文档库 最新最全的文档下载
当前位置:文档库 › VLAN技术深度详解

VLAN技术深度详解

VLAN技术深度详解
VLAN技术深度详解

Vlan 技术详解

什么是VLAN ?

VLAN (Virtual LAN ),翻译成中文是“虚拟局域网”。LAN 可以是由少数几台家用计算机构成的网络,也可以是数以百计的计算机构成的企业网络。VLAN 所指的LAN 特指使用路由器分割的网络——也就是广播域。

在此让我们先复习一下广播域的概念。广播域,指的是广播帧(目标MAC 地址全部为1)所能传递到的范围,亦即能够直接通信的范围。严格地说,并不仅仅是广播帧,多播帧(Multicast Frame )和目标不明的单播帧(Unknown Unicast Frame )也能在同一个广播域中畅行无阻。

本来,二层交换机只能构建单一的广播域,不过使用VLAN 功能后,它能够将网络分割成多个广播域。

未分割广播域时……

那么,为什么需要分割广播域呢?那是因为,如果仅有一个广播域,有可能会影响到网络整体的传输性能。具体原因,请参看附图加深理解。

图中,是一个由5台二层交换机(交换机1~5)连接了大量客户机构成的网络。假设这时,计算机A 需要与计算机B 通信。在基于以太网的通信中,必须在数据帧中指定目标MAC 地址才能正常通信,因此计算机A 必须先广播“ARP 请求(ARP Request )信息”,来尝试获取计算机B 的MAC 地址。

交换机1收到广播帧(ARP 请求)后,会将它转发给除接收端口外的其他所有端口,也就

交换机1 交换机2

交换机3

交换机4

交换机5

……

…… ……

A

B

是Flooding 了。接着,交换机2收到广播帧后也会Flooding 。交换机3、4、5也还会Flooding 。最终ARP 请求会被转发到同一网络中的所有客户机上。

请大家注意一下,这个ARP 请求原本是为了获得计算机B 的MAC 地址而发出的。也就是说:只要计算机B 能收到就万事大吉了。可是事实上,数据帧却传遍整个网络,导致所有的计算机都收到了它。如此一来,一方面广播信息消耗了网络整体的带宽,另一方面,收到广播信息的计算机还要消耗一部分CPU 时间来对它进行处理。造成了网络带宽和CPU 运算能力的大量无谓消耗。

广播信息是那么经常发出的吗?

读到这里,您也许会问:广播信息真是那么频繁出现的吗?

答案是:是的!实际上广播帧会非常频繁地出现。利用TCP/IP 协议栈通信时,除了前面出现的ARP 外,还有可能需要发出DHCP 、RIP 等很多其他类型的广播信息。

ARP 广播,是在需要与其他主机通信时发出的。当客户机请求DHCP 服务器分配IP 地址时 ,就必须发出DHCP 的广播。而使用RIP 作为路由协议时,每隔30秒路由器都会对邻近的其他路由器广播一次路由信息。RIP 以外的其他路由协议使用多播传输路由信息,这也会被交换机转发(Flooding )。除了TCP/IP 以外,NetBEUI 、IPX 和Apple Talk 等协议也经常需要用到广播。例如在Windows 下双击打开“网络计算机”时就会发出广播(多播)信息。(Windows XP 除外……)

总之,广播就在我们身边。下面是一些常见的广播通信:

交换机1

交换机2

交换机3

交换机4

交换机5

……

…… ……

ARP Request

Broadcast

广播帧会传播到网络中的每一台主机, 并且对每一台计算机的CPU 造成负担。

●ARP请求:建立IP地址和MAC地址的映射关系。

●RIP:一种路由协议。

●DHCP:用于自动设定IP地址的协议。

●NetBEUI:Windows下使用的网络协议。

●IPX:Novell Netware使用的网络协议。

●Apple Talk:苹果公司的Macintosh计算机使用的网络协议。

如果整个网络只有一个广播域,那么一旦发出广播信息,就会传遍整个网络,并且对网络中的主机带来额外的负担。因此,在设计LAN时,需要注意如何才能有效地分割广播域。

广播域的分割与VLAN的必要性

分割广播域时,一般都必须使用到路由器。使用路由器后,可以以路由器上的网络接口(LAN Interface)为单位分割广播域。

但是,通常情况下路由器上不会有太多的网络接口,其数目多在1~4个左右。随着宽带连接的普及,宽带路由器(或者叫IP共享器)变得较为常见,但是需要注意的是,它们上面虽然带着多个(一般为4个左右)连接LAN一侧的网络接口,但那实际上是路由器内置的交换机,并不能分割广播域。

