、中、低泛音特性;

要了解歌手的音域宽度和动态范围;

要熟悉歌曲、歌词感情,调凌晨的基本手法要与歌曲的意境直辖市一致;

要注意歌曲的风格和歌手的演唱情绪;

话筒的档次要高:宽频响、小失真、大动态。

;演员站在歌坛上,利用歌坛声场,使其音色既有电声,也有自然声。所以,要求歌坛具有良好的声学特性。

女声:女声在高频部分容易产生S音(嘶声);在7-10KHz衰减了3dB,可以消除S音。

男声:男声音域比女声低一个8度音程,频率低一个倍频,在100Hz衰减了3dB左右,可以增加清晰度。

各乐器的频率范围:

小提琴 200Hz~400Hz影响音色的丰满度;1~2KHz是拨弦声频带;6~10KHz是音色明亮度。

中提琴 150Hz~300Hz影响音色的力度;3~6KHz影响音色表现力。

大提琴 100Hz~250Hz影响音色的丰满度;3KHz是影响音色音色明亮度。

贝斯提琴 50Hz~150Hz影响音色的丰满度;1~2KHz影响音色的明亮度。

长笛 250Hz~1KHz影响音色的丰满度;5~6KHz影响的音色明亮度。

黑管 150Hz~600Hz影响音色的丰满度;3KHz影响音色的明亮度。

双簧管 300Hz~1KHz影响音色的丰满度;5~6KHz影响音色的明亮度;1~5KHz 提升使音色明亮华丽。

大管 100Hz~200Hz音色丰满、深沉感强;2~5KHz影响音色的明亮度。

小号 150Hz~250Hz影响音色的丰满度;5~7.5KHz是明亮清脆感频带。

圆号 60Hz~600Hz提升会使音色和谐自然;强吹音色光辉,1~2KHz明显增强。长号 100Hz~240Hz提升音色的丰满度;500Hz~2KHz提升使音色变辉煌。

大号 30Hz~200Hz影响音色的丰满度;100Hz~500Hz提升使音色深沉、厚实。

钢琴 27.5~4.86KHz是音域频段。音色随频率增加而变的单薄;20Hz~50Hz是共振峰频率。

竖琴 32.7Hz~3.136KHz是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。

萨克斯管 600Hz~2KHz影响明亮度;提升此频率可使音色华彩清透。

萨克斯管bB 100Hz~300Hz是影响音色的淳厚感,提升此频段可使音色的始振特性更加细腻,增强音色的表现力。

吉它 100Hz~300Hz提升增加音色的丰满度;2~5KHz提升增强音色的表现力。

低音吉它 60Hz~100Hz低音丰满;60Hz~1KHz影响音色的力度;2.5KHz是拨弦声频。

电吉它 240Hz是丰满度频率;2.5KHz是明亮度频率3~4KHz拨弹乐器的性格表现的更充分。

电贝司 80Hz~240Hz是丰满度频率;600Hz~1KHz影响音色的力度;2.5KHz是拨弦声频。

手鼓 200Hz~240Hz共鸣声频;5KHz影响临场感。

小军鼓(响弦鼓) 240Hz影响饱满度;2KHz影响力度(响度);5KHz是响弦音频(泛音区)

通通鼓 360Hz影响丰满度;8KHz为硬度频率;泛音可达10~15KHz

低音鼓 60Hz~100Hz为低音力度频率;2.5KHz是敲击声频率;8KHz是鼓皮泛音声频。

地鼓(大鼓) 60Hz~150Hz是力度音频,影响音色的丰满度;5~6KHz是泛音声频。

镲 250Hz强劲、坚韧、锐利;7.5~10KHz音色尖利;1.2~15KHz镲边泛音“金光四溅”。

歌声(男) 150Hz~600Hz影响歌声力度,提升此频段可以使歌声共鸣感强,增强力度。

歌声(女) 1.6~3.6KHz影响音色的明亮度,提升此段频率可以使音色鲜明通透。

语音 800Hz是“危险”频率,过于提升会使音色发“硬”、发“楞”

沙哑声提升64Hz~261Hz会使音色得到改善。

喉音重衰减600Hz~800Hz会使音色得到改善

鼻音重衰减60Hz~260Hz,提升1~2.4KHz可以改善音色。

齿音重 6KHz过高会产生严重齿音。

咳音重 4KHz过高会产生咳音严重现象(电台频率偏离时的音色)

一个外国大师的一些EQ诀窍

1.地鼓(Kick Drum) :地鼓是一首歌曲里最重要的部分之一,因为它推动着节奏向前进行。这里我们讨论如何处理常见的三种地鼓:

第一种我称之为“80年代蓬头地鼓”,你一定熟悉的:强而有力、富含中频、含有重击的“砰“声,想得到这种比较怀旧的地鼓声音,可以先过滤掉60Hz以下的频率,然后根据情况在78-84Hz提升3到6dB(Q值大约为1),使之听起来象是敲在你的胸膛上。接下来在1.5-2.5kHz提升大约6dB来增加“砰“声(Q值在1.5-2.5比较适合),最后在120Hz降大约4dB(Q值1.0)。

第二种是当今最流行的“Bonham“摇滚地鼓,我通常在120-240Hz提升4dB或更多来得到这种声音,还需要过滤掉1.5kHz以上的所有频率,有时候可能需要在

还有一种现在常用的地鼓:比较空、有摩擦声,想得到这种声音,你可以过滤掉100Hz以下的所有声音,在125Hz提升大约3dB,在250-350Hz提升大约4dB。然后过滤掉2kHz以上的所有频率。

2.军鼓:目前有两种使用最广泛的军鼓类型:一种紧凑、有力,另一种松散、比较长(通常用于ballads风格的歌曲)

首先,任何军鼓都不需要150Hz以下的声音,所以把它们过滤掉。军鼓的中心频率通常在1kHz附近数百Hz的频段内,所以在这一频段提升3-6dB通常会非常有益。

对于紧凑型军鼓,你可以尝试分别提升中高频(5kHz附近)、部分高频(8-9kHz),提升量可以从3dB 开始逐渐上升,左右变化一下提升的频点直到得到理想的效果。过滤掉250Hz以下、11kHz以上的频率会使这种军鼓听起来很舒服。对于松散型军鼓,需要在低端(250Hz附近)进行一些提升,我通常提升6dB。高频不用象紧凑型军鼓那样大幅提升,但在7kHz附近略作提升通常会有益处,再往上的频段可以过滤掉。关键是中频,先把提升的频点在800Hz-2kHz之间移动,找到那个能引起共鸣的频点,然后调整一下提升的幅度和Q值。对于这种军鼓,往往需要加上启动时间(attack time)较长的压缩、较重的混响来与之配合

3.钹(cymbal) :对于这些富含高频的鼓件,可以降低4kHz以下的频率,根据情况

提升高频区(10-14kHz)大约3dB。

4.沙锤(shaker) , 手铃(tambourine) , 手鼓(conga)

、拍手(hand clap)等:沙锤(shaker)和手铃(tambourine)很相似,要明亮并且贯穿高频区,对于沙锤,我通常过滤掉2kHz以下的所有频率,略提升高频,比如在9kHz提升6dB;手铃要略带叮当声,所以我过滤掉800Hz以下的频率,在1.5或2kHz提升4dB,在7kHz略作提升。

对于手鼓(conga),我通常用扫频的办法找到那个引起共鸣的频点,根据情况略作提升或降低。需要注意的是不能提升过多,尤其是共鸣频点较低的时候,可能与鼓和贝斯形成干扰。为了突出conga 的冲击效果,我通常在中频(5kHz附近)略作提升,比如提升6dB。

