文档库 最新最全的文档下载
当前位置:文档库 › 室内新风量检测指南

室内新风量检测指南

室内新风量检测指南
室内新风量检测指南

室内新风量检测作业指南

1编制目的

根据《民用建筑工程室内环境污染控制规范》GB50325-2010要求,民用建筑工程验收时,对采用中央空调的工程,应进行室内新风量的检测,特制定本作业指南。

2适用范围

适用于集中式空调系统、半集中式空调系统室内新风量检测。

应优先采用CO示踪气体法检测新风量,对集中式空调系统,抽检的房间面积≥22时,可采用风量直接检测法检测新风量。500m

如能确定进入室内的空气全部为新风时,优先采用CO示踪气体法检测新风量;如2送入室内的空气是新风与回风混合后的空气,则应采用风量直接检测法测出总送风量后,根据实测新回风比计算出新风量。

3术语

集中式空调系统:是指系统所有空气处理设备集中设置在一个空调机房内的中央空调系统。

半集中式空调系统:是指系统除设集中空调机房外,还设有分散在空调房间的空气处理装置的中央空调系统。

第一法CO示踪气体法24检测依据

《公共场所室内新风量测定方法》GB/T?

5原理

采用CO示踪气体浓度衰减法。在待测室内通入适量CO示踪气体,由于室内、外

22空气交换,CO示踪气体的浓度呈指数衰减,根据浓度随着时间的变化的值,计算出室2内的新风量,再根据室内设计人数,计算出人均新风量结果。

6仪器和材料

气体浓度测定仪,最低检出限≥1ppm,可连续自动测读。CO轻便型2摇摆电扇。

示踪气体。

测定步骤7.

室内空气总量的测定

7.1.1用尺测量并计算出室内容积V(m)。317.1.2室内应无家具等物品,用尺测量并计算出室内梁、柱等凸出物的总体积V(m)。327.1.3计算室内空气容积,见式。

V?V?V()21V;

m————室内空气容积,式中:3V; m————室内容积,31V m————室内物品容积,32检测点的设置浓度检测点数应按表设置,当房间内有2个及以上检测点时,应采用对角线、斜线、梅CO室内2花状均衡布点。

浓度检测点数设置CO表室内2

房间使用面积(m)检测点数(个)21 <50

2 <100 ≥503

<500

100 测定的准备工作7.3.1按仪器使用说明校正仪器,校正后待用。7.3.2打开电源,确认供电正常。用氮气归零。7.3.3 测定浓度。7.4.1测定环境本底CO24g/m,按室内空气量计算,释放~CO气体2关闭门窗及空调系统,在室内通入适量的7.4.2CO,同322示踪气体充分混合均匀。按空调的正常工作状态开启空调

系CO),使时用风扇扰动空气(约3~5min2间隔自动测气体浓度测定仪,人员离开现场,以15minCO统,按对角线、斜线或梅花状布点后,开启2 590min浓度,持续以上,舍弃第一个测读数据,读取之后不少于个连续测读数据。CO定2计算换气率计算7.5.1.

浓度值,不少于5次。用回归方程法计算换气率,见式7.5.1。CO15min间隔的有效取2?????C ln At ln CC?C??(7.5.1)0012C示踪气体浓度,mg/m;

CO式中:————测量开始时321C示踪气体浓度,mg/m;

COt时间的————322A;

h————换气率,-1C浓度,mg/m; CO————环境本底320t————测定时间,h。

7.5.2新风量计算,见式。

Q?AV(7.5.2)

Q/h;

m————新风量,式中:3A; h————换气率,-1V————室内空气容积,m。3注1:当房间内有2个及以上检测点时取各点的平均值作为该房间的新风量检测值。

人均新风量的计算。依据设计或规范要求,按照该房间设计人数,计算出人均新风量。

Q=Q/人数()

第二法风量直接检测法

8检验依据

《公共场所集中式空调通风系统卫生规范》卫生部

《公共建筑节能检测标准》(JGJ/T177-2009)

《采暖通风与空气调节工程检测技术规程》(JGJ/T260-2011)

《通风与空调系统性能检测规程》(DGTJ08-802-2005)中有关系统风量及风口风量检测方法。

9原理

对由中央空调系统来保障室内空气环境的空调房间来说,室内新风补给方式有二种,一种是独立新风补给,一种是与回风混合后补给。半集中式中央空调主要采用前一种新风补给方式,集中式中央空调主要采用后一种新风补给方式。二种新风补给方.

式的检测方法相同,但计算方法不同,前一种可直接检测出室内新风量,后一种则需要通过实测新回风比计算出其中的新风量。

风量检测方法有二种,一种是“管内风速法”,一种是“风口风速法”。

管内风速法是通过测量某个风管截面内各测点风速或动压,计算出该截面内的平均风速或平均动压后,再计算通过该截面的风量。如果管内通过的是新风,则检测出的为新风量;如果管内通过的是新回风混合后的送风,则需要通过实测新回风比计算出其中的新风量。测试截面位置需要根据空气流动规律来选择,管内风速或动压可以用风速仪直接测得或用皮托管加微压计测得。当室内送风有不止一根送风管时,应分别检测各风管的送风量再累积计算总新风量。

风口风速法是通过测量室内全部送风口的风量后再累计出该室内总的送风量,如果各风口的送风全部为新风时,则累计结果即为该室内总新风量;如果各风口的送风量是新回风混合后的送风量,则累计结果需要通过实测新回风比计算出其中的新风量。

风口风量的检测可以采用风量罩法或风口系数法。风量罩法就是用风量罩直接在送风口处测得其送风量。风口系数法则是根据不同风口类型,先测得各测点上的

瞬时风速再平均或直接测得平均风速(如果风速仪有该功能且检测人员掌握该方法时,推荐使用),再根据风口测试截面积及风口修正系数计算出该风口的送风量。风口风量检测推荐使用风量罩法,风口系数法仅限网状风口、单层百叶风口、双层百叶风口及防雨百叶风口使用。

风量检测应优先采用“管内风速法”。在送风管路受吊顶内部结构、吊顶形式影响或虽不受吊顶影响但无法选择出适宜的测试截面位置时,采用“风口风速法”。10仪器设备

皮托管

10.1.1皮托管修正系数

皮托管有标准皮托管和S型皮托管二种,其中S型皮托管主要用于除尘系统管内风速的测定,通风与空调系统管内风速测定应使用标准皮托管。

KK,在计算平均风速时的和风压修正系数皮托管的修正系数有风速修正系数pv

用法不同。.

2P2KP dpdpp或?V?KV v??皮托管修正系数应取检定或校准报告给出的系数类型及

其数值。

10.1.2微压计:精确度应不低于2%,最小读数应不大于2Pa。

10.1.3水银玻璃温度计或电阻温度计:最小读数应不大于1?C。

风速计

10.2.1热电风速仪:最小读数应不大于0.1m/s。

10.2.2水银玻璃温度计或电阻温度计:最小读数应不大于1?C。

风量罩

11检测步骤

测试截面位置选择

管内风量的检测精度与测试截面位置的选择有很大关系。测试截面位置的选择,应远离产生涡流的局部阻力管件,选择气流比较均匀、稳定,流线比较平直的直管段上。

测试截面位置一般选择在距上游局部阻力管件大于或等于5倍管径(或矩形风管长边尺寸),并距下游局部阻力管件大于或等于2倍管径(或矩形风管长边尺寸)的位置。局部阻力管件前与后是按气流流动方向来划分的。测试截面位置选择应同时满足上述二个要求,当条件受限不能满足上述条件要求时,应尽可能选择气流稳定的断面,并适当增加测点数量和测试频次。测点前直管段的长度必须大于测点后直管段的长度。

测点布置

11.2.1矩形风管测点布置

11.2.1.1《公共建筑节能检测标准》(JGJ/T177-2009)附录E的相关规定。

矩形风管测点数及布置方式应符合表1及图1-1的规定。

个测点时测点布置25矩形风管1-1图

表1矩形断面测点位置

横线数或每条横线测点测点位置X/L或Y/H

上的测点数目 1

2

5

3

4

5

1

2

3

6

4

5

6

1

2

3

4 7

5

6

7

注意事项

1、当矩形截面的纵横比(长短边比)小于时,横线(平行于短边)的数目和每条横线上的测点数目均不宜少于5个。当长边大于2m时,横线(平行于短边)的数目宜增加到5个以上。

2、当矩形截面的纵横比(长短边比)大于或等于时,横线(平行于短边)的数目宜增加到5个以上。

3、当矩形截面的纵横比(长短边比)小于或等于时,也可按等面积划分小截面,每个小截面边长宜为200~250mm。

(DGTJ08-802-2005)

《通风与空调系统性能检测规程》11.2.1.2.

