文档库 最新最全的文档下载
当前位置:文档库 › 用MATLAB分析状态状态空间模型

用MATLAB分析状态状态空间模型

用MATLAB分析状态状态空间模型
用MATLAB分析状态状态空间模型

线

实验报告

实验名称用MATLAB分析状态状态空间模型

系专业自动化班

姓名学号授课老师

预定时间实验时间实验台号

线

线

线

线

线

线

线

实验一MATLAB系统的传递函数和状态空间表达式的转换

实验一 MATLAB 系统的传递函数和状态空间表达式的转换 一、 实验目的 1、学习多变量系统状态空间表达式的建立方法; 2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数之间相互转换的方法; 3、掌握相应的MATLAB 函数。 二、 实验原理 设系统的模型如式(1.1)所示: ???+=+=D Cx y Bu Ax x ' x ''R ∈ u ∈R ’’’ y ∈R P (1.1) 其中A 为nXn 维系统矩阵、B 为nXm 维输入矩阵、C 为pXn 维输出矩阵,D 为直接传递函数。系统的传递函数和状态空间表达式之间的关系如式(1.2)所示 G(s)=num(s)/den(s)=C (SI-A)-1 B+D (1.2) 式(1.2)中,num(s)表示传递函数的分子阵,其维数是pXm ,den(s)表示传递函数的按s 降幂排列的分母。 表示状态空间模型和传递函数的MATLAB 函数如下: 函数ss (state space 的首字母)给出了状态空间模型,其一般形式是: sys=ss(A,B,C,D) 函数tf (transfer function 的首字母)给出了传递函数,其一般形式是:

G=tf(num ,den) 其中num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。 函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是: [A,B,C,D]=tf2ss(num,den) 函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是: [num,den]=ss2tf(A,B,C,D,iu) 其中对于多输入系统,必须确定iu 的值。例如,若系统有三个输入u 1,u 2,u 3,则iu 必须是1、2、或3,其中1表示u 1,2表示u 2,3表示u 3。该函数的结果是第iu 个输入到所有输出的传递函数。 三.实验步骤及结果 1、应用MATLAB 对下列系统编程,求系统的A 、B 、C 、D 阵,然后验证传递函数是相同的。 G(s)= ?? ????+++352^12s s s s 3+4s 2+5s+1 程序和运行结果:

实验八MATLAB状态空间分析报告

实验八 线性系统的状态空间分析 §8.1 用MATLAB 分析状态空间模型 1、状态空间模型的输入 线性定常系统状态空间模型 x Ax Bu y Cx Du =+=+ 将各系数矩阵按常规矩阵形式描述。 [][][]11 121120 10 1;;;n n n nn n n A a a a a a a B b b b C c c c D d ==== 在MA TLAB 里,用函数SS()来建立状态空间模型 (,,,)sys ss A B C D = 例8.1 已知某系统微分方程 22d d 375d d y y y u t t ++= 求该系统的状态空间模型。 解:将上述微分方程写成状态空间形式 0173A ??=??--??,01B ??=???? []50C =,0D = 调用MATLAB 函数SS(),执行如下程序 % MATLAB Program example 6.1.m A=[0 1;-7 -3]; B=[0;1]; C=[5 0]; D=0; sys=ss(A,B,C,D) 运行后得到如下结果 a = x1 x2 x1 0 1

x2 -7 -3 b = u1 x1 0 x2 1 c = x1 x2 y1 5 0 d = u1 y1 0 Continuous-time model. 2、状态空间模型与传递函数模型转换 状态空间模型用sys 表示,传递函数模型用G 表示。 G=tf(sys) sys=ss(G) 状态空间表达式向传递函数形式的转换 G=tf(sys) Or [num,den]=ss2tf(A,B,C,D) 多项式模型参数 [num,den]=ss2tf(A,B,C,D,iu) [z,p,k]=ss2zp(A,B,C,D,iu) 零、极点模型参数 iu 用于指定变换所需的输入量,iu 默认为单输入情况。 传递函数向状态空间表达式形式的转换 sys=ss(G) or [A,B,C,D]=tf2ss(num,den) [A,B,C,D]=zp2ss(z,p,k) 例 8.2 11122211220.560.050.03 1.140.2500.1101001x x u x x u y x y x -??????????=+??????????-????????????????=??????? ????? 试用矩阵组[a ,b ,c ,d]表示系统,并求出传递函数。