对于拍手声,可以通过提升中低频使之厚实,通常在250Hz提升2dB(Q值1.5)。同样为了加强冲击力,可以提升中频(在1.5kHz附近提升约4dB)和高频(在8kHz附近提升2-3dB)。

5.钢琴:如果钢琴是主要乐器,只与人声或少量陪衬乐器构成音乐,这时可不必做太多调整,如果没有贝斯,我通常会略微提升低频(140Hz附近),另外可以在高频区(8.5kHz附近)略作提升,比如3dB。

如果钢琴与其他7-8种乐器一起构成非常丰满的音乐,则需要对钢琴做一些衰减的均衡处理。由于钢琴的弹奏多集中在中音区,因此你可能需要在中频区(3或4kHz)略作衰减使之听起来不那么“honky “。过滤掉140Hz以下的频率,因为这段频率毫无疑问会与底鼓和贝斯形成干扰。在8kHz附近略作提升可以使高音键听起来更明亮。另外尽量使中频到高频的过渡自然些。

电贝斯:电贝斯的种类很多,处理的方法也不一样。我最喜欢的是这种贝斯:丰满、厚重、每个音符都很突出。对于这种贝斯我通常这样处理:过滤掉100Hz以下的所有频段,降低520Hz以上的频段,在260Hz提升6dB使音调变得丰满,在730Hz提升3dB来增加拨弦的噪声,然后再配合适当的压限效果器,就可以产生这种适用于多种音乐风格的贝斯声音了。

对于击弦贝斯(slaps and punches),处理方法大体同上,但有两处不太一样:不必从520Hz就开始降低高频,在中频(2kHz附近)提升4-6dB突出slap声;低频过滤点可以设在50Hz,以便保持足够

的隆隆声。

7.电吉他:与钢琴一样需要根据整个作品的配器来决定处理方法。如果只有一轨电吉他外加鼓与贝斯,可以让电吉他听起来响亮;如果有好几轨电吉他,另外还有钢琴、电钢琴、打击等乐器,就必须让电吉他在频谱中占据合理的位置,从而融入到音乐中。对于第一种情况,只要不与贝斯发生冲突,可以尽可能的响亮,我处理那种只有一个吉他手的小型摇滚乐队时,会尽可能提升电吉他的低频,通常会在160Hz提升3dB以上,同时注意与贝斯相融合。另外根据电吉他的声音特点可以在700-800Hz稍作提升。有时需要突出中频,可以在3kHz附近提升。如果想要得到那种压碎般的声音(crunchier),可以在高频区(7kHz)提升6dB左右。同样,把不需要的低频和高频过滤掉——这是一个好习惯,但要仔细听,以免过滤掉有用的泛音和谐音。对于第二种大型乐队的情况,假设还有另外两把电吉他。首先过滤掉200Hz以下和9kHz以上的频率,重点是中频,可以先通过扫频来判断哪些频段需要提升、哪些频段需要衰减。我发现提升4kHz、衰减6kHz通常能取得好的效果,但有时却正好相反,主要取决于作品的整体要求。对于有多把电吉他同时演奏的情况,要确保其声音略有不同,否则听上去会非常刺耳

木吉他与弦乐:对于不同的混音作品,木吉他的均衡处理会有极大的不同。过滤掉90Hz以下的所有频率,在360Hz作了少许提升。在中频、高频作相当大的提升:在2kHz提升了10dB,在7.1kHz提升了9dB,这样处理后木吉他听起来的确比其他乐器都要明亮。

弦乐的均衡处理与木吉他非常类似,在乐器很多的音乐里,我通常会过滤掉大部分低频,然后在中高频(7kHz)提升大约4dB,最后也许会在高频区(10kHz)用坡形曲线做提升来增加一些空气感。

9.铜管和木管乐器:通常中频比较突出,处理好中频非常重要。对于象小号这样的乐器,低频过滤点可以设在200Hz甚至更高,在对中频进行处理时要注意避免混浊。

对于那些低音突出的铜管乐器来说,情况正好相反,需要过滤掉高频部分,比如过滤掉9kHz以上,通常要提升中低频,比如1.5kHz附近。对于大号,记住一定要过滤掉40Hz以下的频段,以免引起某些音箱发出低频噪音。

大多数木管乐器需要突出气流声,通常可以通过提升9kHz以上的频段来达到这一目的。巴颂管可以演奏非常低的音符,所以不要过滤掉它的低频。但对大多数木管乐器来说,过滤掉低频是有益的。

10.主唱:往往需要在音乐里处于显著、靠前的位置,通常可以通过提升中频来实现。主唱是音乐最关键的部分,要求能听清每一个字又不让人感到烦扰。对于不同特点的人声,处理方法各不相同,需要通过多听来判断。有一点必须要注意,

主唱:往往需要在音乐里处于显著、靠前的位置,通常可以通过提升中频来实现。主唱是音乐最关键的部分,要求能听清每一个字又不让人感到烦扰。对于不同特点的人声,处理方法各不相同,需要通过多听来判断。

有一点必须要注意,男声和女声的处理方法有很大的不同,我前一阵刚完成一首男女声二重唱歌曲,男歌手和女歌手在同一个录音棚录音,用的都是U67话筒,但声音的差别让我大吃一惊。

我对他们分别进行了均衡处理,见图8(抱歉在原文里没有找到图例)。男声我用坡形均衡曲线在高频区提升了1dB,女声我在8.8kHz衰减了3dB。由于男歌手那天感冒了,鼻音较重,所以我在5.1kHz 衰减了5dB,在7.5kHz提升了2dB。女声的低频区我分别在733Hz和283Hz提升了4dB,目的是用女声低频来补充男声。有趣的是我对男声和女声都在2.5kHz作了提升,可见提升中频对于人声来说有多重要。

11.背景人声:有两种类型的背景人声,一种是标准的高八度合唱,我通常使用与主唱相同的均衡设置;另一种是有3-4个不同声部的背景和声,声像范围跨越整个声场,这时我会使用不同的均衡设置,要让他们听起来富有空间感并且超凡脱俗:对于高声部和声,我通常过滤掉400Hz以下的频率,对于低声部和声,过滤掉100Hz以下的频率,在不丧失合唱清晰度的前提下尽可能的降低中频(1-4kHz)。在中高频和高频我做了较大提升,直到听前来犹如天使发出的声音。

12.念白:对于那种不许要与音乐相融合的念白,可以让声音尽量厚重,尽可能保留更多的低频。如果想让宣讲者的声音听起来倘缟系郯愫炅粒梢愿萸榭鎏嵘?0Hz及120Hz。然后提升7kHz附近的高频。有时需要降低一点中频,但要注意不要丧失声音的清晰度。

正确的均衡处理可以成就作品,而错误的均衡处理会毁掉作品。

1、100Hz属于温暖段,如果使这部分加强能使低音部分更加的柔和温暖!

2、200Hz属于混浊低沉,调音色时可适当减弱本段!

3、300Hz~1KHz属于大多数音乐中的主要频段,突出这一频带可以加强音色的骨骼,但有时突出这一区域会使音乐显得有些“粘”,主要是在300Hz~800Hz之间。

4、1.5KHz~2KHz这一频段很容易有“嗡嗡”的声音,削弱该频带会使声音干净,但同时也失去一部分效果!