矩形断面的测点数可按等面积划分成若干个等面积的矩形小区域,每个小区域的边长及以下的;对于短边在250mm(200~250mm,测点布置在每个小区域的中心见图1-2) 矩形风管,中间增加布置两点。1-2矩形风管测点布置示意图图 11.2.1.3

矩形风管测点布置方法应用如果矩形风管测试截面位置选择得当,且测点布置数量符合一定要求,那么测点数量增加到一定程度后对检测精度的影响就会减小。从上述二种测点布置方法来看,则适合小截面风管

DGTJ08-802-2005JGJ/T177-2009适合大截面风管的测点布置,而的测点布置。通风管道的截面尺寸是根据其输送空气量的大小来确定的。一般新风量只占到总空气交换量的百分之十左右,如果新风独立补给,则送风管的截面尺寸要比与回风混合后补给的送风管道小得多。因此,我们建议:独立补给新风管道的测点布置参照的要求,新风与回风混合后补给的送风管道的测点布置参照

DGTJ08-802-2005的要求。JGJ/T177-2009 圆形风管测点布置11.2.2

按直径大小将截面划分成若干个面积相等的同心圆,在各圆环的中心圆与相互垂直的两条直径的交点处设测点,中心重复计数,三个圆环的划分见示意图,计算方法如下:1n?2rr?(mm) n m2r—风管的半径,mm;

r—从风管中心到第n个测点的距离,mm;n n—从风管中心算起的圆环顺序;m—风口截面所划分的圆环数。个圆环时的测点布置32圆形风管图表2圆形截面测点布置

圆形风管直径(mm)

≤200 200~400

400~700

>700

6

4

3

) (圆环数个5

测点到管壁的距离(r的倍数测点编号)

1

JGJ/T177-2009附录E的相关规定适用不同截面风管的测点布置,因此不推荐

使用DGTJ08-802-2005的测点布置方法。

11.2.3管壁测孔开口要求

如果管道上有预留测孔的,则优先利用预留测孔并注意核查测孔开设与规范要求是否一致。如果管道上没有预留测孔或预留测孔不满足规范要求的,则根据管道类型及其规格按下列要求在管道一侧或两侧开设测孔。

矩形风管测试断面测点孔应开在长边上,如果短边长超过了皮托管或风速仪测杆长度,则还应该在别一长边对应的位置上开孔,以保证测杆能到达测点位置测取风速。

圆形风管测试断面测点孔开在正交线两则,如果管径超过了皮托管或风速仪测杆长度,则应按正交线开四个孔,以保证测杆能到达测点位置测取风速。

测孔大小应比风速仪测杆最粗直径或皮托管直径大2mm,检测工作结束后,应用橡胶塞或软木塞封堵,风管有保温的则应恢复保温。

11.2.4风管截面尺寸测量

管道测试截面位置确定后,应先测量管道的尺寸并对照规范要求确定测点数目及各测点距离管壁的距离。

11.3测量

管内风速法测量风量时,其风速的取得可以用风速仪直接测得或用皮托管加微压计测得动压后换算成风速,相应的可以将这二种不同的检测方法分为:风速法和风压法。.

11.3.1风速法

11.3.1.1准备工作:调节风速仪的零点与满度。

V)的测定:将风速仪放入风管内,测定各测点风速,以11.3.1.2风管内平均风速(全部测点风速算术平均值作为检测结果。

11.3.1.3计算公式如下:

3/h)(11.3.1)

(m3600F?k?Q?V?1c Q3/h

—风管实测风量,m c V—风管实测平均风速,m/s

2 mF—风管测试截面断面积,—仪器修正系数k1仪器显示风速与实际风速是否需要修正及其修正系数,应以“仪器检定后确认使用报告”为准。

11.3.2风压法

11.3.2.1准备工作:检查微压计显示是否正常,微压计与皮托管连接是否漏气。

11.3.2.2动压(P)的测量:将皮托管全压出口与微压计正压端连接,静压管出口与d微压计负压端连接。将皮托管插入风管内,在各测点上使皮托管的全压测孔正对着气流方向,偏差不得超过10°,测出各点动压。逐点进行测量,每点宜进行2次以上测量,取平均值。

11.3.2.3新风温度(t)的测量:一般情况下可在风管中心的一点测量。将水银玻璃温度计或电阻温度计插入风管中心测点处,封闭测孔,待温度稳定后读数,不能将温度计取出后再读数。

11.3.2.4皮托管法风量(Q)的计算:

均方根法计算平均动压公式如下:

P?P?.....?P dn1dd22)P?((11.3.2-1)

dp nPPP各测点的动压值,Pa;式中:、….2ddnd1P为测试截面的平均动压值,Pa;dp n为测试截面上测点的总个数,个。

测试截面平均风速按下式计算:

2P2KP dpdpp(11.3.2-2)

或??KVV v??V测试截面上的平均风速,m/s;式中:K皮托管的风速修正系数(检定或校准证书给出的修正系数);v皮托管的风压修正系数(检定或校准证书给出的修正系数);K p B3??;空气密度,kg/m,349?0.273.15?t) hPa(百帕B大气压力, t管内空气温度,℃)的计算公式如下:实测风量(Q

3/h)(11.3.2-3)

(m3600F??Q?V3/h;通过测试截面的风量,m 式中:Q2; F测试截面面积,m12风口风速法

风口风速检测应符合下列规定:

1当风口为格栅或网格风口时,可用叶轮式风速仪紧贴风口平面测定风速,当风口面积较大时,可用定点测量法,测点不应少于5个,计算在风口断面的平均风速,检测方法如图;

2当风口为散流器风口时,检测方法如图,并对结果进行修正。

图各种形式风口测点布置图用风速仪测定

a—较大矩形风口;b—较小矩形风口;散流器出口平均风速

c—条缝形风口;d—圆形风口

3当风口为条缝形风口或风口气流有偏移时,应临时安装长度为~1.0m断面尺寸与风口相同的短管进行测定。

4风口的平均风速按下式计算:

?V?V?(m/s)i n i?1V风口测试断面上的平均风速,(m/s);式中:V第n1

i个测点的风速,(m/s);i(个),测点总数n

注:风口测点布置方法可参照DGTJ08-802-2005之4.2.2的有关要求。

5实测风量(Q)的计算公式如下:

3/h)

(m3600F?K?K?V?Q?213/h;m 式中:Q通过测试风口的风量,K风口修正系数,防雨百叶风口取,双层百叶风口取,单层百叶风口取,网状风口1取,敞口风口取;K仪器修正系数;22;m F风口测试断面面积,风口风量的检测应符合下列规定:12.2.1测量仪表:风速仪或风量罩,宜采用风量罩。

12.2.2检测方法

风速计法:可采用之1和2的方法或制作辅助风管进行检测。辅助风管的截面尺寸应与风口内截面尺寸相同,长度不小于2倍风口边长;利用辅助风管将待测风口罩住,保证无漏风;在辅助风管出口平面上,按测点不少于6点均匀布置测点;依据仪表的操作规程,用风速仪测定各点风速;以风口截面平均风速乘以风口截面积计算风口风量,风口截面平均风速为各测点风速测量值的算术平均值。风量罩法:根据待测风口的尺寸、面积,选择与风口的面积较接近的风量罩罩体,且罩体的长边长度不得超过风口的长边长度的3倍;风口的面积不应小于罩