控制系统状态空间分析的 MATLAB 设计

《控制系统状态空间分析的MATLAB 设计》 摘要 线性系统理论主要研究线性系统状态的运动规律和改变这些规律的可能性与实施方法;它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。本文说明,线性变换不改变系统的传递函数,基于状态空间的极点配置不需要附加矫正装置,是改变系统指标的简单可行的重要技术措施;全维状态观测器与降维观测器不影响系统的输出响应。 关键词:状态反馈、极点配置、全维状态观测器、降维观测器 前言 线性系统理论是现代控制理论的基础,主要研究线性系统状态的运动规律 和改变这些规律的可能性与实施方法;建立和揭示系统结构、参数、行为和性能之间的关系。它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。 该报告结合以线性定常系统作为研究对象,分析控制系统动态方程,系统 可控标准型,线性变换传递函数及其不变性,系统可控性与可观测性。系统状态观测器及降维观测器对系统的阶跃响应的影响,并分别绘制模型,及其系统阶跃响应的仿真。 正文 1. 已知系统动态方程: x?=[?0.40?0.01100?1.49.8?0.02]x +[6.309.8]u y =[0 1]x 2. 设计内容及要求:

验证线性变换传递函数不变性,适当配置闭环适当配置系统闭环极点,使 σ%<15%、t s <4s ,以及当系统闭环极点为λ1,2=-3±j4时设计系统的降维状态观测器也使σ%<15%、t s <4s ,并绘制带反馈增益矩阵K 的降维状态观测器及其系统仿真。 3. 系统设计: 1)求系统可控标准型动态方程; >> A1=[-0.4 0 -0.01;1 0 0;-1.4 9.8 -0.02]; >> B1=[6.3;0;9.8]; >> C1=[0 0 1]; >> D1=0; >> G1=ss(A1,B1,C1,D1); >> n=size(G1.a); >> Qc=ctrb(A1,B1); >> pc1=[0 0 1]*inv(Qc); >> Pc=inv([pc1;pc1*A1;pc1*A1*A1]); >> G2 = ss2ss(G1,inv(Pc)); >> Gtf=tf(G2); 程序运行结果知n=3,原系统是可控的且可控标准型为: x?=[0 1 00 01?0.0980.006 ?0.42]x?+[001 ]u y ?=[61.74 ?4.99.8]x? 传递函数为: G (s )=9.8s 2?4.9s+61074 s 3+0.42s 2?0.006s+0.098 2)计算系统的单位阶跃响应 >> hold on >> grid on;hold on; >> step(G1,t,'b-.') >> step(Gtf,t,'r--')

实验八MATLAB状态空间分析

实验八 线性系统得状态空间分析 §8、1 用MATLAB 分析状态空间模型 1、状态空间模型得输入 线性定常系统状态空间模型 将各系数矩阵按常规矩阵形式描述。 [][] [] 11121120101;;; n n n nn n n A a a a a a a B b b b C c c c D d ====?L L L ?L ?L ? 在MA TLAB 里,用函数SS()来建立状态空间模型 例8、1 已知某系统微分方程 求该系统得状态空间模型。 解:将上述微分方程写成状态空间形式 , , 调用MATLAB 函数SS(),执行如下程序 % MATLAB Program example 6、1、m A=[0 1;-7 -3]; B=[0;1]; C=[5 0]; D=0; sys=ss(A,B,C,D) 运行后得到如下结果 a = x1 x2 x1 0 1 x2 -7 -3 b = u1 x1 0 x2 1 c =