5、2KHz~4KHz属于温暖而又不失亮度,非常适合吉他类的乐器。

6、4KHz~5KHz属于音质比较粗糙的频段,这部分的过高会导致整体音量的上升!

7、7KHz或7KHz以上,就属于高频段,音质上显得尖锐很有攻击性,很容易产生嘶嘶声音!

8、8KHz~10KHz范围属于钗片的音色范围。

31段均衡器使用说明以及心得

1、均衡器的调整方法:

超低音:20Hz-40Hz,适当时声音强而有力。能控制雷声、低音鼓、管风琴和贝司的声音。过度提升会使音乐变得混浊不清。

低音:40Hz-150Hz,是声音的基础部份,其能量占整个音频能量的70%,是表现音乐风格的重要成份。

适当时,低音张弛得宜,声音丰满柔和,不足时声音单薄,150Hz,过度提升时会使声音发闷,明亮度下降,鼻音增强。

中低音:150Hz-500Hz,是声音的结构部分,人声位于这个位置,不足时,演唱声会被音乐淹没,声音软而无力,适当提升时会感到浑厚有力,提高声音的力度和响度。提升过度时会使低音变得生硬,300Hz处过度提升3-6dB,如再加上混响,则会严重影响声音的清晰度。

中音:500Hz-2KHz,包含大多数乐器的低次谐波和泛音,是小军鼓和打击乐器的特征音。适当时声音透彻明亮,不足时声音朦胧。过度提升时会产生类似电话的声音。

中高音:2KHz-5KHz,是弦乐的特征音(拉弦乐的弓与弦的摩搡声,弹拔乐的手指触弦的声音某)。不足时声音的穿透力下降,过强时会掩蔽语言音节的识别。

高音:7KHz-8KHz,是影响声音层次感的频率。过度提升会使短笛、长笛声音突出,语言的齿音加重和音色发毛。

极高音:8KHz-10KHz合适时,三角铁和立*的金属感通透率高,沙钟的节奏清晰可辨。过度提升会使声音不自然,易烧毁高频单元。

2、平衡悦耳的声音应是:

150Hz以下(低音)应是丰满、柔和而富有弹性;

150Hz-500Hz(中低音)应是浑厚有力百不混浊;

500Hz-5KHz(中高音)应是明亮透彻而不生硬;

5KHz以上(高音)应是纤细,园顺而不尖锐刺耳。

整个频响特性平直时:声音自然丰满而有弹性,层次清晰园顺悦耳。频响多峰谷时:声音粗糙混浊,高音刺耳发毛,无层次感扩声易发生反馈啸叫。

3、频率的音感特征:

30~60Hz 沉闷如没有相当大的响度,人耳很难感觉。

沉重 80Hz附近能产生极强的“重感”效果,响度很高也不会给人舒服的感觉,可给人以强烈的刺激作用。

100~200Hz 丰满

200~500Hz 力度易引起嗡嗡声的烦闷心理。

500~1KHz 明朗 800Hz附近如提升10dB,会明显产生一种嘈杂感,狭窄感。

1K~2KHz 透亮 2800Kz附近明亮感关系最大。

2K~4Kz 尖锐 6800Hz形成尖啸,锐利的感觉。

4K~8Kz 清脆 3400Hz易引起听觉疲劳。

8K~16Kz 纤细>7.5KHz音感清彻纤细。

没有仪器靠耳朵调,声音浑浊减60-80,低音压耳减125,中音过厚减400,500,中频打耳朵减1250-2000,人声太突出减3K,高频刺耳减4-6K,齿音太重减8K,高音发毛减12-16K。反过来,低频不丰满加60-80,力度不足加125,人声单薄加200-400,声音发虚加1K附近,人声位置偏后,提3K,声音不亮,不通透加4-8K,空间感不足加12-16K。低音太硬减160-200,男声喉音重减200,鼻音重减250。

尽量使用衰减,不要使用提升,把多出来的东西减掉,自然层次就分明了。如果真的感觉缺少什么,一般都是因为室内环境或音箱摆位造成的,提升过多会改变音箱的声底,反而破坏音质。记住一点,扩声是艺术,所有的艺术都是有缺陷不可能完美的。

声学基础知识

声学基础知识 声学是研究声音的产生、传播和接收的学科,它是物理学的一个重 要分支,也与工程学、心理学等学科密切相关。声音是一种机械波, 是由介质中分子的振动引起的。在日常生活中,我们所接触的声音与 我们的情绪、心理状态有很大关联,而在工业、医学、通信等领域, 声学也扮演着重要的角色。本文将从声音的产生、传播和接收三个方 面介绍声学的基础知识。 一、声音的产生 声音是由物体振动引起的,当物体振动产生的机械波传播到我们的 耳朵时,我们才能感知到声音。声音的产生主要有以下几种方式: 1. 自由振动:当一个物体自由地振动时,会在周围介质中产生声音。例如,乐器弦线振动时产生的声音。 2. 强迫振动:当一个物体被外力作用迫使振动时,也会产生声音。 例如,乐器的音箱被演奏者的手和腮帮振动时产生的声音。 3. 空气振动:当空气被物体振动时,会通过空气分子的碰撞传播声音。例如,人的嗓子发出的声音就是通过空气的振动传播出去的。 二、声音的传播 声音是通过介质传播的,常见的传播介质有空气、水和固体。声音 传播的速度与介质的性质相关,例如,在空气中,声音传播的速度约 为每秒343米。

声音传播的基本过程可以分为以下几个步骤: 1. 振动:声音是由物体的振动引起的,当物体振动时,会在介质中 产生声波。 2. 压缩与稀疏:振动的物体使介质中的分子产生交替的压缩和稀疏,形成纵波传播。 3. 传播:声波以纵波的形式沿介质传播,当声波到达物体后,物体 的分子也会被振动,进而再次产生声波。 4. 接收:当声波达到接收器(如耳朵),通过耳膜、骨骼、耳腔等 组织,被转化为神经信号,我们才能感知到声音。 三、声音的接收 声音的接收是指我们如何感知和理解传播过程中产生的声音信号。 人类具有复杂而精细的听觉系统,能够感知各种不同频率和振幅的声音。 1. 听觉器官:人类的听觉器官包括外耳、中耳和内耳。外耳通过外 耳道将声音引入中耳,中耳通过鼓膜和听小骨(听骨链)将声波传递 给内耳。内耳中的耳蜗含有感音神经,能够将声波转化为神经信号。 2. 频率与音调:声音的频率决定了声音的音调高低,频率越高,音 调越高,频率单位为赫兹。 3. 声音强度:声音的强度决定了声音的大小或音量。声音的强度单 位为分贝。