室内新风量检测指南

室内新风量检测作业指南 1编制目的 根据《民用建筑工程室内环境污染控制规范》GB50325-2010要求,民用建筑工程验收时,对采用中央空调的工程,应进行室内新风量的检测,特制定本作业指南。 2适用范围 适用于集中式空调系统、半集中式空调系统室内新风量检测。 应优先采用CO 2 示踪气体法检测新风量,对集中式空调系统,抽检的房间面积≥500m2时,可采用风量直接检测法检测新风量。 如能确定进入室内的空气全部为新风时,优先采用CO 2 示踪气体法检测新风量;如送入室内的空气是新风与回风混合后的空气,则应采用风量直接检测法测出总送风量后,根据实测新回风比计算出新风量。 3术语 3.1集中式空调系统:是指系统所有空气处理设备集中设置在一个空调机房内的中央空调系统。 3.2半集中式空调系统:是指系统除设集中空调机房外,还设有分散在空调房间的空气处理装置的中央空调系统。 第一法CO 2 示踪气体法 4检测依据 《公共场所室内新风量测定方法》GB/T?18204.18-2000 5原理 采用CO 2示踪气体浓度衰减法。在待测室内通入适量CO 2 示踪气体,由于室内、外 空气交换,CO 2 示踪气体的浓度呈指数衰减,根据浓度随着时间的变化的值,计算出室内的新风量,再根据室内设计人数,计算出人均新风量结果。 6仪器和材料 6.1轻便型CO 2 气体浓度测定仪,最低检出限≥1ppm,可连续自动测读。 6.2摇摆电扇。 6.3CO 2 示踪气体。

7测定步骤 7.1室内空气总量的测定 7.1.1用尺测量并计算出室内容积V 1(m 3)。 7.1.2室内应无家具等物品,用尺测量并计算出室内梁、柱等凸出物的总体积V 2(m 3)。 7.1.3计算室内空气容积,见式7.1。 12V V V =-(7.1) 式中:V ————室内空气容积,m 3; 1V ————室内容积,m 3; 2V ————室内物品容积,m 3 7.2检测点的设置 室内CO 2浓度检测点数应按表7.2设置,当房间内有2个及以上检测点时,应采用对角线、斜线、梅花状均衡布点。 表7.2室内CO 2浓度检测点数设置 7.3测定的准备工作 7.3.1按仪器使用说明校正仪器,校正后待用。 7.3.2打开电源,确认供电正常。 7.3.3用氮气归零。 7.4测定 7.4.1测定环境本底CO 2浓度。

低应变反射波法检测细则

低应变反射波法检测 1适用范围 本细则适用于低应变反射波法检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。其有效检测桩长范围应通过现场试验确定。 2编制依据 《建筑基桩检测技术规范》JGJ 106-2014。 3检测仪器设备 检测仪器设备主要为RS-1616K(S)基桩动测仪、力锤、力棒。 4受检桩种类及要求 4.1 受检桩种类 1、混凝土预制桩 2、混凝土灌注桩 4.2 受检桩要求 4.2.1受检桩混凝土强度至少达到设计强度的70%,且不小于15MPa。 4.2.2桩头的材质、强度、截面尺寸应与桩身基本等同。 4.2.3桩顶面应平整、密实,并与桩轴线基本垂直。 5现场检测 5.1准备工作 5.1.1收集工程桩的桩型、桩长、桩径、设计桩身混凝土强度、施工记录及地质勘察报告等有关技术资料。 5.1.2检查桩顶条件和桩头处理情况 受检桩桩顶的混凝土质量、截面尺寸应与设计条件基本相同。 灌注桩应凿去桩顶浮浆或松散、破损部分,并露出坚硬的混凝土表面;桩顶平面应平整干净无积水,必要时宜采用便携式砂轮机磨平;妨碍正常测试的桩顶外露主筋应割掉。 预应力管桩当法兰盘与桩身混凝土之间结合紧密时,可不进行处理,否则,应采用电锯将桩头锯平。 当桩头与承台或垫层相连时,应将桩头与混凝土承台或垫层断开。 5.1.3检查仪器设备,使测试系统各部分之间匹配良好。 5.2现场仪器设备配置(如下图):

5.3测量传感器的选择和安装 5.3.1传感器的选择 检测长桩的桩端反射信息或深部缺陷时,应选择低频性能好的传感器;检测短桩或桩的浅部缺陷时,应选择加速度传感器或宽频带的速度传感器。 5.3.2传感器的安装 1、传感器安装应采用化学粘结剂或石膏、黄油等粘贴,不应采用手扶式。安装时必须保证传感器与桩顶面垂直。 2、激振点和传感器安装位置应避开钢筋笼的主筋影响。 3、实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90度,激振点和测量传感器安装位置宜为桩壁厚的1/2处。 5.4激振操作 1、激振方向应沿桩轴线方向。 2、激振方式应通过现场敲击试验,选择合适重量的激振力锤和锤垫。宜采用小锤(窄脉冲)获取短桩或桩的上部缺陷反射信号,宜采用大锤(宽脉冲)获取长桩或桩的下部缺陷反射信号。 5.5测试参数设定 1、时域信号记录的时间段长度应在2L/c时刻后延续不少于5ms;幅频信号分析的频率范围上限不应小于2000Hz。 2、设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。 3、桩身波速根据本地区同类桩型的测试值初步设定。一般可按下表选择: 4、采样间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024点,在保证测得完整信号的前提下,选用较高的采样频率或较小的采样时间间隔。 5、放大器增益应结合激振方式通过现场对比试验确定。 6、传感器的设定值应按计量检定结果设定。 5.6测试信号采集和筛选 1、根据桩径大小,桩心对称布置2~4个检测点;每个检测点记录的有效信号数不宜少于3个,通过叠加平均提高信噪比。 2、检查判断实测信号是否反映桩身完整性特征。 3、不同检测点及多次实测时域信号一致性较差时,应分析原因,增加检测点数量。 4、信号不应失真和产生零漂,信号幅值不应超过测量系统量程(避免信号波峰削波)。 5、每根被检测的基桩均应进行二次以上重复测试,当检测波形重复良好时方可存储记录。当重复性不好时应及时清理激振点,改善传感器安置条件或排除仪器故障后重新进行测试。对于异常波形,应在现场及时分析研究,排除可能存在的激振或接收条件不良因素的影响后重新测试。

室内新风量检测指南

室内新风量检测作业指南 1 编制目的 根据《民用建筑工程室内环境污染控制规范》GB50325-2010要求,民用建筑工程验收时,对采用中央空调的工程,应进行室内新风量的检测,特制定本作业指南。 2 适用范围 适用于集中式空调系统、半集中式空调系统室内新风量检测。 应优先采用CO 2 示踪气体法检测新风量,对集中式空调系统,抽检的房间面积≥500m2时,可采用风量直接检测法检测新风量。 如能确定进入室内的空气全部为新风时,优先采用CO 2 示踪气体法检测新风量;如送入室内的空气是新风与回风混合后的空气,则应采用风量直接检测法测出总送风量后,根据实测新回风比计算出新风量。 3 术语 集中式空调系统:是指系统所有空气处理设备集中设置在一个空调机房内的中央空调系统。半集中式空调系统:是指系统除设集中空调机房外,还设有分散在空调房间的空气处理装置的中央空调系统。 第一法 CO 2 示踪气体法 4 检测依据 《公共场所室内新风量测定方法》 GB/T? 5 原理 采用CO 2示踪气体浓度衰减法。在待测室内通入适量CO 2 示踪气体,由于室内、外空气交 换,CO 2 示踪气体的浓度呈指数衰减,根据浓度随着时间的变化的值,计算出室内的新风量,再根据室内设计人数,计算出人均新风量结果。 6 仪器和材料 轻便型CO 2 气体浓度测定仪,最低检出限≥1ppm,可连续自动测读。 摇摆电扇。 CO 2 示踪气体。 7 测定步骤

