文档库 最新最全的文档下载
当前位置:文档库 › 2010高考全国一卷文科数学

2010高考全国一卷文科数学

2010高考全国一卷文科数学
2010高考全国一卷文科数学

2010年普通高等学校招生全国统一考试

文科数学(必修+选修I)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。

第I卷

注意事项:

1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准

考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B把答题卡上对应题目的答案标号涂黑,如需改动,用

橡皮擦干净后,再选涂其他考试标号,在试题卷上作答无

........效.。

3.第I卷12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项

是符合题目要求的。

参考公式:

如果事件A、B互斥,那么球的表面公式P(A+B)=P(A)+P(B) S=4πR2

如果事件A、B相互独立,那么其中R表示球的半径

球的体积公式

如果事件A在一次试验中发生的概率是p,那么

n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径

一、选择题

(1)cos300°=

(A)

3

2

-(B)

1

2

-(C)

1

2

(D)

3

2

(2)设全集U=(1,2,3,4,5),集合M=(1,4),N=(1,3,5),则 =(A)(1,3)(B)(1,5)(C)(3,5)(D)(4,5)

(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤??+≥??--≤?

则z =x-2y 的最大值为

(A )4 (B )3 (C )2 (D )1

(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=

(A )52 (B)7 (C)6 (D)4 2

(5)(1-x )2(1-x )3的展开式中x 2的系数是

(A)-6 (B )-3 (C)0 (D)3

(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于

(A )30° (B)45° (C)60° (D)90°

(7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是

(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)

(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则

1PF ·2PF =

(A )2 (B)4 (C)6 (D)8

(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 23 (B) 33 (C) 23 (D) 63 (10)设a =log 3,2,b =ln2,c =1

25

-,则 (A )a <b <c (B)b <c <a

(C)c <a <b (D)c <b <a (11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB 的最小值为

(A )-4+2 (B )-3+2 (C )-4+22 (D )-3+22

(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体

积的最大值为

(A )233 (B) 433 (C) 23 (D) 833

2010年普通高等学校招生全国统一考试

文科数学(必修+选修Ⅰ)

第Ⅱ卷

注意事项:

1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2. 第Ⅱ卷共2页,请用0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答在试题卷上作答无........效.

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无........效.

) (13)不等式

2232

x x x -++>0的解集是 . (14)已知α为第一象限的角,sin α=35,则tan α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)

(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为 .

三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

(17)(本小题满分10分)(注意:在试题卷上作答无........效.

) 记等差数列{a n }的前n 项和为S ,设S x =12,且2a 1,a 2,a 3+1成等比数列,求S n .

(18)(本小题满分12分)(注意:在试题卷上作答无........效.

) 已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .

(19)(本小题满分12分)(注意:在试题卷上作答无

........效.)

投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.

(Ⅰ)求投到该杂志的1篇稿件被录用的概率;

(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.

(20)(本小题满分12分) (注意:在试题卷上作答无

........效.)

如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB上的一点,平面EDC⊥平面SBC.

(Ⅰ)证明:SE=2EB;

(Ⅱ)求二面角A—DC—C的大小.

(21)(本小题满分12分)(注意:在试题卷上作答无

........效.)已知函数f(x)=3a x4-2(3a+2)x2+4x.

(Ⅰ)当a=1

6

时,求f(x)的极值;

(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.

(22)(本小题满分12分)(注意:在试题卷上作答无

........效.)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.

(Ⅰ)证明:点F在直线BD上;

(Ⅱ)设

8

9

FA FB

??→-??→=,求△BDK的内切圆M的方程.

2018年全国统一高考数学试卷文科全国卷1详解版

2017年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则() A.A∩B={x|x<}B.A∩B=?C.A∪B={x|x<}D.A∪B=R 2.(5分)(2017?新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差 C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数 3.(5分)(2017?新课标Ⅰ)下列各式的运算结果为纯虚数的是() A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i) 4.(5分)(2017?新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是() A.B.C.D. 5.(5分)(2017?新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 6.(5分)(2017?新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C. D. 7.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 8.(5分)(2017?新课标Ⅰ)函数y=的部分图象大致为() A.B.C. D. 9.(5分)(2017?新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则() A.f(x)在(0,2)单调递增 B.f(x)在(0,2)单调递减 C.y=f(x)的图象关于直线x=1对称 D.y=f(x)的图象关于点(1,0)对称 10.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()