况且使用路由器分割广播域的话,所能分割的个数完全取决于路由器的网络接口个数,使得用户无法自由地根据实际需要分割广播域。

与路由器相比,二层交换机一般带有多个网络接口。因此如果能使用它分割广播域,那么无疑运用上的灵活性会大大提高。

用于在二层交换机上分割广播域的技术,就是VLAN。通过利用VLAN,我们可以自由设计广播域的构成,提高网络设计的自由度。

实现VLAN的机制

实现VLAN的机制

在理解了“为什么需要VLAN”之后,接下来让我们来了解一下交换机是如何使用VLAN 分割广播域的。

首先,在一台未设置任何VLAN的二层交换机上,任何广播帧都会被转发给除接收端口外的所有其他端口(Flooding)。例如,计算机A发送广播信息后,会被转发给端口2、3、4。

这时,如果在交换机上生成红、蓝两个VLAN ;同时设置端口1、2属于红色VLAN 、端口3、4属于蓝色VLAN 。再从A 发出广播帧的话,交换机就只会把它转发给同属于一个VLAN 的其他端口——也就是同属于红色VLAN 的端口2,不会再转发给属于蓝色VLAN 的端口。 同样,C 发送广播信息时,只会被转发给其他属于蓝色VLAN 的端口,不会被转发给属于红色VLAN 的端口。

就这样,VLAN 通过限制广播帧转发的范围分割了广播域。上图中为了便于说明,以红、蓝两色识别不同的VLAN ,在实际使用中则是用“VLAN ID ”来区分的。

直观地描述VLAN

如果要更为直观地描述VLAN 的话,我们可以把它理解为将一台交换机在逻辑上分割成了数台交换机。在一台交换机上生成红、蓝两个VLAN ,也可以看作是将一台交换机换做一红一蓝两台虚拟的交换机。

1

2

3

4

交换机

广播帧

交换机收到广播

帧后,只转发到属于同一VLAN 的其他端口。

广播域

广播帧

广播域

1 2 3 4

交换机

广播帧

交换机收到广播帧后,转发到除接收端口外的其他所有端口。

在红、蓝两个VLAN 之外生成新的VLAN 时,可以想象成又添加了新的交换机。 但是,VLAN 生成的逻辑上的交换机是互不相通的。因此,在交换机上设置VLAN 后,如果未做其他处理,VLAN 间是无法通信的。

明明接在同一台交换机上,但却偏偏无法通信——这个事实也许让人难以接受。但它既是VLAN 方便易用的特征,又是使VLAN 令人难以理解的原因。

需要VLAN 间通信时怎么办

那么,当我们需要在不同的VLAN 间通信时又该如何是好呢?

请大家再次回忆一下:VLAN 是广播域。而通常两个广播域之间由路由器连接,广播域之间来往的数据包都是由路由器中继的。因此,VLAN 间的通信也需要路由器提供中继服务,这被称作“VLAN 间路由”。

VLAN 间路由,可以使用普通的路由器,也可以使用三层交换机。其中的具体内容,等有机会再细说吧。在这里希望大家先记住不同VLAN 间互相通信时需要用到路由功能。

VLAN 的访问链接

交换机的端口

交换机的端口,可以分为以下两种:

1

2

3 4

交换机

● 访问链接(Access Link ) ● 汇聚链接(Trunk Link )

接下来就让我们来依次学习这两种不同端口的特征。这一讲,首先学习“访问链接”。

访问链接

访问链接,指的是“只属于一个VLAN ,且仅向该VLAN 转发数据帧”的端口。在大多数情况下,访问链接所连的是客户机。 通常设置VLAN 的顺序是:

● 生成VLAN

● 设定访问链接(决定各端口属于哪一个VLAN )

设定访问链接的手法,可以是事先固定的、也可以是根据所连的计算机而动态改变设定。前者被称为“静态VLAN ”、后者自然就是“动态VLAN ”了。

静态VLAN

静态VLAN 又被称为基于端口的VLAN (Port Based VLAN )。顾名思义,就是明确指定各端口属于哪个VLAN 的设定方法。

由于需要一个个端口地指定,因此当网络中的计算机数目超过一定数字(比如数百台)后,设定操作就会变得烦杂无比。并且,客户机每次变更所连端口,都必须同时更改该端口所属VLAN 的设定——这显然不适合那些需要频繁改变拓补结构的网络。