常用声学基础知识

音质评价是专业人士的基本功之一。主观评价硬件和软件,也是最能体现专业水平的标志。声音所反映的内容往往是清晰的、具体的和客观的,但音质和音色却极为抽象、主观和不便交流。要搞好音质的评价,感觉就需要约定、归纳、升华。正如味觉是约定俗成的,大家都说糖是甜的,于是人们就把吃糖的感觉称作“甜”,再遇到这种味觉的东西,即便它不是糖大家也说是甜的。 音质评价的术语很多,丰富中也显繁杂,必须抓住主要的和关键的加以规范,才方便我们的表现和交流。 1.清晰与浑浊音响系统发出的声音要令人感到清晰,频率响应要宽而均匀,尤其是中高频有密度,混响适当,能够较好地分辨出乐器的音色和位置,反之便叫做浑浊。 2.圆润与发毛圆润是指失真,特别是中高频失真极小的声音,这类声音感觉愉快、悦耳。低音不浑浊,中音不生硬,高音不剌耳。发毛与圆润相对,主要感觉是声音粗糙,有可闻的失真。声音中如果有5%的失真,一般人就有发毛的感觉,专业人士可以听至3%。 3.丰满与干瘪声音厚实、响度大,中高频量感好,混响较足,瞬态响应好叫做丰满,反之则为干瘪。 4.明亮与灰暗明亮是指在整个声域内高、中、低音平衡的基础上,中高音略微突出,而且有丰富的谐音,混响适度,失真小。灰暗则指严重缺乏中高音,低音松弛,解析力差。 5.宽广与单薄宽广的声音频率响应好,高音明亮,低音充足,单薄的声音往往白缺乏低音或高音。 6.干与湿主要指混响效果。混响时间短、深度不足表现为干。混响过分,表现为湿。声音的干湿有时是由软件所决定的,也可由听音环境引起。 7.现场感声音明亮、扩散好,有一定的混响,特别是800~5000Hz内声音较为密集,最接近于音乐厅的效果,称为现场感好。 8.平衡感频率范围宽,尤其是声箱各单元频率的衔接平滑,无凹凸,整个声音融合、宽广,听起来轻松、愉快,称为平衡。 9.冷暖感声音的冷暖感有较大的个体差异。冷的声音失真极小,非常平衡,器材有很好的物理指标。而暖的声音是在声音平衡、失直较小的基础上,更带一些圆润、丰满的个性。一般采用晶体管放大器的声音偏冷一些,电子管则有迷人的暖色。声音的冷艳与温暖都不是贬义词,偏爱哪种音色因人而异。

声学基础知识

声学基础知识 1.一切发生的物体都在。振动停止,发声。 2.发声体的振动能靠一切气体、液体、固体物质向周围传播,这些物质是传播声音的媒介物,简称为。声音在真空中。 3.声音在不同介质中传播速度一般不同,在同一介质中的传播速度还与介质的有关。声音在金属中比在液体中传播得,在液体中比在空气中传播得。 4.声音在传播过程中遇到障碍物时会发生,形成。人讲话的声音在传播过程中总是要遇到障碍物的,即总是要产生回声的。不同的情况,人对回声的听觉不一样。如果回声到达人耳比原声晚 s以上,则人耳能把回声跟原声区分开;如果短于这个时间,回声与原声就混在一起,使原声。 5.在物理学中,把人们由听觉所感受到的声音的高低称为,听觉所感受到的声音的大小称为;即使是高低、大小都相同的声音听起来也不一定完全一样,可见声音除了高低、大小这些特征外,还有第三个特征,这第三个特征就是。习惯上称声音的这三个特征为声音的三要素。 6.声音的高低,即音调的高低跟发声体振动的有关,其越大,音调越;声音的大小,即声音的响度跟发声体的大小有关,其越大,响度越。音色和发声体的材料和结构有关。 7.减弱噪声的途径有三条:一是减弱;二是减弱;三是减弱。 机械运动 物理学里把称为机械运动。在研究物体的机械运动时,需要明确是以哪个物体为标准,这个作为标准的物体叫。自然界中的一切物体都在运动,静止是相对的,我们观察同一物体是运动还是静止,取决于所选的。叫匀速直线运动;叫变速运动。把变速运动当作简单的匀速直线运动来处理,即把物体通过的路程和通过这段路程所需时间的比值,称为物体在这段路程或这段时间内的,它只能粗略的描述物体运动的快慢。 速度是用来表示的物理量,用符号表示。在匀速直线运动中,速度等于运动物体在内通过的。速度的计算公式是:;速度的单位是:,读作:;1m/s= km/h。从速度公式变形得到公式可用来计算路程,从速度公式变形得到公式可用来计算时间。

高考物理声学基础知识清单

高考物理声学基础知识清单 声学是研究声音的产生、传播和感知的科学。在高考物理中,声学 是一个重要的考点。下面是高考物理声学基础知识的清单,以帮助考 生更好地备考。 一、声音的特性 1. 声音是由物体振动引起的,需要有介质传播,不能在真空中传播。 2. 声音的强度与声波振动的振幅成正比。 3. 声音的音调与频率有关,频率越高,音调越高。 4. 声音的响度与声音的强度有关,强度越大,响度越高。 5. 声音的音色与波形有关,不同乐器发出的声音具有独特的音色。 二、声音的传播 1. 声音是通过介质的机械波传播的,一般以空气为媒介。 2. 声音传播的速度取决于介质的性质,一般空气中声速约为340米/秒。 3. 声音在传播过程中会发生折射、反射和衍射等现象。 三、声波的特性 1. 声波是一种纵波,波动方向与传播方向一致。 2. 声波是通过粒子的振动传播的。

3. 声波具有反射、折射和干涉等特性。 四、共振现象 1. 当外力的频率与物体的固有频率相同时,会引起共振现象。 2. 共振可以放大声音或者引起物体的破坏。 五、乐器和声学设备 1. 乐器是利用共鸣和声音的特性发声的装置。 2. 常见的乐器有弦乐器、管乐器和打击乐器。 3. 声学设备包括扩音器、麦克风、音响等,用于放大和传播声音。 六、声音的保护与利用 1. 高分贝的噪音会对人体健康产生影响,需要采取一些措施进行保护。 2. 声学技术在音乐欣赏、语音通信和声纳等领域有广泛应用。 以上内容是关于高考物理声学基础知识的清单,希望对考生备考有所帮助。在复习的过程中,重点理解声音的特性、传播方式以及声波的特性等基础知识。同时,还要了解共振现象、乐器和声学设备的基本原理。最后要注意声音的保护和利用的相关知识。祝考生们在高考中取得优异的成绩!