2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷) 理科数学试题 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 第I 卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合{||2}A x R x =∈≤ },{| 4}B x Z =∈≤,则A B ?= (A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2) 已知复数z = ,z 是z 的共轭复数,则z z ?= (A) 14 (B)1 2 (C) 1 (D)2 (3)曲线2 x y x =+在点(1,1)--处的切线方程为 (A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为 0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为 A B C D (5)已知命题 1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数, 则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ?∨和4q :()12p p ∧?中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4 q (D )2q ,4q

(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400 (7)如果执行右面的框图,输入5N =,则输出的数等于 (A)54 (B )45 (C)65 (D )56 (8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->= (A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或 (9)若4 cos 5 α=- ,α是第三象限的角,则1tan 21tan 2 αα +=- (A) 12- (B) 12 (C) 2 (D) 2- (10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2 a π (B) 273 a π (C) 2 113 a π (D) 25a π (11)已知函数|lg |,010,()16,10.2 x x f x x x <≤?? =?-+>??若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是 (A) (1,10) (B) (5,6) (C) (10,12) (D) (20,24) (12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两 点,且AB 的中点为(12,15)N --,则E 的方程式为 (A) 22136x y -= (B) 22 145x y -= (C) 22163x y -= (D) 22 154 x y -=

2010年全国高考文科数学及答案-全国Ⅱ

2010年普通高等学校招生全国统一考试(全国Ⅱ) 文科数学 参考公式: 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么 ()()()P A B P A P B ?=? 球的表面积公式 24S R π=, 球的体积公式3 34 V R π= ,其中R 表示球的半径 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次 的概率 ()C (1)(0,1,2,)k n k n n P k p p k n -=-=L 第Ⅰ卷 (选择题) 本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 一、选择题 (1)设全集{ } * U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()A B = e( ) (A){}1,4 (B){}1,5 (C){}2,4 (D){}2,5 (2)不等式 302 x x -<+的解集为( ) (A){}23x x -<< (B){}2x x <- (C){}23x x x <->或 (D){}3x x > (3)已知2sin 3 α= ,则cos(2)πα-=( ) (A) 53 - (B) 19 - (C) 19 (D) 53 (4)函数1ln(1)(1)y x x =+->的反函数是( ) (A) 1 1(0)x y e x +=-> (B) 1 1(0)x y e x -=+> (C) 1 1(R )x y e x +=-∈ (D) 1 1(R )x y e x -=+∈

(5) 若变量,x y 满足约束条件1325x y x x y ≥-?? ≥??+≤? ,则2z x y =+的最大值为( ) (A) 1 (B) 2 (C) 3 (D)4 (6)如果等差数列{}n a 中,3a +4a +5a =12,那么 1a +2a +…+7a =( ) (A) 14 (B) 21 (C) 28 (D)35 (7)若曲线2y x ax b =++在点(0,)b 处的切线方程式10x y -+=,则( ) (A )1,1a b == (B )1,1a b =-= (C )1,1a b ==- (D )1,1a b =-=- (8)已知三棱锥S A B C -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC , SA=3,那么直线AB 与平面SBC 所成角的正弦值为( ) (A ) 34 (B ) 54 (C ) 74 (D ) 34 (9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标 号为1,2的卡片放入同一信封,则不同的放法共有( ) (A )12种 (B )18种 (C )36种 (D )54种 (10)ABC V 中,点D 在A B 上,CD 平分ACB ∠.若C B a =uur r ,C A b =uur r ,1a =r ,2b =r , 则C D =uuu r ( ) (A )1233a b +r r (B )2133a b +r r (C )3455a b +r r (D )4355 a b +r r (11)与正方体1111ABC D A B C D -的三条棱AB 、1C C 、11A D 所在直线的距离相等的点( ) (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 (12)已知椭圆C : 22 x a + 2 2b y =1(0)a b >>的离心率为 2 3,过右焦点F 且斜率为k (k >0) 的直线与C 相交于A 、B 两点,若AF =3FB ,则k =( ) (A )1 (B ) 2 (C ) 3 (D )2

2020年高考文科数学全国1卷试题

2020年高考全国一卷文科数学试题 一、选择题 1.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B ?=( ) A.{4,1}- B.{1,5} C.{3,5} D.{1,3} 2.若312i i z =++,则||z =( ) A.0 B.1 D.2 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( ) 4.设O 为正方形ABCD 的中心,在,,,,O A B C D 中任取3点,则取到的3点共线的概率为( ) A. 15 B.25 C.12 D.45 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不 同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图: 由此散点图,在10C ?至40C ?之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A.y a bx =+ B.2y a bx =+ C.e x y a b =+ D.ln y a b x =+ 6.已知圆2260x y x +-=,过点()1,2的直线被该圆所截得的弦的长度的最小值为( ) A.1 B.2 C.3 D.4