室内空气总量的测定 7.1.1 用尺测量并计算出室内容积V 1(m 3)。 7.1.2 室内应无家具等物品,用尺测量并计算出室内梁、柱等凸出物的总体积V 2(m 3)。 7.1.3 计算室内空气容积,见式。 12V V V =- () 式中:V ————室内空气容积,m 3; 1V ————室内容积,m 3; 2V ————室内物品容积,m 3 检测点的设置 室内CO 2浓度检测点数应按表设置,当房间内有2个及以上检测点时,应采用对角线、斜线、梅花状均衡布点。 表 室内CO 2浓度检测点数设置 测定的准备工作 7.3.1 按仪器使用说明校正仪器,校正后待用。 7.3.2 打开电源,确认供电正常。 7.3.3 用氮气归零。 测定 7.4.1 测定环境本底CO 2浓度。

公共场所集中空调通风系统新风量检测作业指导书

风量检测作业指导书页数:第1页共6页 公共场所集中空调通风系统新风量检测 作业指导书 编制:日期: 审核:日期: 批准:日期: 受控状态:分发号:

风量检测作业指导书页数:第2页共6页 1适用范围 本细则适用于公共场所集中空调通风系统中新风量检测。 2原理 在集中空调通风系统处于正常运行或规定的工况条件下,通过测量新风管某一断面的面积及该断面的平均风速,计算出该断面的新风量。如果一套系统有多个新风管,每个新风管均要测定风量,全部新风管风量之和即为该套系统的总新风量(m3/h),根据系统服务区域内的人数,便可得出新风量结果(m3/(h?人))。 3仪器 3.1 皮托管法 K=0.84±0.01。 3.1.1 S型皮托管 p 3.1.2 微压计:精确度应不低于2%,最小读数应不大于1 Pa。 3.1.3 水银玻璃温度计或电阻温度计:最小读数应不大于1℃。 3.2 风速计法 3.2.1 热电风速仪:最小读数应不大于0.1m/s。 3.2.2 水银玻璃温度计或电阻温度计:最小读数应不大于1℃。 4检测环境条件 检测时集中空调通风系统必须在正常运转条件下。 5检测步骤 5.1 确定测量断面和测点 5.1.1 确定测量断面位置 检测断面应选在气流平稳的直管段,避开弯头和断面急剧变化的部位。下游方向距离L d大于6倍当量直径D,上游方向距离L u大于3倍当量直径D,如无法实现,也应尽量达到L d≥2D,L u≥D/2,对矩形风管,其当量直径

风量检测作业指导书页数:第3页共6页 D=2A?B/(A+B),式中A、B为边长。 5.1.2 测孔位置 5.1.2.1 在选定的测量断面上开设测孔。测孔内径应不小于Dg32。 5.1.2.2 对圆形管道,测孔的位置应设在包括各测定点在内的互相垂直的直径 线上(如图1所示)。 测点 测孔 图1 圆形断面测孔的位置 5.1.2.3 对矩形管道,测孔的位置应设在包括各测定点在内的延长线上(如图 2所示)。 测孔 测点 测点 测孔 (a)长方形断面(b)正方形断面 图2 矩形断面测孔的位置 5.1.3 测点位置和数目 5.1.3.1 圆形管道 圆形风管:将风管分成适当数量的等面积同心环,测点选在各环面积中 心线与垂直的两条直径线的交点上,同心环数及测点数的确定见表1。直径小

建设工程质量检测人员(地基基础—低应变法、声波透射法).

建设工程质量检测人员(地基基础—低应变法、声波透射法) 现场操作技能考核实施细则 (2014年) 一、考核人员范围 参加2014年建筑工程质量检测人员,地基基础培训班学习并且理论考试合格人员。2012年以来,参加地基基础培训考试合格,已取得理论开始成绩合格证书,需要增加现场操作科目的人员。 二、考核目的 通过现场操作技能考核,对参考人员现场相关信息收集能力、仪器设备操作技能、分析处理结论的判断能力进行检验。 三、相关要求 1、参考人员带身份证及照片三张。 2、自备检测仪器设备。 ⑴低应变:检测仪主机、电源充电器、传感器、力锤、耦合剂、卫生纸、笔记本电脑、打印机、打印纸等。 ⑵声波透射:声波检测仪、换能器、三脚架、钢卷尺、声测管口拉线轮等。 3、所有检测数据的采集、数据分析及打印需参考人员独立完成。 四、流程:

(一)现场报到 1、应考人员到达长沙后,及时向考核组报告,以便确认其参考并安排考试。 2、考生持本人身份证进行身份信息审核后进入待考区,领取个人现场考核表并按要求在考核表上填写编号。 (二)现场采集数据(限时30分钟) 凭现场考核表、携带仪器设备,依次进入场地,老师和监考人员对仪器设备是否数据清零进行检查后,考生开始实操采集数据。 (三)进入室内数据分析、打印(限时15分钟) 独立完成分析、打印。 提交检测结果资料 1、提交实测曲线的分析。 2、结论及判据。 (四)现场基本技能提问(限时10分钟) (五)考试要求及纪律 1、考生通过身份核验进入待考区后,关闭通讯工具和移动网络工具,违者考试做零分处理。 2、考试从工作人员处领取考生编号,并按要求在考核表上填写编号,不得在考核表上填写与编号、考试内容无关的任何个人信息,如姓名、性别、单位、身份证号码等,违者考试做零分处理。

不同类型建筑新风量标准

不同类型建筑新风量标准 Revised by Jack on December 14,2020

不同类型建筑新风量标准 3/h.人) 30m3/h.人。综合考虑换气次数和最少新风量两个因素,取两者计算最大值新风量作为选型依据。,可根据上座率结合换气次数确定新风量选型。 系统总送风量的30%确定新风量进行选型。 发场所,按稀释浓度所需风量确定新风量,结合换气次数进行选型。 程实际情况进行设计。

空调房间的新风量如何确定 给空调房间输送新风是改善室内空气环境的重要措施。增加新鲜空气对室内工作人员的身体健康是十分必要的。 1.全新风系统(直流、直排)新风量即空调送风量,也即新风占总风量的100%。 2.一次回风式空调系统较为多见。中、小型空调机利用循环风(一次回风)时需考虑新风的大小。新风量占总风量的百分比叫新风比。最小的新风比m〈10%,一般取值为m%=15-20%。 为保证每个空调房间有卫生要求的新风量,应按以下标准确定新风量: 1.为满足人体卫生条件需求,必须向房间供给的最小新风量Q1(具体取值方法如上表) 2在空调房间有局部排风的埸合应补偿新风,维持房间的正压,空调房间的正压新风量应能保证房间的正压值在()Pa()mmH2O,最大正压值约为49Pa(5 mmH2O毫米水柱)电子计算机房及超净空调系统的正压值比一般空调房间要大此。 维持房间正压要求所需的最小新风量Q2 3.空调房间的最小新风量为房间总送风量10%,Q3 4.为满足房间各项卫生条件所需的换气次数,即置换房间内的气体的最小新风量Q4 Q1,Q2,Q3,Q4,取最大值为空调房间的最小新风量。

产品最终检验规范

产品最终检验规范 文件编号: QD-T-02-003 文件名称:产品最终检验规范 版本号: A 编制: 审核: 批准: 制定日期: 2017-8-20 实施日期: 2017-8-25