音乐声学基础知识

音乐声学基础知识 音乐是一种艺术形式,一切艺术都包括两个方面,一是艺术表现,一是艺术感知,音乐这种艺术也概莫能外,它通过乐器(包括人的歌喉)所发出的声音来表现,依靠人耳之听觉来欣赏。这声音的产生和听觉的感知之间有什么关系呢?这是我们要讨论的第一个问题——音乐声学。 1、声音的产生与主客观参量的对应关系 关于声音的产生,国外有一个古老的命题:森林里倒了一棵大树,但没有人听见,这算不算有声音?这个命题首先点出了声音产生的两个必要条件,即声源和接收系统。所谓声源,就是能发出声响的本源。以音乐为例,一件正在演奏着的乐器就是声源,而观众的听觉器官就是接收系统。从哲学的角度讲,声源属于客观世界,而接收系统则属于主观世界,声音的产生正是主观世界对客观世界的反映。 但如果只有声源和接收系统,是否就能接到声音呢,并不是这样。如果没有传播媒介,人耳仍不能听到声音。一般来讲,物体都是在有空气的空间里振动,那么空气也就随之产生相应的振动,产生声波。正是声波刺激了人们的耳膜,并通过一系列机械和生物电的传导,最终使我们产生了声音的感觉。如果物体在真空中振动,由于没有传播媒介,就不会产生声波,人耳也就听不到声音。由此,我们可以说,任何声音的存在都离不开这三个基本条件:1)声源;2)媒介;3)接收器。 先来看看产生声音的客观方面——声源——都有哪些特征。 当我们弹一个琴键,通过钢琴机械传动装置,琴槌敲击琴弦,这时如果我们用手触弦,就会明显感到琴弦在振动。当我们拉一把二胡或小提琴时,也会感到琴弦的振动。振动是声源最基本的特征,也可以说是一切声音产生的基本条件。但如果没有我们手对琴键施加压力,使琴槌敲击琴弦,也不会产生振动。实际上,一个声源得以存在,还依赖于两个基本条件:其一是能够激励物体振动的装置(称激励器);其二是能够使装置运动起来的能量;演奏任何一件乐器都不能缺少这两个条件。例如,当我们敲锣打鼓时,锣槌或鼓槌便是激励器,能量则由我们的身体来提供。一架能自动演奏的电子乐器,也同样少不了这两个条件:电子振荡器就是激励器,能量则由电源来提供。 人们常用“频率”(frequecy,振动次数/1秒)来描述一个声源振动的速度。频率的单位叫“赫兹”(Hz),是以德国物理学家赫兹(H.R.Hertz)的名字命名。频率低(即振动速度慢)时,声音听起来低,反之则高。人耳对振动频率的感受有一定限度,实验证明:常人可感受的频率范围在20—20,000Hz左右,个别人可以稍微超出这个范围。音乐最常用的频率范围则在27.5Hz—4186Hz(即一架普通钢琴的音域)之间。超出此范围的乐音,其音高已不能被人耳清晰判别,因而很少用到。语言声的频率范围比音乐还要窄,一般在100Hz—8,000Hz范围内。 声音的强度与物体的振动幅度有关:“幅度越大,声音越强,反之则弱。”声学中用“分贝”(dB)作为计量声音强度的单位。通过实验,人们把普通人耳则能听到的声音强度定为1分贝。音乐上实际应用的音量大约在25分贝(小提琴弱奏)—100分贝(管弦乐队的强奏)之间。音乐声学中称声音强度的变化范围为“动态范围”,动态范围大与小,常常是衡量一件乐器的质量或乐队演奏水平的标志:高质量乐器或高水平乐队能奏出动态范围较大的音乐音响,让人们听起来痛快淋漓,较差的乐器或乐队则无法做到这一点。图为普通人耳对音高和音强的最大可闻阈及音乐常用的音高和音强的范围。表为日常生活中几种典型音响的强度(分贝)。

物理声学基础知识复习

物理声学基础知识复习 声音是一种机械波,它需要介质的存在来传播。在物理声学中,我们学习了声音的产生、传播和接收等基础知识。本文将对物理声学的一些基本概念、原理和应用进行复习。 一、声音的特性 声音具有以下特性: 1. 频率:声音的频率决定了声音的音高,单位为赫兹(Hz)。人耳能够听到的频率范围约为20 Hz到20,000 Hz。 2. 声强:声强是声音的能量传播的强弱程度,单位为分贝(dB)。声强与声音的能量有关,声强的增加会使声音变得更响亮。 3. 音速:音速是声音在介质中传播的速度,单位为米/秒(m/s)。音速与介质的性质有关,通常在空气中的音速约为343 m/s。 4. 声音的衰减:声音在传播过程中会受到介质的吸收和散射而逐渐衰减。声音的衰减与距离和介质的特性有关。 5. 声音的共振:当物体的固有频率与外界声音的频率相匹配时,会发生共振现象。共振使得声音变得更响亮。 二、声音的传播 声音的传播需要介质的存在,通常为固体、液体或气体。在传播过程中,声音会通过分子的振动传递能量,从而形成声波。声波的传播是通过分子之间的相互作用来实现的。

声波可分为纵波和横波。纵波是指振动方向与波的传播方向相同的波,如声波;横波是指振动方向和波的传播方向垂直的波,如光波。 声音的传播速度取决于介质的性质。在同一介质中,声速与介质的密度和弹性有关。一般来说,固体传播声音最快,液体次之,气体最慢。 三、声音的产生 声音可以由振动体产生,振动体的振动会使周围的空气分子产生振动,进而形成声波。 常见的声音产生方式包括: 1. 物体的弹性振动:如吉他的琴弦振动产生的声音。 2. 声源的振动:如人的声带、乐器的震动膜等。 3. 液体和气体的振动:如喷泉、风琴等。 四、声音的接收 声音的接收是指人耳或设备感知并转化声波为电信号的过程。人耳是我们最常用的声音接收器官。 人耳的主要结构包括: 1. 耳廓:收集声音并将其引导至耳道。 2. 外耳道:声音通过外耳道传递到耳膜。 3. 耳膜:声音使耳膜振动,将机械能转化为声能。

声学基础知识

声学基础知识 声音,作为我们日常生活中最常接触到的感知,是一种形式的机械波,它通过物质的震动传播而产生。声学是研究声音产生、传播和听 觉效应等相关现象的学科。本文将介绍声学的基础知识,包括声音的 特性、声波的传播与衰减、和人类的听觉系统。 一、声音的特性 声音有几个重要的特性,包括音调、音量和音色。音调是指声音的 高低,由声源的频率决定。频率越高,音调越高;频率越低,音调越低。音量是指声音的强弱,由声源振幅的大小决定。振幅越大,音量 越大;振幅越小,音量越小。音色是指具有独特质感的声音特征,由 声音的谐波成分和声源的包络形状决定。不同的乐器演奏同一个音高,因为其谐波成分和包络形状不同,所以会有不同的音色。 二、声波的传播与衰减 声波是指由声源振动产生的压力波。声波传播时,需要介质作为传 播介质,常见的介质包括空气、水、固体等。在传播过程中,声波会 经历衍射、反射、折射等现象。衍射是指声波遇到障碍物时沿着障碍 物的边缘传播,使声音能够绕过障碍物。反射是指声波遇到障碍物后 从障碍物上反弹回来,产生回声。折射是指声波在介质之间传播时由 于介质密度不同而改变传播方向。 声波在传播过程中会逐渐衰减,衰减的程度取决于声音传播的距离、传播介质的特性以及环境条件等。一般来说,声音传播的距离越远,

声波能量的衰减越大;传播介质的特性也会影响声波的衰减,固体传 播声波的衰减相对较小,而空气和水传播声波的衰减相对较大。环境 条件如温度和湿度也会对声波的衰减产生一定影响。 三、人类的听觉系统 人类的听觉系统是感知声音的重要器官。它由外耳、中耳、内耳和 大脑皮层等部分组成。外耳包括耳廓和外耳道,它们的主要功能是接 收和传导声音。中耳包括鼓膜和听小骨(锤骨、砧骨和镫骨),它们 的主要功能是将声音的机械能转换为神经信号。内耳包括耳蜗和前庭,耳蜗负责感知声音,前庭负责维持平衡。大脑皮层负责处理和解读声 音信号。 人类听觉系统对不同频率的声音有不同的感知范围。一般来说,人 类可以听到频率范围在20Hz到20kHz之间的声音。而不同年龄段的人对声音的感知范围也有所不同,年龄越大,感知范围越小。 总结: 声学作为一门学科,研究声音产生、传播和听觉效应等相关现象。 声音具有音调、音量和音色等特性,通过声波在介质中的传播而产生。传播过程中,声波会衍射、反射、折射,并在传播过程中逐渐衰减。 人类的听觉系统负责感知和解读声音信号,对不同频率的声音有不同 的感知范围。声学的基础知识对于理解和应用声音有着重要的意义。

