文档库 最新最全的文档下载
当前位置:文档库 › 第1章线性空间与线性变换

第1章线性空间与线性变换

第一章线性空间与线性变换

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R )和复数域(记为C ),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有0αα+=; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间.

1.什么是线性空间什么是线性变换线性变换

1. 什么是线性空间?什么是线性变换?线性变换的秩如果小于空间的维数将会怎样?平方的秩? 2. 描述一下密度矩阵的特征,纯态和混合态的区别(表现在密度矩阵的秩) 3. 什么是U 变换,U 变换对应的矩阵满足什么样的特点。U 矩阵一定是可对角化的吗?对应欧氏空 间的正交变换有什么特点?正交变换对应的矩阵的矩阵元一定是实的吗? 4. 什么是厄米算符,厄米算符的物理意义?对应的矩阵具有什么样的特点?厄米算符的本征值具有 什么样的特征?厄米算符对应的矩阵的矩阵元是实的吗?厄米算符是否可以表示成实矩阵,特点是什么?互相对易的厄米算符具有共同的本征态,具有共同本征态的算符一定是对易的吗?具有共同本征值的呢?厄米算符的和是厄米算符吗?厄米算符的乘积呢?直积呢?不对易的厄米算符一定不可交换吗? 5. exp (A )exp (B )=exp (A+B )?LnA 怎么计算? 6. 简单介绍一下三种picture 的物理意义,态的特征,算符的特征。为什么采用这三种picture ,只有 这三种picture 吗?你觉得相互作用picture 可以用在什么地方?Heisenberg picture 的波函数不随时间演化,本征态呢?与哈密顿量对易算符的本征态呢?本征值怎么样? 7. 传播子的物理意义?路径积分与惠更斯原理有什么联系吗?两个光子能够叠加吗?最小作用原 理和路径积分的联系。 8. 什么是态的纠缠?什么是直积态? 9. 量子力学的五大假设是什么?什么是测量假设?测量假设可以从量子力学的其它假设推导出来 吗?能够从态演化过程推导出来吗?它是一个物理过程吗? 10. EPR 佯谬讲了一些什么内容?说明了什么物理本质? 11. Bell 不等式怎么写?它有什么作用?2),(),(),(),(≤-++=''''b a b a b a b a u u E u u E u u E u u E S 12. 在quantum teleportation 中,对于粒子1的初态10βαψ+=,如果根据粒子1和2的Bell 基测 量结果推知粒子3的量子态为10βαψ-=,10αβψ+=以及10αβψ-=,怎么样才能是粒子3的态恢复到粒子1原来的量子态? 13. 什么是定态? 第二次作业中的2.2题中的(e)小问, 为什么在上一次测量x μ得到0μ+之后隔一个时间间隔t ?再测量x μ,得到0μ+的几率并不完全等于1? 1). 若体系的H 不显含时间t ,在初始时刻(t=0)体系处于某一个能量本征态)()0,(E ψψ=,其中),(),(t r E t r H E E ψψ=,则 ]/exp[)(),( iEt t E -=ψψ

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换.基向量的像可以被基线性表出: ?? ? ?? ? ?+++=+++=+++=. , , 22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ??? ??? ? ??=nn n n n n a a a a a a a a a A 212222111211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ?? ?+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

第六章 线性空间与线性变换

第六章 线性空间与线性变换 柴中林 (A) 1. 检验下列集合对于所指的线性运算是否构成实数域上的线性空间: (1)全体n 阶上三角矩阵,对矩阵的加法和数量乘法。 (2)平面上不平行于某一向量的全部向量所成的集合,对向量的加法和数乘运算。 (3)平面上的全体向量对于通常的加法和如下定义的数量乘法:k 。a =0 . 2. 设V 1和V 2都是线性空间V 的子空间,如果V 1∪V 2也是的子空间,求证有:V 1 V 2或V 2 V 1。 3. 检验下列各向量集合是否是R 3的子空间: (1)},0|),,{(213211R x x x x x x V i ∈≥=, (2)}(|),,{(3212有理数)Q x x x x V i ∈=. 4. R 4中,求向量ξ在基α1,α2,α3,α4下的坐标,已知: (1)α1(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), ξ=(1,2,1,1)。 (2)α1(1,1,0,1), α2=(2,1,3,-1), α3=(1,1,0,0), α4=(1,1,-1,-1), ξ=(0,0,0,1)。 5. R 4中,求由基α1,α2,α3,α4到基β1,β2,β3,β4的过渡矩阵,并求向量ξ在指定基下的坐标。已知: (1)α1=(1,0,0,0), α2=(0,1,0,0), α3=(0,0,1,0), α4=(0,0,0,1), β1=(2,1,-1,1), β2=(0,3,1,0), β3=(5,3,2,1), β4=(6,6,1,3)。 ξ=(1,2,1,1)在基β1,β2,β3,β4下的坐标。 (2)α1=(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), β1=(1,1,0,1), β2=(2,1,3,1), β3=(1,1,0,0), β4=(0,1,-1,-1)。 ξ=(1,0,0,-1)在基α1,α2,α3,α4下的坐标。 6. 向量α、β、γ满足0321=++γβαk k k ,且k 1k 2≠0, 求证向量组α、β和向量组β、γ生成相同的向量空间。 7. 判断下面所定义的变换,哪些是线性变换,哪些不是: (1)在线性空间V 中,T (ξ)=ξ+α,其中α∈V 是一已知向量, (2)在R 3 中, T T x x x x x x x T ),,()),,((233221321+=, (3)在R 3中,T T x x x x x x x x T ),,2()),,((13221321+-=, (4)在P[x]n 中,T(f (x ))=f (x +1). 8. 证明线性变换将一个子空间变为一个子空间。 9. 已知矩阵A 与B 相似,C 与D 相似,证明: ???? ??C A 00与???? ??D B 00相似。 10. 设α1,α2,α3,α4是4维线性空间V 的一组基, 线性变换T 在这组基下的矩阵为: ??????? ??--------=7113102/52/92/1323133425T ,

第六章线性空间与线性变换.