1

2

3

4

交换机

端口 VLAN 1

1 2 3 4

1 2 2

VLAN2

将交换机的每个端

口静态指派给VLAN

VLAN1

动态VLAN

另一方面,动态VLAN 则是根据每个端口所连的计算机,随时改变端口所属的VLAN 。这就可以避免上述的更改设定之类的操作。动态VLAN 可以大致分为3类:

● 基于MAC 地址的VLAN (MAC Based VLAN ) ● 基于子网的VLAN (Subnet Based VLAN ) ● 基于用户的VLAN (User Based VLAN )

其间的差异,主要在于根据OSI 参照模型哪一层的信息决定端口所属的VLAN 。

基于MAC 地址的VLAN ,就是通过查询并记录端口所连计算机上网卡的MAC 地址来决定端口的所属。假定有一个MAC 地址“A ”被交换机设定为属于VLAN “10”,那么不论MAC 地址为“A ”的这台计算机连在交换机哪个端口,该端口都会被划分到VLAN10中去。计算机连在端口1时,端口1属于VLAN10;而计算机连在端口2时,则是端口2属于VLAN10。

由于是基于MAC 地址决定所属VLAN 的,因此可以理解为这是一种在OSI 的第二层设定访问链接的办法。

但是,基于MAC 地址的VLAN ,在设定时必须调查所连接的所有计算机的MAC 地址并加以登录。而且如果计算机交换了网卡,还是需要更改设定。

基于子网的VLAN ,则是通过所连计算机的IP 地址,来决定端口所属VLAN 的。不像基于MAC 地址的VLAN ,即使计算机因为交换了网卡或是其他原因导致MAC 地址改变,只要

MAC VLAN

A

1 B C D

1 2 2

VLAN2

VLAN1

1

2

3 4

1

2

3

4

MAC:A MAC:B MAC:C MAC:D MAC:C MAC:B MAC:A MAC:D

即使计算机改变了所连接

的端口,交换机仍会查出它的MAC 地址,并正确指定端口所属的VLAN 。

它的IP 地址不变,就仍可以加入原先设定的VLAN 。

因此,与基于MAC 地址的VLAN 相比,能够更为简便地改变网络结构。IP 地址是OSI 参照模型中第三层的信息,所以我们可以理解为基于子网的VLAN 是一种在OSI 的第三层设定访问链接的方法。

基于用户的VLAN ,则是根据交换机各端口所连的计算机上当前登录的用户,来决定该端口属于哪个VLAN 。这里的用户识别信息,一般是计算机操作系统登录的用户,比如可以是Windows 域中使用的用户名。这些用户名信息,属于OSI 第四层以上的信息。

总的来说,决定端口所属VLAN 时利用的信息在OSI 中的层面越高,就越适于构建灵活多变的网络。

访问链接的总结

综上所述,设定访问链接的手法有静态VLAN 和动态VLAN 两种,其中动态VLAN 又可以继续细分成几个小类。

其中基于子网的VLAN 和基于用户的VLAN 有可能是网络设备厂商使用独有的协议实现的,不同厂商的设备之间互联有可能出现兼容性问题;因此在选择交换机时,一定要注意事先确认。

下表总结了静态VLAN 和动态VLAN 的相关信息。

网络地址

VLAN

192.168.1.0/24

1 192.168.2.0/24

2

VLAN2

VLAN1

1

2

3

4

1

2

3

4

即使计算机改变了所连接的端口,交换机仍会通过IP 地址正确指定端口所属的VLAN 。

IP 地址 192.168.1.2 IP 地址 192.168.2.1 IP 地址 192.168.2.2 IP 地址 192.168.1.1 IP 地址 192.168.2.1 IP 地址 192.168.1.2 IP 地址 192.168.1.1 IP 地址

192.168.2.2

种类

解说

静态VLAN (基于端口的VLAN )

将交换机的各端口固定指派给VLAN 动态VLAN

基于MAC 地址的VLAN

根据各端口所连计算机的MAC 地址设定 基于子网的VLAN 根据各端口所连计算机的IP 地址设定 基于用户的VLAN

根据端口所连计算机上登录用户设定

VLAN 的汇聚链接

需要设置跨越多台交换机的VLAN 时……

到此为止,我们学习的都是使用单台交换机设置VLAN 时的情况。那么,如果需要设置跨越多台交换机的VLAN 时又如何呢?