声学基础知识点总结

声学基础知识点总结 1. 声波的产生 声波是由振动的物体产生的,当物体振动时,会产生压缩和稀疏的波动,这些波动以一定 速度在介质中传播,就形成了声波。声波的产生需要具备两个条件:振动源和传播介质。 一般来说,声波的振动源可以是任何物体,包括人类的声带、乐器的琴弦、机器的发动机等,而传播介质主要是固体、液体和气体。声波在不同的介质中传播速度不同,气体中的 声速最慢,固体中的声速最快。 2. 声波的传播 声波的传播包括两种方式:纵波和横波。纵波是指波动方向与传播方向相同的波动,即介 质中的分子以与波动方向相同的方式振动。在气体和液体中,声波主要是纵波。横波是指 波动方向与传播方向垂直的波动,即介质中的分子以与波动方向垂直的方式振动。在固体中,声波主要是横波。 3. 声波的特性 声波具有一些特性,包括频率、振幅和波长。频率是指单位时间内声波振动的次数,单位 是赫兹(Hz),通常用来表示声音的高低音调。振幅是指声波振动的幅度,通常用来表示声音的大小。波长是指声波在介质中传播一个完整周期所需要的距离,与频率和传播速度 有关。 4. 声音的产生 声音是由声波在空气中传播而形成的,但在声音产生的过程中,还需要经过声带的振动、 共鸣腔的放大和嘴唇、舌头等器官的调节。声带位于声音道中部分,当呼吸进入声音道时,声带会振动产生声波,不同的振动频率会形成不同的音调。共鸣腔是指声音道中的空腔部分,不同的共鸣腔大小和形状会影响声音的音色。嘴唇、舌头等器官的调节会改变声音的 音调和音色,从而产生不同的语音。 5. 声波的接受 人类的听觉系统能够接受声波并将其转化为神经信号传递给大脑,从而形成对声音的感知。耳朵是人类的听觉器官,主要包括外耳、中耳和内耳。外耳是声音的接收器,能够接受来 自外界的声波并将其传递给中耳。中耳是声音的传导器,能够将声波转化为机械波并传递 给内耳。内耳是声音的感受器,能够将机械波转化为神经信号,并传递给大脑进行处理。 6. 声波的用途 声波在日常生活中有着广泛的应用,包括声音通讯、声波测量、声波成像等方面。声波通 讯是指利用声波进行语音通话和音乐传播,如电话、广播和音响等。声波测量是指利用声

[声学物理知识点] 物理声学基础知识

[声学物理知识点] 物理声学基础知识 1.声音的产生:声音是由物体振动产生的。 2.声音的传播需要介质,一切固体、液体、气体都可以传播声音; 真空不能传播声音; 类比法:水波——声波 3.声速:声音每秒钟内传播的距离;大小与介质种类、温度有关;1个标准大气压下,15℃时的声速为340/s,水中的声速为1500/s,钢铁中声速为5200/s 4.区分回声与原声的条件:回声到达人耳比原声晚0.1s以上;应用:回声定位 5.声速公式:v=;s——路程,v——速度,t——时间 6.人感知声音的两种方式:耳听、骨传导 7.人耳听到声音的条件:a、要有声源(发声体);b、要有传播的介质;c、不能离声源太远; 8.双耳效应:人耳根据声音传到两只耳朵的时间不同、强弱不同等确定声源的方位 9.耳聋的分类:神经性耳聋(不易治疗)、传导性耳聋(可以治疗,可以借助骨传导)

10.声音分类:乐音、噪声 11.乐音三要素:音调——频率——赫兹; 响度——振幅——米 响度——距声源的距离 音色——材料种类、结构 12.人耳的听觉范围:20Hz——20000H 13.噪声的等级: 0分贝(dB)——人的听觉下限(不是没有声音) 70分贝(dB)——干扰谈话 90分贝(dB)——可以造成危害 150分贝(dB)——瞬间使人鼓膜出血,完全丧失听力 14.噪声的减弱:a、声源处减弱;b、传播途中减弱;c、人耳处(接收处)减弱 15.声的作用:a、传递信息;b、传递能量 16.人耳的听觉特性:方位感、响度感、音色感、聚焦效应 17.超声波的特点:方向性好(用于探测)、能量高、穿透能力强(用于检测等)、破碎能力强(用于空化、雾化、杀菌等); 声波方向性特点:频率越高,方向性越好

声学基础知识培训课件

声学基础知识培训课件 声学基础知识培训课件 声学是研究声音的产生、传播和感知的学科。在现代社会中,声学的应用非常广泛,涉及到音乐、通信、医学、建筑等众多领域。对于想要深入了解声学的人来说,掌握一些基础知识是必不可少的。本篇文章将为大家介绍一些声学的基础知识。 1. 声音的产生和传播 声音是由物体振动产生的,当物体振动时,周围的空气分子也会随之振动,形成声波。声波通过空气传播,当波到达我们的耳朵时,耳膜会受到波的压力变化,从而产生声音的感知。 2. 声音的特性 声音有许多特性,其中最重要的是音调、音量和音色。 音调是指声音的高低,与频率有关。频率越高,音调越高;频率越低,音调越低。 音量是指声音的强弱,与振幅有关。振幅越大,音量越大;振幅越小,音量越小。 音色是指声音的质地,不同的声音具有不同的音色。音色由声音的谐波组成,谐波的强弱和分布决定了声音的音色。 3. 声音的传播速度 声音在不同介质中传播的速度是不同的。在空气中,声音的传播速度大约是每秒343米;在水中,声音的传播速度大约是每秒1482米;在固体中,声音的传播速度更高,可以达到几千米每秒。

4. 声音的反射和折射 声音在遇到障碍物时会发生反射和折射。当声音遇到平滑的表面时,会发生反射,即声波从表面弹回。当声音遇到介质的边界时,会发生折射,即声波改变传播方向。 5. 声音的吸收和衍射 声音在遇到某些材料时会发生吸收,即声波能量被材料吸收而减弱。不同的材料对声音的吸收程度不同,例如软质材料对声音的吸收较强。 声音在经过障碍物时会发生衍射,即声波绕过障碍物传播。衍射现象使得我们能够听到隔壁房间的声音,即使门是关闭的。 6. 声音的共振 共振是声音与物体之间相互作用的一种现象。当声音的频率与物体的固有频率相同时,物体会发生共振现象,产生更大的振幅和声音。共振现象在乐器演奏中起着重要的作用,也被应用于声学传感器和扬声器等设备中。 7. 声音的应用 声学在现代社会中应用广泛。在音乐领域,声学帮助人们理解音乐的产生和演奏原理,提高音乐的质量。在通信领域,声学用于声纳和语音识别等技术,提高通信的效率和准确性。在医学领域,声学被用于超声波检查和听力测试等,帮助医生诊断疾病。在建筑领域,声学用于设计和改善建筑物的声学环境,提供舒适的生活和工作环境。 总结起来,声学是一个研究声音的学科,涉及声音的产生、传播和感知。掌握一些声学的基础知识对于深入了解声音的原理和应用非常重要。希望本篇文章能够帮助大家对声学有一个初步的了解,并激发对声学更深入学习的兴趣。