7.设函数()cos π ()6 f x x ω=+在[π,π]-的图像大致如下图,则()f x 的最小正周期为( ) A.10π9 B.7π 6 C. 4π3 D. 3π2 8.设3log 42a =,则4a -= ( ) A. 116 B.19 C.18 D. 16 9.执行下面的程序框图,则输出的n = ( ) A.17 B.19 C.21 D.23 10.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A.12 B.24 C.30 D.32 11.设12,F F 是双曲线2 2 :13 y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则 12PF F △的面积为( ) A. 72 B.3 C. 52 D.2 12.已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )

高考试题数学文科-(全国卷)

普通高等学校招生全国统一考试(全国卷) 数学(文史类) 一.选择题:本大题共12小题, 每小题5分, 共60分, 在每小题给出的四个选 项中, 只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) A .12 y x =- B .12 y x = C .2y x =- D .2y x = 2.已知,02x π??∈- ??? , 54cos =x , 则2tg x = ( ) A .24 7 B .247- C .7 24 D .7 24- 3.抛物线2 y ax =的准线方程是2,y a =则的值为 ( ) A . 1 8 B .1 8 - C .8 D .8- 4.等差数列{}n a 中, 已知1251 ,4,33,3 n a a a a n =+==则为( ) A .48 B .49 C .50 D .51 5.双曲线虚轴的一个端点为M , 两个焦点为1212,,120F F F MF ∠=?, 则双曲线的离心率为( ) A B C D 6.设函数?????-=-2112)(x x f x 00>≤x x , 若1)(0>x f , 则0x 的取值范围是 ( ) A .(1-, 1) B .(1-, ∞+) C .(∞-, 2-)?(0, ∞+) D .(∞-, 1-) ?(1, ∞+) 7.已知5 ()lg ,(2)f x x f ==则( ) A .lg 2 B .lg32 C .1 lg 32 D .1lg 25

8.函数sin()(0)y x R ??π?=+≤≤=是上的偶函数,则( ) A .0 B . 4 π C . 2 π D .π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) A B .2 C 1 D 1 10.已知圆锥的底面半径为R , 高为3R , 它的内接圆柱的底面半径为3 4 R , 该圆柱的全面积为( ) A .2 2R π B .24 9R π C .238 R π D .252R π 11.已知长方形的四个顶点A (0, 0), B (2, 0), C (2, 1)和D (0, 1), 一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后, 依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合, 则tg θ= ( ) A .3 1 B . 5 2 C . 2 1 D .1 12.一个四面体的所有棱长都为2, 四个顶点在同一球面上, 则此球的表面积为( ) A .π3 B .π4 C .π33 D .π6 普通高等学校招生全国统一考试 数 学(文史类) 第Ⅱ卷(非选择题共90分) 二.填空题:本大题共4小题, 每小题4分, 共16分把答案填在题中横线上 13x <的解集是____________________. 14.92)21(x x -的展开式中9 x 系数是 ________ . 15.在平面几何里, 有勾股定理:“设22,,ABC AB AC AB AC BC +=V 的两边互相垂直则”

2010年高考理科数学试题(全国卷1)

填空题(共15题,每题1分) 1.楼板层通常由以下三部分组成(B)。 A、面层、楼板、地坪 B、面层、楼板、顶棚 C、支撑、楼板、顶棚 D、垫层、梁、楼板 2.当预制板在楼层布置出现较大缝隙,板缝宽度≤120mm时,可采用(D)的处理方法。 A、用水泥砂浆填缝 B、灌注细石混凝土填缝 C、重新选择板的类型 D、沿墙挑砖或挑梁填缝 3.踢脚板的高度一般为(B)mm。 A、80~120 B、120~150 C、150~180 D、180~200 4.防水混凝土的设计抗渗等级是根据(D)确定的。 A、防水混凝土的壁厚 B、混凝土的强度等级 C、工程埋置深度 D、最大水头与混凝土壁厚的比值 5.砖基础采用等高式大放脚时,一般每两皮砖挑出( B )砌筑。 A、1皮砖 B、3/4皮砖 C、1/2皮砖 D、1/4皮砖 6.门窗洞口与门窗实际尺寸之间的预留缝隙大小与(B)无关。 A、门窗本身幅面大小 B、外墙抹灰或贴面材料种类 C、门窗有无假框 D、门窗种类(木门窗、钢门窗或铝合金门窗)7.下列关于散水的构造做法表述中,(C)是不正确的。 A、在素土夯实上做60~l00mm厚混凝土,其上再做5%的水泥砂浆抹面 B、散水宽度一般为600~1000mm C、散水与墙体之间应整体连接,防止开裂 D、散水宽度应比采用自由落水的屋顶檐口多出200mm左右 8.下列哪种砂浆既有较高的强度又有较好的和易性(C) A. 水泥砂浆 B. 石灰砂浆 C. 混合砂浆 D. 粘土砂浆 9.屋顶的设计应满足(D)、结构和建筑艺术三方面的要求。 A、经济 B、材料 C、功能 D、安全 10.预制钢筋混凝土楼板间留有缝隙的原因是(B)。 A、有利于预制板的制作 B、板宽规格的限制,实际尺寸小于标志尺寸 C、有利于加强板的强度 D、有利于房屋整体性的提高 11.下列建筑屋面中,(D)应采用有组织的排水形式。 A、高度较低的简单建筑 B、积灰多的屋面 C、有腐蚀介质的屋面 D、降雨量较大地区的屋面 12.(D)开启时不占室内空间,但擦窗及维修不便;(D)擦窗安全方便,但影响家具布置和使用。 A、内开窗、固定窗 B、内开窗、外开窗 C、立转窗、外开窗 D、外开窗、内开窗 13.防滑条应突出踏步面(C)。 A、1~2mm B、2~3mm C、3~5mm D、5mm