1目的 为了进一步明确产品出厂检验标准和检测方法,提升产品品质控制手段。 2适用范围 适用于腾亚环境所有产品。 3引用标准 GB/T13914-2013 冲压件尺寸公差 GB/T 13915-2013 冲压件角度公差 GB/T 14295-2008 空气过滤器 GB/T 15055-2007 冲压件未注公差尺寸极限偏差 GB/T 18801-2008 空气净化器 GB/T 1804-2008 一般公差未注公差的线性和角度尺寸的公差 GB/T 21087-2007 空气-空气能量回收装置 JG/T 22-1999 一般通风用空气过滤器性能试验方法 GB/T 2408-2008 塑料燃烧性能的测定水平法和垂直法 GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法试验Ed:自由落体 GB/T 2518-2008 连续热镀锌钢板及钢带 GB/T 2828.1-2012 计数抽样检验程序 JG/T 294-2010 空气净化器污染物净化性能测定 GB 3096-2008 声环境质量标准 GB/T 4706.1-2005 家用和类似用途电器的安全第一部分通用要求 GB/T 4706.45-2005 家用和类似用途电器的安全空气净化器的特殊要求 4矛盾处理 4.1本制度与上级制度有矛盾时,以上级制度为准。 4.2与原出厂检验规范冲突部分按本制度执行。 4.3未提及部分按原检验规范执行。 5质量符合性检验 5.1产品质量检查内容 5.1.1产品外观检验 a)外观要求 ?机组外表面无明显划伤、桔纹、流痕等缺陷 ?机组一级表面单面颗粒Ф≤0.4mm,数量≤2个;颗粒Ф≤0.2mm,数量≤4个,点距应大于50mm ?机组一级表面单面细划伤0.2×10mm,数量≤2个;0.2×5mm,,数量≤4个,线

01基桩低应变动力检测作业指导书

1 前言 为严格执行低应变检测规范(规程),不断提高基桩低应变检测水平,使相应技术标准的执行更具有可操作性,特按《作业指导书编写程序》(JS-JC-34)编制本作业指导书,并作为《质量手册》的一部分,与其一并颁布执行。 本作业指导书则应和相应的技术标准一同执行使用。 2 适用范围 适用于混凝土预制桩(混凝土预制方桩、预应力混凝土管桩)、灌注桩(钻孔灌注桩、沉管灌注桩、树根桩)。 3 技术标准 根据客户要求,选用检测技术标准。目前主要采用下面两种标准: 上海市工程建设规范《建筑基桩检测技术规程》(DGJ08-218-2003); 中华人民共和国行业标准《建筑基桩检测技术规范》(JGJ106-2003); 上海市工程建设规范《地基基础设计规范》(DGJ08-11-1999)。 4 检测目的 检测桩身结构的完整性,判定桩身是否存在缺陷、缺陷的程度及其位置。 5 检测原理 本方法的实质是将混凝土桩视为一维线弹性杆件,当桩顶受一冲击力后,其应力(应变或位移)以波动形式在桩身中传播,遇到波阻抗差异界面后,产生反射波信号,通过分析入射波和反射波的波形、相位、振幅、频率及波的到达时间等特征,达到检测桩身完整性的目的。 检测框图如下:

6 检测仪器 6.1 本公司应用于低应变动测的仪器为RSM-24FD 型或RS1616K(S)型基桩动测仪或性能类似的仪器。使用仪器为集信号放大、数据采集、显示记录和分析处理于一体的高性能仪器,由测振传感器、信号放大器、数据采集装置和显示记录等部件组成。 6.2 方法要求 6.2.1 加速度传感器频率范围宜为5Hz~2000Hz ,速度传感器频率范围宜于10Hz~1000Hz ;放大器增益宜大于60dB 且可调,频率范围宜于2Hz~5kHz ;数据采集器采样频率不小于40kHz 。传感器的频响特性应能满足不同测试对象、不同测试目的的需要。 6.2.2 检测结果难于判断时,可同时采用加速度传感器、速度传感器进行比对检测,以提高信号的可信度。 6.2.3 整个检测系统应具有可靠的防尘、防潮、防震性能,各部件间匹配良好, 整体系统误差小于5%。 6.3 仪器设备的管理执行《设施和环境管理程序》(JS-JC-19)。 6.4 检测必须使用经标定的仪器,并且检测(使用)日期必须在标定的有效日期之内。(即仪器三色管理标签为―绿色‖标签状态下的仪器。) 7 现场检测 7.1 收集资料 按《建筑基桩检测技术规程》(DGJ08-218-2003)第3.0.10的要求及基桩检测 1. 激振锤 2. 传感器 3. 工程动测仪 4. 手提式计算机(可选)

两种室内空气检测标准主要区别GB50325GBT18883

一、两个标准的介绍: 两种室内空气检测标准(GB50325、GBT18883) 目前室内空气质量标准有两个: GB/T18883《室内空气质量标准》和GB50325《民用建筑工程室内环境污染控制规范》一、两个标准的数据 18883的数据: 室内空气质量标准 ①新风量要求≥标准值,除温度、相对湿度外的其它参数要求≤标准值; ②行动水平即达到此水平建议采取干预行动以降低室内氡浓度。

50325的标准: 表6.0.4 民用建筑工程室内环境污染物浓度限量 I Ⅱ类民用建筑工程:办公楼、商店、旅馆、文化娱乐场所、书店、图书馆、体育馆、公共交通候车室、理发店等民用建筑工程。 二、两个标准的区别: 深度分析关于室内空气质量、室内环境污染物质检测的18883标准和50325标准的区别——颁布机构不同,目标不同、检测条件不同、动机不同。老百姓怎么办? 主要区别在于: (1)性质不同 《室内空气质量标准》GB/T18883-2002是推荐性标准,是自愿实施的。 《民用建筑工程室内环境污染控制规范》GB50325-2001是强制性标准. (2)适用范围不同 《室内空气质量标准》GB/T18883-2002规定了室内空气质量参数,适用于住宅和办公建筑物内部的室内环境质量评价。 《民用建筑工程室内环境污染控制规范》GB50325-2001适用于民用建筑工程(包括土建和装修)的建筑工程质量验收。该标准中涉及的室内环境污染系指由建筑材料和装修材料产生的室内环境污染。 (3)规定指标不同 《室内空气质量标准》GB/T18883-2002中规定的参数指标共19项,包括物理性指标、化学性指标、生物性指标和放射性指标。 《民用建筑工程室内环境污染控制规范》GB50325-2001中规定的参数指标共5项。(4)封闭时间不同 《室内空气质量标准》GB/T18883-2002要求检测之前封闭12小时。 《民用建筑工程室内环境污染控制规范》GB50325-2001要求:对采用集中空调的民用建筑工程,应在空调正常运转的条件下进行;对采用自然通风的民用建筑工程,检测应在对外门窗关闭1h后进行。 颁布机构不同,目标不同、检测条件不同、动机不同。 1、18883是卫生部颁布的,50325是建设部颁布的。 2、18883是一个人居环境健康的最低标准,50325是建筑工程环境污染物控制规范。 3、18883标准涉及19项指标,50325规范只涉及5项指标。 4、18883要求检测前关闭门窗12小时,是出于让检测条件尽量接近日常居住状态的考虑,即居住者一般能够保障一天有两次机会开窗通风。50325检测条件(甲醛、苯、氨、tvoc四项)是关闭门窗1小时后进行,显然,50325标准更多地考虑的是令建筑商和装修商可以比较容易地过关,室内环境污染问题只要不是太不象话就行啦,在实际房屋中对比12小时和1小时的检测,结果往往要差2~3倍,也就是说,50325检测达标的房屋,按18883检测就很可能不达标,也就不符合健康人居环境的最低标准。