初中物理声学基础知识

声学基础知识 一、声学基础 1、人耳能听到的频率范围是20—20KHZ; 2、把声能转换成电能的设备是传声器; 3、把电能转换成声能的设备是扬声器; 4、声频系统出现声反馈啸叫,通常调节均衡器; 5、房间混响时间过长,会出现声音混浊; 6、房间混响时间过短,会出现声音发干; 7、唱歌感觉声音太干,当调节混响器; 8、讲话时出现声音混浊,可能原因是加了混响效果; 9、声音三要素是指音强、音高、音色; 10、音强对应的客观评价尺度是振幅; 11、音高对应的客观评价尺度是频率; 12、音色对应的客观评价尺度是频谱; 13、人耳感受到声剌激的响度与声振动的频率有关; 14、人耳对高声压级声音感觉的响度与频率的关系不大; 15、人耳对中频段的声音最为灵敏; 16、人耳对高频和低频段的声音感觉较迟钝; 17、人耳对低声压级声音感觉的响度与频率的关系很大; 18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同; 19、等响曲线中,每条曲线上标注的数字是表示响度级; 20、用分贝表示放大器的电压增益公式是20lg输出电压/输入电压; 21、响度级的单位为phon; 22、声级计测出的dB值,表示计权声压级; 23、音色是由所发声音的波形所确定的; 24、声音信号由稳态下降60dB所需的时间,称为混响时间; 25、乐音的基本要素是指旋律、节奏、和声; 26、声波的最大瞬时值称为振幅; 27、一秒内振动的次数称为频率; 28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度; 29、人耳对1~3KHZ的声音最为灵敏; 30、人耳对100Hz以下,8K以上的声音感觉较迟钝; 31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用; 32、观众席后侧的反射声对原发声起回声作用,属有害反射作用; 33、声音在空气中传播速度约为340m/s; 34、要使体育场距离主音箱约34m的观众听不出两个声音,应当对观众附近的补声音箱加延时; 35、反射系数小的材料称为吸声材料; 36、透射系数小的材料称为隔声材料; 37、透射系数大的材料,称为透声材料; 38、全吸声材料是指吸声系数α=1; 39、全反射材料是指吸声系数α=0; 40、岩棉、玻璃棉等材料主要吸收高频和中频; 41、聚氨酯吸声泡沫塑料主要吸收高频和中频; 42、薄板加空腔主要吸收低频; 43、薄板直接钉于墙上吸声效果很差; 44、挂帘织物主要吸收高、中频; 45、粗糙的水泥墙面吸声效果很差; 46、人耳通过声源信号的强度差和时间差,可以判断出声源的空间方位,称为双耳效应; 47、两个声音,一先一后相差5ms--50ms到达人耳,人耳感到声音是来自先到达声源的方位,称为哈斯效应; 48、左右两个声源,声强级差大于15dB,听声者感到声源是在声强级大的声源方位,称为德波埃效应; 49、一个声音的听音阈因为其它声音的存在而必须提高,这种现象称为掩敝效应; 50、厅堂内某些位置由于声干涉,使某些频率相互抵消,声压级降低很多,称为死点; 51、声音遇到凹的反射面,造成某一区域的声压级远大于其它区域称为声聚焦; 52、声音在室内两面平行墙之间来回反射产生多个同样的声音,称为颤动回声; 53、由于反射使反射声与直达声相差50ms以上,会出现回声; 54、房间被外界声音振动激发,从而按照它本身的固有频率振动,称为房间共振; 55、房间出现几个共振频率相同的重叠现象,称为共振频率的简并; 56、由于简并等原因使原声音信号频谱发生改变而被赋予外加的音色导致失真,称为声染色; 57、声场中直达声声能密度等于混响声声能密度的点与声源的距离称为混响半径; 58、听音点在混响半经以内时,直达声起主要作用; 59、听音点在混响半经以外时混响声起主要作用; 60、声源振动使空气产生附加的交变压力,称为声波; 61、质点振动方向与波的传播方向相垂直,称为横波; 62、质点振动方向与波的传播方向相平行,称为纵波; 63、一般点声源在空间幅射的声波,属于球面波;

声学基础知识

一、声学基础: 1、名词解释 (1)波长—-声波在一个周期内的行程。它在数值上等于声速(344米/秒)乘以周期,即 入=CT (2)频率-—每秒钟振动的次数,以赫兹为单位 (3)周期-—完成一次振动所需要的时间 (4)声压一一表示声音强弱的物理量,通常以Pa为单位 (5)声压级-—声功率或声强与声压的平方成正比,以分贝为单位 (6)灵敏度-—给音箱施加IW的噪声信号,在距声轴1米处测得的声压 (7)阻抗特性曲线-—扬声器音圈的电阻抗值随频率而变化的曲线 (8)额定阻抗--在阻抗曲线上最大值后最初出现的极小值,单位欧姆 (9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功 (10)音乐功率一-以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO) (11)音染—-声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份 (12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围 2、问答 (1)声音是如何产生的? 答:世界上的一切声音都是由物体在媒质中振动而产生的.扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。 (2)什么叫共振?共振声对扬魂器音质有影响吗? 答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振 当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动.当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递到箱体上。部分被吸收,转化成热能散发掉;部分惟波的形式再辐射,由于共振声不是声源所

声学基础知识

声学基础 一般来说,声音(Sounds)来自物理能量(physical energy)的转换,例如拍手造成空气的挤压。气压的转变会被转换为一连串的震动(vibrations)-即声波(Sound Wave)-并透过空气传递。声音的振动同样可以透过其他介质传递,例如墙壁或地板。 如果震动并非照着可预期的模式,这样的声音称为“噪音noise"。 在waveform的重复循环中,一个完整的振动被称为一个循环,完成一次振动的时间称为一个周期,也就是波型完整走完一个pattern的过程。在每秒钟发生的周期数量会决定该波形的基础音高(basic pitch),通常被我们称为“频率”(frequency)。 音调、泛音、谐波与分音 Tones, Overtones, Harmonics, and Partials 一个声音的频率被称作它的基音或基频(fundamental tone),而除了简单正弦波之外,大部分的声音都包含基频与其他不同的频率。 这些Non Fundamental tones如果是基频的整数倍,则被称为泛音(overtones)或谐波(harmonics);如果是非正整数倍,例如2.5倍,则被称为分音(partials);而若为基频的几分之几,则称为subharmonic。 fundamental tone被视为第一泛音(first harmonic),通常比其他harmonics大声。 在第一谐波两倍频率的音色被称为第二泛音(second harmonic),以此类推。 Bells, xylophone blocks, and many other percussion instruments produce harmonically unrelated partials. 每种从基频产生的不同谐波,都会产生不同声音质感(timbral quality)。 大体来说,整数倍或能被整数(如八度音程、奇数或偶数泛音)除尽的泛音听起来都更具“音乐感”。不是整数倍或不能被整数除尽的音调称为不和谐陪音或分音音调。当大量这类不和谐陪音组合在一起时,听起来就会显得“嘈杂”。 傅立叶定理和泛音 “任何周期性波都可以看作某个波长和振幅的正弦波的迭加,这些正弦波的

声学基础知识

一、声学基础: 1、名词解释 (1)波长——声波在一个周期内的行程。它在数值上等于声速(344米/秒)乘以周期,即λ=CT (2)频率——每秒钟振动的次数,以赫兹为单位 (3)周期——完成一次振动所需要的时间 (4)声压——表示声音强弱的物理量,通常以Pa为单位 (5)声压级——声功率或声强与声压的平方成正比,以分贝为单位 (6)灵敏度——给音箱施加IW的噪声信号,在距声轴1米处测得的声压 (7)阻抗特性曲线——扬声器音圈的电阻抗值随频率而变化的曲线 (8)额定阻抗——在阻抗曲线上最大值后最初出现的极小值,单位欧姆 (9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功 (10)音乐功率——以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO) (11)音染——声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份 (12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围 2、问答 (1)声音是如何产生的? 答:世界上的一切声音都是由物体在媒质中振动而产生的。扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。 (2)什么叫共振?共振声对扬魂器音质有影响吗? 答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振 当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动。当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递