x1 x2 y1 5 0 d = u1 y1 0 Continuous-time model 、 2、状态空间模型与传递函数模型转换 状态空间模型用sys 表示,传递函数模型用G 表示。 G=tf(sys) sys=ss(G) 状态空间表达式向传递函数形式得转换 G=tf(sys) Or [num,den]=ss2tf(A,B,C,D) 多项式模型参数 [num,den]=ss2tf(A,B,C,D,iu) [z,p,k]=ss2zp(A,B,C,D,iu) 零、极点模型参数 iu 用于指定变换所需得输入量,iu 默认为单输入情况。 传递函数向状态空间表达式形式得转换 sys=ss(G) or [A,B,C,D]=tf2ss(num,den) [A,B,C,D]=zp2ss(z,p,k) 例 8、2 11122211220.560.050.03 1.140.2500.1101001x x u x x u y x y x -??????????=+??????????-????????????????=??????? ?????&& 试用矩阵组[a ,b ,c ,d]表示系统,并求出传递函数。 % MATLAB Program example 6、2、m a=[-0、56 0、05;-0、25 0]; b=[0、03 1、14;0、11 0]; c=[1 0;0 1]; d=zeros(2,2); sys=ss(a,b,c,d) G1=tf(sys) G2=zpk(sys) 运行后得到如下结果

实验二利用MATLAB求取线性系统的状态空间模型的解

现代控制理论第一次上机实验报告 实验二 利用MATLAB 求取线性系统的状态空间模型的解 实验目的: 1、根据状态空间模型分析系统由初始状态和外部激励所引起的响应; 2、通过编程、上机调试,掌握系统运动的分析方法。 实验原理: 一、系统时域响应的求解方法 给定系统的状态空间模型: ()()()()()() x t Ax t Bu t y t Cx t Du t =+=+ (2.1) 设系统的初始时刻00t =,初始状态为(0)x ,则系统状态方程的解为 0()0 ()(0)()(0)()t At At A t At A t x t e x e e Bu d e x e Bu d ττττττ--=+=+?? (2.2) 输出为 ()0()(0)()()t At A t y t Ce x C e Bu d Du t τττ-=++? (2.3) 包括两部分,第一部分是由系统自由运动引起的,是初始状态对系统运动的影响;第二部分是由控制输入引起的,反映了输入对系统状态的影响。输出()y t 由三部分组成。第一部分是当外部输入等于零时,由初始状态0()x t 引起的,故为系统的零输入响应;第二部分是当初始状态0()x t 为零时,由外部输入引起的,故为系统的外部输入响应;第三部分是系统输入的直接传输部分。 实验步骤 1、构建系统的状态空间模型,采用MA TLAB 的m-文件编程; 2、求取系统的状态和输出响应; 3、在MA TLAB 界面下调试程序,并检查是否运行正确。

实验要求 1、在运行以上程序的基础上,应用MA TLAB 验证一个振动现象可以由以下系统产生: 01()10x t x ??=??-?? 证明该系统的解是 cos sin ()(0)sin cos t t x t x t t ??=??-?? 假设初始条件0(0) 1x ??=???? ,用Matlab 观察该系统解的形状。 m-程序如下: A=[0 1;-1 0]; B=[0;0]; D=B; C=[1 0;0 1]; sys=ss(A,B,C,D); x0=[0;1]; t=[0:0.01:20]; [y,T,x]=lsim(sys,u,t,x0) subplot(2,1,1),plot(T,x(:,1)) xlabel('Time(sec)'),ylabel('X_1') subplot(2,1,2),plot(T,x(:,2)) xlabel('Time(sec)'),ylabel('X_2') 仿真结果如下:

利用MATLAB对状态空间模型进行分析

实验2 利用MATLAB 对状态空间模型进行分析 2.1 实验设备 同实验1。 2.2 实验目的 1、根据状态空间模型分析系统由初始状态和外部激励所引起的响应; 2、通过编程、上机调试,掌握系统运动的分析方法。 2.3 实验原理说明 给定系统的状态空间模型: ) ()()()()()(t t t t t t Du Cx y Bu Ax x +=+=& (2.1) 设系统的初始时刻,初始状态为,则系统状态方程的解为 )0(x 00=t ∫∫??+=+=t t t t t t e e e e e t 0 )(0 d )()0(d )()0()(τ ττ τττ Bu x Bu x x A A A A A (2.2) 输出为 )(d )()0()(0 )(t e e t t t t Du Bu C x C y A A ++=∫?τττ (2.3) )(t x 包括两部分,第一部分是由系统自由运动引起的,是初始状态对系统运动的影响; 第二部分是由控制输入引起的,反映了输入对系统状态的影响。输出由三部分组成。第一部分是当外部输入等于零时,由初始状态引起的,故为系统的零输入响应;第二 部分是当初始状态为零时,由外部输入引起的,故为系统的外部输入响应;第三部分是系统输入的直接传输部分。 )(t y )(0t x )(0t x MATLAB 函数: 函数initial(A,B,C,D,x0)可以得到系统输出对初始状态x0的时间响应; 函数step(A,B,C,D)给出了系统的单位阶跃响应曲线; 函数impulse(A,B,C,D) 给出了系统的单位脉冲响应曲线; 函数 [y,T,x]=lsim(sys,u,t,x0) 给出了一个状态空间模型对任意输入的响应,其中的sys 表示贮存在计算机内的状态空间模型,它可以由函数sys=ss(A,B,C,D)得到,x0是初始状态。 u 2.4 实验步骤 1、构建系统的状态空间模型,采用MATLA 的m-文件编程; 2、求取系统的状态和输出响应; 3、在MATLA 界面下调试程序,并检查是否运行正确。 例2.1 考虑由以下状态方程描述的系统: ?? ? ???=????????????????????=??????12)0()0(,51010212121x x x x x x && 求该系统状态对初始状态的时间响应。 编写和执行以下m-文件

实验八MATLAB状态空间分析知识讲解

实验八M A T L A B状态 空间分析

实验八 线性系统的状态空间分析 §8.1 用MATLAB 分析状态空间模型 1、状态空间模型的输入 线性定常系统状态空间模型 x Ax Bu y Cx Du =+=+ 将各系数矩阵按常规矩阵形式描述。 [][][]11 121120 10 1;;;n n n nn n n A a a a a a a B b b b C c c c D d ==== 在MATLAB 里,用函数SS()来建立状态空间模型 (,,,)sys ss A B C D = 例8.1 已知某系统微分方程 22d d 375d d y y y u t t ++= 求该系统的状态空间模型。 解:将上述微分方程写成状态空间形式 0173A ??=??--??,01B ??=???? []50C =,0D = 调用MATLAB 函数SS(),执行如下程序 % MATLAB Program example 6.1.m A=[0 1;-7 -3]; B=[0;1]; C=[5 0]; D=0;

sys=ss(A,B,C,D) 运行后得到如下结果 a = x1 x2 x1 0 1 x2 -7 -3 b = u1 x1 0 x2 1 c = x1 x2 y1 5 0 d = u1 y1 0 Continuous-time model. 2、状态空间模型与传递函数模型转换 状态空间模型用sys表示,传递函数模型用G表示。 G=tf(sys) sys=ss(G) 状态空间表达式向传递函数形式的转换 G=tf(sys) Or [num,den]=ss2tf(A,B,C,D)多项式模型参数[num,den]=ss2tf(A,B,C,D,iu) [z,p,k]=ss2zp(A,B,C,D,iu)零、极点模型参数 iu用于指定变换所需的输入量,iu默认为单输入情况。传递函数向状态空间表达式形式的转换 sys=ss(G)

相关文档
相关文档 最新文档