洁净室检测参照标准以及相关细则

洁净室检测参照标准以及相关细则 第三方洁净室检测验收单位需要通过国家实验室认可委(CNAS)认证和计量认证(CMA),其出具的洁净室检测报告方能真实反映洁净厂房实际情况,可作为第三方公正评价的依据,同时可用于QS认证的洁净环境检测报告和GMP 认证的生产环境洁净检测报告。 检测范围:洁净室环境等级评定、工程验收检测,包括食品洁净室、保健品净化车间、化妆品洁净工程、桶装水百级灌装车间、电子产品洁净生产车间、GMP净化车间、医院手术室、动物实验室、生物安全实验室、生物安全柜、超净工作台、无尘车间、无菌车间等。 检测项目:洁净间的尘埃粒子数、沉降菌、浮游菌、压差、换气次数,风速、新风量、照度、噪声、温度、相对湿度等。 参照检测标准: 1 《洁净厂房设计规范》GB50073-2001 2 《医院洁净手术部建筑技术规范》GB 50333-2002 3 《生物安全实验室建筑技术规范》GB 50346-2004 4 《洁净室施工及验收规范》GB 50591-2010 5 《医药工业洁净室(区)悬浮粒子的测试方法》GB/T 16292-2010 6 《医药工业洁净室(区)浮游菌的测试方法》GB/T 16293-2010 7 《医药工业洁净室(区)沉降菌的测试方法》GB/T 16294-2010 注: (1)在静态条件下洁净室(区)监测的悬浮粒子数、浮游菌数或沉降菌数必须符合规定。测试方法应符合现行国家标准《医药工业洁净室(区)悬浮粒子的测试方法》GB/T 16292 、《医药工业洁净室(区)浮游菌的测试方法》GB/T 16293 和《医药工业洁净室(区)沉降菌的测试方法》GB/T16294 的有关规定;(2)空气洁净度100 级的洁净室(区)应对大于等于5μm 尘粒的计数多次采样,当大于等于5μm 尘粒多次出现时,可认为该测试数值是可靠的。 (3)洁净室(区)的温度和湿度,应符合下列规定:生产工艺对温度和湿度无特殊要求时,洁净室(区)温度应为18~26℃,相对湿度应为45%~65 % (4)不同空气洁净度等级的洁净室(区)之间以及洁净室(区)与非洁净室(区)之间的空气静压差不应小于5Pa,洁净室(区)与室外大气的静压差不应小于10Pa。 (5)洁净室(区)应根据生产要求提供照度,并应符合下列规定: 1)主要工作室一般照明的照度值宜为300lx。

低应变检测

基桩检测 一.低应变法检测 1 目的 根据国家行业标准《建筑基桩检测技术规范》JGJ 106-2003、J256-2003对低应变工程检测做必要的细化和补充。 2 主题内容与适用范围 为了确保现场低应变动力检测的正常进行,取得正确可靠的检测数据,使低尖变动力检测工作规范、有序,特制定基桩低应变检测作业指导书。 本作业指导书适用于检测各类预制桩和混凝土灌注桩的桩身质量,推定缺陷类型,性质及其部位。 3 人员职责 检测人员:负责按照低应变方法对被检样品进行检测。 复核人员:负责对检测操作是否规范以及检测结果是否准确进行复核。 室负责人:监督检测操作和结果审核,检测报告的签发。 4 引用标准规范国家行业标准《建筑基桩检测技术规范》JGJ106-2003、J256-2003。 5 检测原理和方法 桩基动力检测是指在桩顶施加一个动态力(动载荷),动态力可以是瞬态冲击力或稳态激振力。桩-土系统在动态力的作用下产生动态响应,采用不同功能的传感器在传感器的桩顶量测动态响应信号(如位移、速度、加速度信号),通过对信号的时域分析或传递函数分析,判断桩身结构完整性。用反射波法,对每一根被检测的单桩均应进行二次以上重复测试;对同一根基桩,三次锤击所形成的三条波形曲线在形态、振幅及相位上应基本一致,采集数据方算合格。 6 检测仪器 6.1 美国PIT基桩完整性诊断仪美国桩动力学公司(Pile Dynamics Inc)研制的PIT(Pile Integrity Tester)V型仪器。由主机、手锤、加速度传感器以及PLINK、PITPLOT 传输、分析处理软件组成。主要性能特点如下: i采用微处理器,内置16位A/D传换板;内存大; ii采样频率大于1MHz,采样频率精度小于0.01%,频响22kHz; iii采用专用的PVC力锤、宽频带高灵敏度的压力式加速度传感器以及宽频低噪声的滤波放大技术,数据采集系统分辨率高,稳定性好; iv高分辨率触摸式屏幕;可直接在屏幕上逐一分析信号,再通过RS -232串口传输到打印机,也可以使用PLINK程序将信号传输到PC机上; v使用PITPLOT软件,可对桩信号进行时域分析,具备高通、低通功能、指数放大功能,并且有特定滤波功能; vi主机质量1.6kg,体积65mm×150mm×200mm,内置可充电电池,可连续工作8h; 6.2 武汉岩海RS-1616K(S)基桩动测仪加速度计一通道,速度计一通道,低噪声前置放大器10倍。采样长度1024点,触发方式为通道触发、外触发和稳态触发,输入信号频率范围:加速度10Hz4.2Hz。浮点放大器1-64倍,采样间隔12us-32767us。 检测系统框图 7 对环境条件的要求 检测仪器应具有防尘、防潮性能,并应在-10~50℃环境条件下正常工作。在现场检测时,对仪器屏幕应采取防晒措施。当仪器长期不用时,应按要求定期通电。

室内环境检测如何布点

https://www.wendangku.net/doc/5f6885733.html,/ 随着社会经济的飞速发展,人们对物质生活的需求越来越高,居住条件也有了更高的要求,装修也便成了新时代的热门话题。与此同时,甲醛等室内环境空气污染物也悄然而至,对人类的身体健康带来了很大威胁,尤其对婴儿及儿童的威胁更是严重。我国从2001年开始就制定了相应的规范,装修公司更是提出了“买装修送检测”的口号,室内装修污染对人体健康危害严重,装修后请室内环境检测公司检测治理的理念更是深入人心。 但目前国内市场上室内环境检测公司良莠不齐,其中有一些是没有经过国家质检部门认证的非正规单位。这些公司大多采用便携式甲醛检测仪,其出具的数据与正规实验室采用的分光光度法检测出的正规数据相比有一定的出入,并且如果在检测过程中采样的位置、数量的确定不规范的话,不仅对检测结果影响大,而且对于按照检测点数付费的居民来讲更加不公平。那么,室内环境检测如何布点呢?下面深圳倍通检测来分析一下: 1、采样点的数量根据监测室内面积大小和现场情况而确定,小于50 m3的房间应设1~3个点,50~100m3的房间应设3~5个点,100m3以上至少设5个点,在对角线上或梅花式均匀分布。 2、采样点应避开通风口,距离墙壁大于0.5m。 3、采样点高度,原则上与人的呼吸带高度一致,相对高度0.8~1.5m之间。 4、采样时间和频率,评价室内空气环境质量对人体健康的影响时,应在人们正常活动情况下采样,至少监测一天,每日早晨和傍晚各监测一次。早晨不开门窗,每次平行采样。 对建筑物的室内空气质量进行评价,应选择在无人活动时采样,至少监测一天,每日早晨和傍晚各监测一次,都不开门窗,每次平行采样。 5、预防和控制室内空气污染的主要途径如下:

低应变检测原理及方法

低应变检测原理及方法 1、检测原理 检测方法采用低应变法,混凝土桩的物理强度远大于桩周土的物理强度,在桩顶沿垂直方向激发的弹性应力波基本上是沿桩周传播的,由于桩底持力层及桩身质量缺陷位置上的波阻抗与正常混凝土波阻抗存在差异,因而: (1)通过分析缺陷反射波 a .相位变化、频率变化、多次反射性可判断桩基的缩颈、扩警、松散、夹泥、离析、断桩等质量缺陷现象。 b .振幅的大小可判断缺陷的程度。 c .桩身缺陷位置应按下式计算: 12000 x x t c =??? '/2x c f =? 其中:x ——桩身缺陷至传感器安装点的距离(m ); x t ?——速度波第一峰与缺陷反射波峰间的时间差(ms ) ; c ——受检桩的桩身波速(m/s ),无法确定时用c m 值替代; 'f ?——幅频信号曲线上缺陷相邻谐振峰间的频差(HZ ) 。 (2)当桩长已知、桩底反射信号明确时,在地质条件、设计桩型、成桩工艺相同的基桩中,选取不少于5根Ι类桩的桩身波速值按下式计算其平均值: 1 1n m i i c c n ==∑ 2000i L c T =? 2i c L f =?? 其中:m c ——桩身波速的平均值(m/s ); i c ——第i 根受检桩的桩身波速值(m/s ),且/5%i m m c c c -≤; L ——测点下桩身长(m ); T ?——速度波第一峰与桩底反射波峰间的时间差(ms ); f ?——幅频曲线上桩底相邻谐振峰间的频差(HZ ); n ——参加波速平均值计算的基桩数量(n ≥5)。 2、现场测试方法 ①把混凝土桩顶灌浆部分凿去凿平,使桩顶出露新鲜表面,为减少杂波干扰,此表面必须平整干净,出露的钢筋不应有较大晃动;