第六章线性空间与线性变换 1.验证: (1)2阶矩阵的全体S i ; ⑵主对角线上的元素之和等于0的2阶矩阵的全体S 2; (3)2阶对称矩阵的全体S 「 对于矩阵的加法和乘数运算构成线性空间, 解(1)设A,B 分别为二阶矩阵,则A,B S i 显然 (A B) S i ,k A S i ,从而对于矩阵的加法和乘数运算构成线性空间. 0 0 1 是S 1的一个基. a b de A B ⑵设 c a , f d A,B S 2 (a d) c b ka kb A B S 2 kA S 2 c a a d kc ka 1 0 0 1 0 0 1 2 3 0 1 0 0 1 0 是 ?个 基. ⑶设A, B S 3 ,则 T A A,B T B (A B)T A T B T A B ,从而(A B) S 3 (kA) kA 从,故kA S 3,所以对于加法和乘数运算构成线性空 间. 2.验证:与向量(0,0,1) 不平行的全体3维数组向量,对于数组向量 的 加法和乘数运算不构成线性空间. 解 设V 与向量(0,0,1)不平行的全体三维向量,设「1 (1,1,0) r 2 ( 1,0,1),则「1,「2 V .但「1 「2 (0,0,1) V 即 V 不是线性空间. 1 0 0 1 0 0 0 0 2 1 0 3 0 1 是S 3的一个基. 1 并写出各个空间的一个基.

3 .设U 是线性空间V 的一个子空间,试证:若U 与V 的维数相等,则 U V . 证明设1 2 r 为U 的一组基,它可扩充为整个空间 V 的一个基, 由 于dim(U) dim(V)从而i 2 r 也为V 的一个基,贝卩:对于x V 可 以表示为x ki 1 k 2 2 kr r .显然,x U ,故V U ,而由 已知知U V ,有U V . 4 .设V r 是n 维线性空间V n 的一个子空间,a 1, a r 是V r 的一个基.试 证:V n 中存在元素a r 1, a n ,使印, a 2, a r 冃仆,a n 成为V n 的一个 基. 证明 设r n ,则在V n 中必存在一向量a r 1 V r ,它不能被ai ,a 2, a r 线性表示,将 a r 1 添加进来,则a i ,a 2,a 3, a r 1是线性无关的.若 r 1 n ,则命题得证,否则存在a r 2 L(a 1,a 2, ,a r 1)则 a 1,a 2, ,a r 2线性无关,依此类推,可找到n 个线性无关 的向量 a 1,a 2, ,a n ,它们是V n 的一个基. 5 .在 R 3 中求向量 (3,7,1) 在基 1 (1,3,5) , 2 (6,3,2), 3 (3,1,0/ 下的坐标. 解 1 (1,0,0), 2 (0,1,0), 3 (0O1) 1 6 3 A 3 3 1 ( T T (1 , 2 , T )(:, T 2 , ;)A 5 2 0 X 1‘ X 1 2 6 3 x 1 X 2' A 1 X 2 5 15 8 x 2 坐标变换公式: X 3‘ X 3 9 28 15 X 3 X 1' 2 6 3 3 33 X 2‘ 5 15 8 7 82 故所求为X 3' 9 28 15 1 154 ? 所求坐标为33, 82,154

线性空间和线性变换

故 T U A U A A ))((11*--=, 令 T U A P )(1-=,则P 可逆,且P P A T =*, 所以*A 为正定矩阵. 例28(1999.Ⅲ) 设A 为n m ?实矩阵,E 为n 阶单位矩阵,已知矩阵A A E B T +=λ, 试证:当0λ>时,矩阵B 为正定矩阵. 证 因为 B A A E A A E B T T T T =+=+=λλ)(, 所以B 为n 阶实对称矩阵, 且对任意的实n 维向量x ,有 ,)()(A Ax x A A E x B x T T T T T T T +=+=λλ 当0x ≠时,有 0,T x x > 0)(>A Ax T , 于是当0λ>时,0=>x B x T T , 所以B 为正定矩阵. 例29(1999.Ⅰ) 设A 为m 阶实对称矩阵且正定,B 为n m ?实矩阵,T B 为B 的转置矩阵, 试证:AB B T 为正定矩阵的充分必要条件是R (B )=n . 证 必要性 设AB B T 为正定矩阵,则对任意的实n 维列向量0x → → ≠,有 ()0T T x B AB x → → >,即0)()(>x B A x B T . 于是当0x ≠时,有0Bx ≠, 因此齐次线性方程组B x =0只有零解,故n B R =)(. 充分性 因为AB B B A B AB B T T T T T ==)(, 所以AB B T 为实对称矩阵, 若R (B )=n ,则B x =0只有零解,从而对任意的实n 维列向量0x ≠均有0Bx ≠, 又A 为正定矩阵,所以对任意的实n 维列向量0Bx ≠,有 0)()(>x B A x B T

相关文档
相关文档 最新文档