在规划企业级网络时,很有可能会遇到隶属于同一部门的用户分散在同一座建筑物中的不同楼层的情况,这时可能就需要考虑到如何跨越多台交换机设置VLAN 的问题了。假设有如下图所示的网络,且需要将不同楼层的A 、C 和B 、D 设置为同一个VLAN 。

这时最关键的就是“交换机1和交换机2该如何连接才好呢?”

最简单的方法,自然是在交换机1和交换机2上各设一个红、蓝VLAN 专用的接口并互联了。

交换机1

交换机2

A

C

B

D

但是,这个办法从扩展性和管理效率来看都不好。例如,在现有网络基础上再新建VLAN 时,为了让这个VLAN 能够互通,就需要在交换机间连接新的网线。建筑物楼层间的纵向布线是比较麻烦的,一般不能由基层管理人员随意进行。并且,VLAN 越多,楼层间(严格地说是交换机间)互联所需的端口也越来越多,交换机端口的利用效率低是对资源的一种浪费、也限制了网络的扩展。

为了避免这种低效率的连接方式,人们想办法让交换机间互联的网线集中到一根上,这时使用的就是汇聚链接(Trunk Link )。

何谓汇聚链接?

汇聚链接(Trunk Link )指的是能够转发多个不同VLAN 的通信的端口。 汇聚链路上流通的数据帧,都被附加了用于识别分属于哪个VLAN 的特殊信息。 现在再让我们回过头来考虑一下刚才那个网络如果采用汇聚链路又会如何呢?用户只需要简单地将交换机间互联的端口设定为汇聚链接就可以了。这时使用的网线还是普通的UTP 线,而不是什么其他的特殊布线。图例中是交换机间互联,因此需要用交叉线来连接。 接下来,让我们具体看看汇聚链接是如何实现跨越交换机间的VLAN 的。

A 发送的数据帧从交换机1经过汇聚链路到达交换机2时,在数据帧上附加了表示属于红色VLAN 的标记。

交换机2收到数据帧后,经过检查VLAN 标识发现这个数据帧是属于红色VLAN 的,因此去除标记后根据需要将复原的数据帧只转发给其他属于红色VLAN 的端口。这时的转送,是指经过确认目标MAC 地址并与MAC 地址列表比对后只转发给目标MAC 地址所连的端口。只有当数据帧是一个广播帧、多播帧或是目标不明的帧时,它才会被转发到所有属于红色VLAN 的端口。

蓝色VLAN 发送数据帧时的情形也与此相同。

交换机1

交换机2

A

C

B

D

每增加一个VLAN ,都需要添加一条互联网线,并且还需要额外的端口。

通过汇聚链路时附加的VLAN 识别信息,有可能支持标准的“IEEE 802.1Q ”协议,也可能是Cisco 产品独有的“ISL (Inter Switch Link )”。如果交换机支持这些规格,那么用户就能够高效率地构筑横跨多台交换机的VLAN 。

另外,汇聚链路上流通着多个VLAN 的数据,自然负载较重。因此,在设定汇聚链接时,有一个前提就是必须支持100Mbps 以上的传输速度。

另外,默认条件下,汇聚链接会转发交换机上存在的所有VLAN 的数据。换一个角度看,可以认为汇聚链接(端口)同时属于交换机上所有的VLAN 。由于实际应用中很可能并不需要转发所有VLAN 的数据,因此为了减轻交换机的负载、也为了减少对带宽的浪费,我们可以通过用户设定限制能够经由汇聚链路互联的VLAN 。 关于IEEE802.1Q 和ISL 的具体内容,将在下一讲中提到。

IEEE802.1Q 与ISL

汇聚方式

在交换机的汇聚链接上,可以通过对数据帧附加VLAN 信息,构建跨越多台交换机的VLAN 。 附加VLAN 信息的方法,最具有代表性的有:

● IEEE802.1Q ● ISL

现在就让我们看看这两种协议分别如何对数据帧附加VLAN 信息。

IEEE802.1Q

IEEE802.1Q ,俗称“Dot One Q ”,是经过IEEE 认证的对数据帧附加VLAN 识别信息的协议。 在此,请大家先回忆一下以太网数据帧的标准格式。

IEEE802.1Q 所附加的VLAN 识别信息,位于数据帧中“发送源MAC 地址”与“类别域(Type Field )”之间。具体内容为2字节的TPID 和2字节的TCI ,共计4字节。