2010年高考全国卷1文科数学试题

绝密★启用前 2010年普通高等学校招生全国统一考试 文科数学(必修+选修II) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效......... 。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)cos300?= (A)12 (C)12 (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则() U N M ?=e A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 (3)若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为 (A)4 (B)3 (C)2 (D)1

(完整版)2017年全国1卷高考文科数学试题及答案-

绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?< ??? ? B .A I B =? C .A U B 3|2x x ? ?=

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

2010年高考理科数学试题及答案(全国一卷)

第1/10页 2010年普通高等学校招生全国统一考试 理科数学(必修+选修II ) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。第I 卷1至2页。第II 卷3至4页。考试结束后,将本草纲目试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。 3.第I 卷共12小题,第小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 )(()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 )( ()()P A B P A P B ?=? 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34 3 v R π= n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκ ηηρκρ ρκη-A A =-=??? 一. 选择题 (1)复数3223i i +-= (A ).i (B ).-i (C ).12—13i (D ).12+13i (2) 记cos (-80°)=k ,那么tan100°= (A ) (B ). — (C.) (D ).

第2/10页 (3)若变量x ,y 满足约束条件则z=x —2y 的最大值为 (A ).4 (B )3 (C )2 (D )1 (4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= (B) 7 (C) 6 (5) 3 5的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4 (6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。若要求两类课程中各至少一门,则不同的选法共有 (A )30种 (B )35种 (C )42种 (D )48种 (7)正方体1111ABCD A BC D -中,1BB 与平面1ACD 所成角的余弦值为 (A ) 3 (B )33 (C )23 (D )6 3 (8)设1 2 3102,12,5 a g b n c -===则 (A )a b c << (B )b c a << (C )c a b << (D )c b a << (9)已知1F 、2F 为双曲线2 2 :1C χγ-=的左、右焦点,点在P 在C 上,12F PF ∠=60°, 则P 到χ轴的距离为 (A ) 2 (B )6 2 (C 3 (D 6(10)已知函数()|1|f g χχ=,若0a b <<,且()()f a f b =,则2a b +的取值范围是 (A ))+∞ (B )[22,)+∞ (C )(3,)+∞ (D )[3,)+∞ (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA 〃PB 的最小值为 (A ) (B ) (C ) (D ) (12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体 积的最大值

高考文科数学真题全国卷

高考文科数学真题全国 卷 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则 =+FC EB A. AD B. AD 21 C. BC D. BC 2 1 (7)在函数①|2|cos x y =,②|cos |x y = , ③)62cos(π+=x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事 一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2019年全国高考1卷文科数学试题及答案

2019年全国高考新课标1卷文科数学试题 第Ⅰ卷 一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( ) A .{1,3} B .{3,5} C .{5,7} D .{1,7} 2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( ) A .-3 B .-2 C .2 D . 3 3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中, 余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A .13 B .12 C .2 3 D .56 4.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2 2,cos 3 a c A ===, 则b=( ) A . C .2 D .3 5.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的 1 4 ,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34 6.若将函数y =2sin (2x +6π)的图像向右平移1 4 个周期后,所得图像对应的函数 为 ( ) A .y =2sin(2x +4π) B .y =2sin(2x +3π) C .y =2sin(2x –4 π ) D .y =2sin(2x –3 π) 7.如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条相互垂直的半径.若该几何体的体积是283 π , 则它的表面积是( ) A .17π B .18π C .20π D .28π 8.若a >b >0,0c b