声学基础知识

声学基础知识 声学的领域 介绍 与光学相似,在不同的情况,依据其特点,运用不同的声学方法。 波动 也称物理声学,是用波动理论研究声场的方法。在声波波长与空间或物体的尺度数量 级相近时,必须用波动声学分析。主要是研究反射、折射、干涉、衍射、驻波、散射等现象。在关闭空间例如室内,周围有表面或半关闭空间例如在水下或大气中,有上、下界面,反射波的互相干涉要形成一系列的固有振动称为简正振动方式或简正波。简正方式理论是 引用量子力学中本征值的概念并加以发展而形成的注意到声波波长较大和速度小等特性。 射线 或称几何声学,它与几何光学相似。主要是研究波长非常小与空间或物体尺度比较时,能量沿直线的传播,即忽略衍射现象,只考虑声线的反射、折射等问题。这是在许多情况 下都很有效的方法。例如在研究室内反射面、在固体中作无损检测以及在液体中探测等时,都用声线概念。 统计 主要研究波长非常小与空间或物体比较,在某一频率范围内简正振动方式很多,频率 分布很密时,忽略相位关系,只考虑各简正方式的能量相加关系的问题。赛宾公式就可用 统计声学方法推导。统计声学方法不限于在关闭或半关闭空间中使用。在声波传输中,统 计能量技术解决很多问题,就是一例。 分支 可以归纳为如下几个方面: 从频率上看,最早被人认识的自然是人耳能听到的“可听声”,即频率在20Hz~20000Hz的声波,它们涉及语言、音乐、房间音质、噪声等,分别对应于语言声学、音乐 声学、房间声学以及噪声控制;另外还涉及人的听觉和生物发声,对应有生理声学、心理 声学和生物声学;还有人耳听不到的声音,一是频率高于可听声上限的,即频率超过 20000Hz的声音,有“超声学”,频率超过500MHz的超声称为“特超声”,当它的波长约为10-8m量级时,已可与分子的大小相比拟,因而对应的“特超声学”也称为“微波声学”或“分子声学”。超声的频率还可以高1014Hz。二是频率低于可听声下限的,即是频率低于20Hz的声音,对应有“次声学”,随着次声频率的继续下降,次声波将从一般声波变

声学基础知识

手机声腔设计和音频电路检测 一. 声音的基础知识 1.声压: 由声波引起的压强变化称为声压,用符号P表示,单位为微巴(ubar)或帕(Pa) 1 ubar=0.1Pa=0.1N/m2 一个标准大气压P0=1.03 x10-5Pa 表达式:P=Po(ωt-kx+Ψ) 通常所指的声压是指声压的均方根值,即有效声压。 2.频率: 声源每秒振动的次数称为频率,单位为Hz. 人耳可听得见的声波频率范围约为20Hz~ 20000Hz,即音频范围 3.声速: 在介质中传播速度称为声速。固体最快,液体次之,空气中最慢。 在空气中传播340m/s,水中1450 m/s,钢铁中5000m/s 4.波长: 相邻同相位的两点之间的距离称为波长λ Co= λf Co为空气中声速f为频率 5.声压级: Lp=20lg(P/Po) (dB) Po为基准声压2x10-5 pa 基准声压为为2x10-5 pa,称为听阀,即为0dB 当声压为20Pa时,称为痛阀,即为120dB 由此可见,声压相差百万倍时,用声压级表示时,就变成了0dB到120dB的变化范围。 由上式可以看出声压变化10倍,相当于声压级变化20dB;声压变化100倍,相当于声压级变化40dB 一般交谈为30 dB 纺织车间为100 dB 6.声压级与功率的关系: ΔP=10lg(w/wo) (dB) wo为参考功率 功率增加一倍,声压级增加3 dB 7.声压级与距离的关系: ΔP=-20lg(r1/ro) (dB) ro为参考距离 距离增加一倍,声压级减小6 dB 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下: THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感;

声学基础知识

噪声产生原因 空气动力噪声 由气体振动而产生。气体的压力产生突变,会产生涡流扰动,从而引起噪声。如空气压缩机、电风扇的噪声。 机械噪声 由固体振动产生。金属板、齿轮、轴承等,在设备运行时受到撞击、摩擦及各种突变机械力的作用,会产生振动,再通过空气传播,形成噪声。 液体流动噪声 液体流动过程中,由于液体内部的摩擦、液体与管壁的摩擦、或者流体的冲 击,会引起流体和管壁的振动,并引起噪声。 电磁噪声 各种电器设备,由于交变电磁力的作用,引起铁芯和绕组线圈的振动,引起的噪声通常叫做交流声。 燃烧噪声 燃料燃烧时,向周围的空气介质传递了热量,使它的温度和压力产生变化,形成湍流和振动,产生噪声。

声波和声速 声波 质点或物体在弹性媒质中振动,产生机械波向四周传播,就形成声波(声波是纵波)。可听声波的频率为20〜20000Hz, 高于20KHz的属超声波,低于20Hz的属次声波。 点声源附近的声波为球面波,离声源足够远处的声波视为平面波,特殊情况(线声源)可形成柱面波。 声频(f )声速(c )和波长(入) 入=c / f 声速与媒质材料和环境有关: 空气中,c =+或c 20.05^273 t (m /s) 在水中声速约为1500 m/s t —摄氏温度 传播方向上单位长度的波长数,等于波长的倒数,即1/入。 有时也规定2 n /入为波数,用符号K表示。 质点速度 质点因声音通过而引起的相对于整个媒质的振动速度。声波传播不是把质点传走而是把它的振动能量传走。

声场 有声波存在的区域称为声场。声场大致可以分为自由场、扩散场(混响场)、半扩散场(半自由场)。 自由场 在均匀各向同性的媒质中,边界影响可忽略不计的声场称为自由场。在自由场中任何一点,只有直达声,没有反射声。 消声室是人为的自由场,是由吸声材料和吸声结构做成的密闭空间,静谧无风的高空或旷野可近似为自由场。 扩散场 声能量均匀分布,并在各个传播方向作无规则传播的声场,称为扩散场,或混响场。声波在扩散场内呈全反射。 人为设计的混响室是典型的扩散场。无论声源处于混响室内任何位置,室 内各处声压接近相等,声能密度处处均匀。 自由场扩散场(混响场)

声学基础知识

一、声学根底: 1、名词解释 〔1〕波长——声波在一个周期内的行程。它在数值上等于声速〔344米/秒〕乘以周期,即λ=CT 〔2〕频率——每秒钟振动的次数,以赫兹为单位 〔3〕周期——完成一次振动所需要的时间 〔4〕声压——表示声音强弱的物理量,通常以Pa为单位 〔5〕声压级——声功率或声强与声压的平方成正比,以分贝为单位 〔6〕灵敏度——给音箱施加IW的噪声信号,在距声轴1米处测得的声压 〔7〕阻抗特性曲线——扬声器音圈的电阻抗值随频率而变化的曲线 〔8〕额定阻抗——在阻抗曲线上最大值后最初出现的极小值,单位欧姆 〔9〕额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功 〔10〕音乐功率——以声音信号瞬间能到达的峰值电压来计算的输出功率〔PMPO〕 〔11〕音染——声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份 〔12〕频率响应——即频响,有效频响范围为频响曲线最顶峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围 2、问答 〔1〕声音是如何产生的? 答:世界上的一切声音都是由物体在媒质中振动而产生的。扬声器是通过振膜在空中振动,使前方和前方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。 〔2〕什么叫共振?共振声对扬魂器音质有影响吗? 答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振 当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动。当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递

相关文档