交换机1

交换机2

A

C B

D

数据

数据

数据

Trunk Link

Trunk Link 通过汇聚链路时,自动附加VLAN 识别信息

通过识别VLAN 标识,转发给相应的端口,同时去除VLAN 标识,恢复成原始数据帧。

在数据帧中添加了4字节的内容,那么CRC 值自然也会有所变化。这时数据帧上的CRC 是插入TPID 、TCI 后,对包括它们在内的整个数据帧重新计算后所得的值。

而当数据帧离开汇聚链路时,TPID 和TCI 会被去除,这时还会进行一次CRC 的重新计算。 TPID 的值,固定为0x8100。交换机通过TPID ,来确定数据帧内附加了基于IEEE802.1Q 的VLAN 信息。而实质上的VLAN ID ,是TCI 中的12位元。由于总共有12位,因此最多可供识别4096个VLAN 。

基于IEEE802.1Q 附加的VLAN 信息,就像在传递物品时附加的标签。因此,它也被称作“标签型VLAN (Tagging VLAN )”。

ISL (Inter Switch Link )

ISL ,是Cisco 产品支持的一种与IEEE802.1Q 类似的、用于在汇聚链路上附加VLAN 信息的协议。

使用ISL 后,每个数据帧头部都会被附加26字节的“ISL 包头(ISL Header )”,并且在帧尾带上通过对包括ISL 包头在内的整个数据帧进行计算后得到的4字节CRC 值。换而言之,就是总共增加了30字节的信息。

在使用ISL 的环境下,当数据帧离开汇聚链路时,只要简单地去除ISL 包头和新CRC 就可以了。由于原先的数据帧及其CRC 都被完整保留,因此无需重新计算CRC 。

Ethernet Version 2

6Bytes

6Bytes

2Bytes

46~1500Bytes

4Bytes

目标MAC 地

发送源MAC

地址

CRC

数据部分

类型

目标MAC 地址

发送源MAC

地址

CRC

数据部分

TPID

TCI

6Bytes

6Bytes

2Bytes

46~1500Bytes

4Bytes

IEEE802.1Q

0x8100 2Bytes

2Bytes

内含12bit 的

VLAN 标识 CRC 经过重新计算

ISL 有如用ISL 包头和新CRC 将原数据帧整个包裹起来,因此也被称为“封装型VLAN (Encapsulated VLAN )”。

需要注意的是,不论是IEEE802.1Q 的“Tagging VLAN ”,还是ISL 的“Encapsulated VLAN ”,都不是很严密的称谓。不同的书籍与参考资料中,上述词语有可能被混合使用,因此需要大家在学习时格外注意。

并且由于ISL 是Cisco 独有的协议,因此只能用于Cisco 网络设备之间的互联。

VLAN 间路由1

VLAN 间路由的必要性

根据目前为止学习的知识,我们已经知道两台计算机即使连接在同一台交换机上,只要所属的VLAN 不同就无法直接通信。接下来我们将要学习的就是如何在不同的VLAN 间进行路由,使分属不同VLAN 的主机能够互相通信。

首先,先来复习一下为什么不同VLAN 间不通过路由就无法通信。在LAN 内的通信,必须在数据帧头中指定通信目标的MAC 地址。而为了获取MAC 地址,TCP/IP 协议下使用的是ARP 。ARP 解析MAC 地址的方法,则是通过广播。也就是说,如果广播报文无法到达,那么就无从解析MAC 地址,亦即无法直接通信。

计算机分属不同的VLAN ,也就意味着分属不同的广播域,自然收不到彼此的广播报文。因此,属于不同VLAN 的计算机之间无法直接互相通信。为了能够在VLAN 间通信,需要利用OSI 参照模型中更高一层——网络层的信息(IP 地址)来进行路由。关于路由的具体内容,以后有机会再详细解说吧。

Ethernet Version 2

ISL

6Bytes

6Bytes

2Bytes

46~1500Bytes

4Bytes

目标MAC 地

发送源MAC

地址

CRC

数据部分

类型

6Bytes

6Bytes

2Bytes

46~1500Bytes

4Bytes 目标MAC 地址 发送源MAC 地址

CRC

数据部分 类型

CRC

4Bytes

ISL 包头

26Bytes

包含VLAN

编号

保留原CRC 不变

对从ISL 包头到原CRC 为止重新计算CRC

路由功能,一般主要由路由器提供。但在今天的局域网里,我们也经常利用带有路由功能的交换机——三层交换机(Layer 3 Switch )来实现。接下来就让我们分别看看使用路由器和三层交换机进行VLAN 间路由时的情况。