2017全国卷文科数学高考大纲

文科数学 I、考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。 对知识的要求依次是了解、理解、掌握三个层次。 1、了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。 2、理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。 3、掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。 1。空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、

2010年广东高考文科数学试题及答案

{} 0绝密★启用前 试卷类型:B 2010年普通高等学校招生全国统一考试(广东卷) 数学(文科) 本试卷共4页,21小题,满分150分。考试用时120分钟。 参考公式:锥体的体积公式Sh V 3 1 = ,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合{}3,2,1,0=A ,{}4,2,1=B 则集合=?B A A. {}4,3,2,1,0 B. {}4,3,2,1 C. {}2,1 D. 解:并集,选A. 2.函数)1lg()(-=x x f 的定义域是 A.),2(+∞ B. ),1(+∞ C. ),1[+∞ D. ),2[+∞ 解:01>-x ,得1>x ,选B. 3.若函数x x x f -+=3 3)(与x x x g --=3 3)(的定义域均为R ,则 A. )(x f 与)(x g 与均为偶函数 B.)(x f 为奇函数,)(x g 为偶函数 C. )(x f 与)(x g 与均为奇函数 D.)(x f 为偶函数,)(x g 为奇函数 解:由于)(33 )()(x f x f x x =+=----,故)(x f 是偶函数,排除B 、C 由题意知,圆心在y 轴左侧,排除A 、C 在AO Rt 0?, 21 0==k A OA ,故 505 10500=?==O O O A ,选D

7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A. 54 B.53 C. 52 D. 5 1

10.在集合{}d c b a ,,,上定义两种运算○+和○*如下

2018年全国1卷(文科数学)高考

2018年普通高等学校招生全国统一考试文科数学 一、选择题: 1. 已知集合,,,,,,,则 A. , B. , C. D. ,,,, 2. 设,则 A. 0 B. C. D. 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是 A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4. 已知椭圆:的一个焦点为,,则的离心率为 A. B. C. D. 5. 已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D. 6. 设函数.若为奇函数,则曲线在点, 处的切线方程为 A. B. C. D. 7. 在△中,为边上的中线,为的中点,则 A. B. C. D. 8. 已知函数,则

A. 的最小正周期为,最大值为3 B. 的最小正周期为,最大值为4 C. 的最小正周期为,最大值为3 D. 的最小正周期为,最大值为4 9. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中, 最短路径的长度为 A. B. C. D. 2 10. 在长方体中,,与平面所成的角为,则该长方体的体积为 A. B. C. D. 11. 已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,, ,,且,则 A. B. C. D. 12. 设函数 , , ,则满足的x的取值范围是 A. , B. , C. , D. , 二、填空题(本题共4小题,每小题5分,共20分) 13. 已知函数,若,则________. 14. 若,满足约束条件,则的最大值为________. 15. 直线与圆交于,两点,则________. 16. △的内角,,的对边分别为,,,已知 ,,则△的面积为________. 三、解答题:共70分。 17. 已知数列满足,,设. (1)求,,; (2)判断数列是否为等比数列,并说明理由; (3)求的通项公式.

高考文科数学真题及答案全国卷

高考文科数学真题及答 案全国卷 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. ?1?1 2i B .1 1+i 2 - C .1+1 2i D .1?1 2i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),

2010年全国高考理科数学试题及答案-全国1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷) 理科数学(必修+选修II) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效......... 。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)复数3223i i +=- (A)i (B)i - (C)12-13i (D) 12+13i (2)记cos(80)k -?=,那么tan100?=

(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为 (A)4 (B)3 (C)2 (D)1 (4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则 456a a a = (A) (5)35(1(1+的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4 (6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种 (7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 3 B 3 C 23 D 3 (8)设a=3log 2,b=In2,c=1 25-,则 A a

2010年全国统一高考数学试卷及解析(文科)(新课标)

2010年全国统一高考数学试卷(文科)(新课标) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=() A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)平面向量,已知=(4,3),=(3,18),则 夹角的余弦值等于() A. B.C. D. 3.(5分)已知复数Z=,则|z|=() A.B.C.1 D.2 4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+2 5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为() A. B.C. D. 6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()

A.B. C.D. 7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为() A.3πa2B.6πa2C.12πa2D.24πa2 8.(5分)如果执行右面的框图,输入N=5,则输出的数等于()

A.B.C.D. 9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=() A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2} 10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A. B.C.D. 11.(5分)已知?ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在?ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是() A.(1,10)B.(5,6)C.(10,12)D.(20,24) 二、填空题:本大题共4小题,每小题5分. 13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f (x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.

相关文档
相关文档 最新文档