公共场所室内新风量测定方法示踪气体法

公共场所室内新风量测定方法示踪气体法 1定义 新风量(Air change flow):在门窗关闭的状态下,单位时间内由空调系统通道、房间的缝隙进入室内的空气总量,单位:m3/h。 空气交换率(Air change rate):单位时间(h)内由室外进入到室内容总量与该室室内空气总量之比,单位:h-1。 示踪气体(tracer gas):在研究空气运动中,一种气体能与空气混合,而且本身不发生任何改变,并在很低的浓度时就被能测出的气体总称。 2 原理 本标准采用踪气体浓度衰减法。在待测室内通入适量示踪气体,由于室内、外空气交换,示踪气体的浓度呈指数衰减,根据浓度随差时间的变化的值,计算出室内的新风量。 3仪器和材料 3.1袖珍或轻便型气体浓度测定仪。 3.2尺、摇摆电扇。 3.3示踪气体:无色、无味、使用浓度无毒、安全、环境本底低、易采样,易分析的气体。示踪气体环境本底水平及安全性资料见附录。 4测定步骤 4.1室内空气总量的测定 4.1.1用尺测量并计算出室内容积V 1 (m3)。 4.1.2用尺测量并计算出室内物品(桌、沙发、柜、床、箱等)总体积V 2 (m3)。 4.1.3计算室内空气容积 V=V 1-V 2 (1) 式中:V——室内空气容积(m3)

V 1 ——室内容积(m3) V 2 ——室内物品总体积(m3) 4.2测定的准备工作 4.2.1按仪器使用说明校正仪器,校正后待用。 4.2.2打开电源,确认电池电压正常。 4.2.3归零调整及感应确认,归零工作需要在清净的环境中调整,调整后即可进 行采样测定。 4.3采样与测定 4.3.1关闭门窗,在室内通入适量的示踪气体后,将气源移至室外,同时用摇摆扇搅动空气3~5min,使示踪气体分布均匀,再按对角线或梅花状布点采集空气样品,同时在现场测定并记录。 4.3.2计算空气交换率:用平均法或回归方程法。 4.3.2.1平均法:当浓度均匀时采样,测定开始时示踪气体的C ,15min或30min 时再采样,测定最终示踪气体浓度C 1 (时间的浓度),前后浓度自然对数差除以测定时间,即为平均空气交换率。 4.3.2.2回归方程法:当浓度均匀时,在30min内按一定的时间间隔测量示踪气体浓度,测量频次不少于5次。以浓度的自然对数对应的时间作图。用最小二乘法进行回归计算。回归方程式中的斜率即为空气交换率。 5结果计算 5.1平均法计算平均空气交换率 A=[lnC 0-lnC 1 ]/t (2) 式中:A――平均空气交换率(h-1) C ――测量开始时示踪气体浓度(mg/m3) C 1 ――时间为t时示中学生气体浓度(mg/m3)t――测定时间(h) 5.2回归方程法计算空气交换率

作业指导书(基桩完整性检测)

作业指导书(基桩完整性检测) 编写: 审核: 批准: 版号: 文件编号:HDJC/SG-01-2002 生效日期:2003年1月1日

目录 1基桩低应变检测................................................................. 错误!未定义书签。 1.1前言 (4) 1.2适用范围 (9) 1.3检测依据标准 (4) 1.4检测的目的 (4) 1.5检测原理 (4) 1.6仪器设备 (5) 1.7检测准备 (6) 1.8检测技术 (6) 1.9现场检测 (7) 1.10资料整理与成果分析 (8) 1.11报告内容 (9) 2基桩钻芯法检测 (9) 2.1 引言 (9) 2.2 适用范围 (9) 2.3依据及标准 (10) 2.4检测目的 (10) 2.5检测原理 (10) 2.6仪器设备 (10) 2.7检测准备 (12) 2.8现场检测 (13) 2.9资料整理与成果分析 (15) 2.10 报告内容 (17) 3 基桩声波检测 (17) 3.1 引言 (17) 3.2 适用范围 (18) 3.3依据及标准 (18)

3.4检测目的 (18) 3.5检测原理 (18) 3.6仪器设备 (18) 3.7探测准备 (20) 3.8现场探测 (20) 3.9资料整理与成果分析 (22) 3.10报告内容 (24) 附件一基桩低应变动力检测记录表 (26) 附件二钻芯检测原始记录表 (27) 附件三混凝土芯样试件抗压强度检验报告 (27) 附件四超声透射法检测基桩完整性现场记录表 (27) 附件五超声波检测成果表 (27)

室内环境检测标准

室内环境检测标准 室内环境检测须知 1.严格按《国家室内空气质量标准》( GB/T18883-2002 )要求预先封闭居室 12 小时, 封闭时不得使用空调等换气设备以及空气净化设备等。 2.室内环境检测人员现场检测时,室内人数最好不要超过三人。 3.室内环境现场检测时,所有在场人员严禁吸烟。 4.现场不要遗留残余装饰杂物,如板材、油漆、涂料,稀释剂等。 5.布设检测点客户应予以配合。 6.国家资质CMA认证号:(2004)量认(京)字(U0453)号 国家标准中关于布点的要求 1.房间面积<50m2时,设1个检测点; 2.当房间面积50~100m2时,设2个检测点; 3.房间面积>100m2时,设3-5个检测点。 《室内空气质量标准》 GB-T18883 序号参数类别参数单位标准值 1.物理性温度℃(夏)22~28 (冬)16~24 2.%(夏)40~80 (冬)30~60 3.m/s(夏) (冬) 4.m3/h人30的a次幂 5.化学性二氧化硫SO2mg/m3 6.mg/m3 7.mg/m310 8.% 9.氨NH3mg/m3 10.臭氧O3mg/m3

11.甲醛HCHO mg/m3 12.苯C6H6mg/m3 13.甲苯C7H8mg/m3 14.二甲苯C8H10mg/m3 15.苯并[a]芘B(a)P mg/m3 16.可吸入颗粒PM10mg/m3 17.总挥发性有机物TVOC mg/m3 18.生物性细菌总数cfu/m32500 19.放射性氡222Rn Bqm3400 《民用建筑工程室内环境污染控制规范》 GB50325-2001 序号参数单位限量值 I 类II类 1.甲醛HCHO mg/m3≤≤ 2.氨NH3mg/m3≤≤ 3.苯C6H6mg/m3≤≤ 4.氡222Rn Bqm3≤200≤400 5. 总挥发性有机物(TVOC)mg/m3≤≤ 注:普通消费者家庭装修后的室内污染检测执行此规范 Ⅰ类:住宅、宿舍、医院病房、老年建筑、幼儿园、学校教室,等场所; II类:旅店、办公楼、文化娱乐场所、书店、图书馆、展览馆、体育馆、商场(店),公共交通工具等候室、医院候诊室、饭馆、理发店等场所。 检测须知 根据对室内环境不同的要求采取相应的封闭时间和检验项目。严格按照标准科学测试。检测须知: 1、装修竣工满一周,铺设地板前或后,家具搬进前或后,由业主自行选择。 2、检测前一周内应避免在室内使用装修除味剂。 3、须在检测前一个小时关闭门窗。 4、检测前或测试中应避免打开空调或换气扇。 5、现场不要遗留残余装饰杂物,如板材、油漆、涂料,稀释剂等。 6、布设测试点业主应予以配合。 7、检测时间与布设点数有关,2--3个测试点大约需要1个小时左右。 室内环境检测国家标准

新风量的标准

新风量的标准 一、不同类型建筑新风量标准(新风量:m3/h.人) 办公建筑类空调室娱乐建筑类空调室宾馆类建筑空调室民居类建筑空调室 房间类型新风量房间类型新风量房间类型新风量房间类型新风量 一般办公室30练功房/健身房60~80客房30~50一般别墅公 寓 30 高级办公室30~50壁球/网球40接待室30~50高级别墅公 寓 50 会议/接待室30~50棋牌室/台球室40~50 餐厅/宴会 厅 15~30商场15~25 电话总机房30游泳池50咖啡厅20~50病房50 计算机房30游戏机房/麻将40~50多功能厅15~25教室30~40 `复印机房30休闲/录像厅30~40商务中心10~20展览馆20~30 实验室20~30按摩室30~40门厅/大堂10影剧院15~25 更衣室30~40美容室35 酒吧17歌厅/KTV30~50 夜总会20舞厅30 新风换气机由广州快净环保科技有限公司荣誉出口,快净人经过长期的技术研发与探 索,并结合客户与市场的反馈,成功开发出KJR系列新风换气机,其核心采用现在国际上最 新的VM全热回收模块,使得KJR(快净)产品在各项技术指标中均处于行业领先。产品也成 为市场上最具竞争力的新风换气类产品。 二、不同场合换气频率要求 房间类型不吸烟少量吸烟大量吸烟 房间换气次数一般房间体育馆影院商场办公室病房计算机房高级宾馆餐厅会议室1~21~21~21~32~32~42~32~33~8 选型时还应遵循以下原则: ?住宅、办公建筑其新风不小于30m3/h.人。综合考虑换气次数和最少新风量两个因素,取两者计算最大值新风量作为选型依据。 ?体育场馆、大会议厅、影院等,可根据上座率结合换气次数确定新风量选型。 ?对于大型商场可以按中央空调系统总送风量的30%确定新风量进行选型。 ?工厂、车间等有毒、有害物散发场所,按稀释浓度所需风量确定新风量,结合换气次数进行选型。

桩基低应变检测的看法

桩基低应变检测的看法 2014-01-09 08:43 专业分类:岩土工程浏览数:1597 低应变反射波法应用在混凝土灌注桩的桩身完整性的检测判定上,给桩基(隐蔽工程)施工的质量监控带来了极大的方便,既经济又实用。但由于该方法的理论模型建立、判定依据以及工程实际等诸多因素的影响,它存在着一定的局限性和判定误区,往往给检测人员在判定桩身完整性时造成结论与实际不符,甚至给工程安全留下隐患。

目前对桩基完整性质量检测尚无明确定义,近年来不少专家提出了桩基完整性类别的划分方法,即把桩基划分为Ⅰ类桩、Ⅱ类桩和Ⅲ类桩。这种划分其实也没有统一的定量标准。桩身低应变检测只是检测桩身材料、尺寸等方面的质量问题,而这种划分或多或少地依赖于承载力的达标与否。但是为了检测中有一个明确的结论,必须对桩基的完整性做出判定,这也是进行桩基低应变检测的目的所在。为了增强对缺陷判定的准确性,检测人员应加强实践,通过对标准桩以及各种缺陷桩的反复检测,掌握不同缺陷以及不同程度缺陷在波形图上表现的细微差异,从而使自己的判定结果客观而公证。 1、目前检测存在的问题 1.1、多次变径多次反射互相干扰 低应变反射波法检测桩基完整性,对直孔桩来讲就比较简单清晰,根据反射信号的时间、幅度和相位即可判断缺陷的位置和程度,而且判断效果比较好,而对于在施工中出现异常的桩,它的实际形态可能是正常、扩径互层,而下部的正常桩径相对于上部的扩径来讲,就表现为相对的缩径,对这类桩的检测相对来讲就困难的多,第一次扩径由于距离桩头近,反射能量直达桩头上安装的传感器,产生强烈的一次反向反射,二次同向反射和三次反向反射,它往往屏蔽甚至淹没了第二次,第三次扩径所产生的反射信号,因此第一次的扩径的多次反射是一个重要的干扰源。 1.2、低应变反射波法不是精确测试 低应变反射波法由于采用尼龙力棒产生激振,其冲击脉冲频率低,频带窄,高频分量不足,识别缺陷分辨率较低。低应变反射波法检测缺陷位置的原理是准确测出反射回波时间来确定其位置,由于低应变应力波速不是常数,它与混凝土的强度、骨料等有关,而且混凝土是非均质材料,应力波在不同密度的材料中传播速度不同,因此在确定缺陷位置时,实际上是一个包括二个未知数的方程,而实际工作中我们是假设一定的波速来确定位置,因此这种检测方法只是比较粗糙的识别。

新风量及空调主机容量的确定

新风量及空调主机容量 的确定 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

新风量及空调主机容量的确定作者:ironb 昵称:zwakin 新风量应按国标《室内空气质量标准》 GB/T18883-2002 对于住宅、办公建筑场合 , 其新风量应不小于 30m3/h. 人。民用建筑属于舒适性空调 , 必须综合考虑换气次数和最少新风量两个因素取两者计算出新风量的最大值作为合理的新风量。对于中央空调系统 , 应按总送风量的 30% 确定新风量。工厂、车间等有 毒有害物散发场合按稀释浓度所需风量确定新风量。确定了新风量的多少 , 是否就按该值选取双向新风换气机 , 这要看对象是何种场合 , 如办公室 , 住宅 , 旅馆 , 医院手术室 , 工厂的工艺车间 , 可按计算量选用 , 而对于会议厅 , 影剧院等人员数量变动大的场合可按一定的上座率来选定 , 当少数的时间段内上座率高时 , 可将换气机置于高速运转以增大风量的方式来满足使用要求。 如果说空调所服务的房间己考虑有一定量新风所耗的能量 , 而未考虑热能回收方案则空调主机总容量就要大一些 , 而如果对排风热能进行回收 , 则空调主机 总容量就可以小一些 , 且以后的运行费用也相应减少。例如某建筑物的空调冷负荷的计算值为 26OW/ 陋 , 其中新风负荷如下计算 : 假设每 5 平方米有一个人 , 每人所需新风量为 30m3/h, 则每平方米所需新风量为 6m3, 即 7.2kg/M20 夏季当室外温度在38 ℃以上 , 室内温度在26 ℃左右 , 室内外焰差约为 4OKJ/kg, 则新风负荷约为 8OW/M20 若装有全热新风换气机 , 则实际新风负荷为 36W/ 岖 , 那么空调冷负荷的计算值也相应减少为 216W/M20 这所减少的 44W/ 岖的负荷 , 按市场价 0.6 元 /W 计算 , 主机购置费可减少 26.4 元 / 眠 , 则一次购机费可降低 : 按主机能效比 cop=3.O 计算 , 其运行时少耗的电功率为 14.6W/M2, 则运行费用也可降低 ( 假定原有的普通新风机及排风机耗电量大致与全热新风换气机相当 ) 。所以 , 安装全热新风换气机不仅可以减少空调主机的容量 , 还可以降低其运行费用。 4 南方地区与北方地区选择空气一空气新风换气机的不同之处 南方气候湿度大 , 空调季节长 , 所以潜热交换效率高 , 宜用全热交换机 : 北方气候干燥 , 冬季气温低 , 如果不出现结露产生凝结水问题的话 , 用显热交换机即可 , 但如果考虑到有可能会冷凝结露 , 或有对室内的加湿需求 , 还是用全热交换器的好。 5 在采用全热新风换气机时 , 管道及系统的配置方法 5.1 、室内室外的进排风口应尽量防止短路 , 让新风取风口不受污染。 5.2 、双向换气机的过滤器可为初效或中效过滤器 , 可机内置 , 可机外置 , 选用时应注意位置及阻力的大小是否与风机匹配。 5.3 、双向换气机宜设调速装置 , 便于按需要调节风量的大小。 5.4 、可能的话加设时间程序控制装置 , 使换气机在指定的时间区域内工作 , 或作预通风运行。 5.5 、新风经过被排风冷却 ( 加热 ) 后送入室内 , 其温度值通常总会比室内温度 : 夏季高 3-5 ℃ , 冬季低 3-5 ℃ : 绝对湿度夏季会下降 , 即除湿 , 冬季会上升 , 即加湿。

相关文档
相关文档 最新文档