使用路由器进行VLAN 间路由

在使用路由器进行VLAN 间路由时,与构建横跨多台交换机的VLAN 时的情况类似,我们还是会遇到“该如何连接路由器与交换机”这个问题。路由器和交换机的接线方式,大致有以下两种:

● 将路由器与交换机上的每个VLAN 分别连接

● 不论VLAN 有多少个,路由器与交换机都只用一条网线连接

最容易想到的,当然还是“把路由器和交换机以VLAN 为单位分别用网线连接”了。将交换机上用于和路由器互联的每个端口设为访问链接,然后分别用网线与路由器上的独立端口互联。如下图所示,交换机上有2个VLAN ,那么就需要在交换机上预留2个端口用于与路由器互联;路由器上同样需要有2个端口;两者之间用2条网线分别连接。

如果采用这个办法,大家应该不难想象它的扩展性很成问题。每增加一个新的VLAN ,都需要消耗路由器的端口和交换机上的访问链接,而且还需要重新布设一条网线。而路由器,通常不会带有太多LAN 接口的。新建VLAN 时,为了对应增加的VLAN 所需的端口,就必须将路由器升级成带有多个LAN 接口的高端产品,这部分成本、还有重新布线所带来的开销,都使得这种接线法成为一种不受欢迎的办法。

那么,第二种办法“不论VLAN 数目多少,都只用一条网线连接路由器与交换机”呢?当使用一条网线连接路由器与交换机、进行VLAN 间路由时,需要用到汇聚链接。

具体实现过程为:首先将用于连接路由器的交换机端口设为汇聚链接,而路由器上的端口也必须支持汇聚链路。双方用于汇聚链路的协议自然也必须相同。接着在路由器上定义对应各个VLAN 的“子接口(Sub Interface )”。尽管实际与交换机连接的物理端口只有一个,但在理论上我们可以把它分割为多个虚拟端口。

交换机

路由器

连红色VLAN

的路由器端口

连蓝色VLAN 的路由器端口

VLAN 将交换机从逻辑上分割成了多台,因而用于VLAN 间路由的路由器,也必须拥有分别对应各个VLAN 的虚拟接口。

采用这种方法的话,即使之后在交换机上新建VLAN ,仍只需要一条网线连接交换机和路由器。用户只需要在路由器上新设一个对应新VLAN 的子接口就可以了。与前面的方法相比,扩展性要强得多,也不用担心需要升级LAN 接口数不足的路由器或是重新布线。

VLAN 间路由2

同一VLAN 内的通信

接下来,我们继续学习使用汇聚链路连接交换机与路由器时,VLAN 间路由是如何进行的。如下图所示,为各台计算机以及路由器的子接口设定IP 地址。

红色VLAN (VLAN ID=1)的网络地址为192.168.1.0/24,蓝色VLAN (VLAN ID=2)的网络地址为192.168.2.0/24。各计算机的MAC 地址分别为A/B/C/D ,路由器汇聚链接端口的

交换机

路由器端口的

MAC 地址:R

连接蓝色VLAN 的子接口

192.168.2.100/24

汇聚链接

连接红色VLAN

的子接口

192.168.1.100/24

1

2

3

4

5

6

A

192.168.1.1/24

GW192.168.1.100 B

192.168.1.2/24

GW192.168.1.100 C

192.168.2.1/24

GW192.168.2.100 D

192.168.2.2/24

GW192.168.2.100

交换机

支持汇聚链路的路由器

连接蓝色VLAN 的子接口

汇聚链接

连接红色VLAN 的子接口

MAC 地址为R 。交换机通过对各端口所连计算机MAC 地址的学习,生成如下的MAC 地址列表。

端口 MAC 地址

VLAN 1 A 1 2 B 1 3 C 2 4 D 2 5 - - 6

R

汇聚

首先考虑计算机A 与同一VLAN 内的计算机B 之间通信时的情形。

计算机A 发出ARP 请求信息,请求解析B 的MAC 地址。交换机收到数据帧后,检索MAC 地址列表中与收信端口同属一个VLAN 的表项。结果发现,计算机B 连接在端口2上,于是交换机将数据帧转发给端口2,最终计算机B 收到该帧。收发信双方同属一个VLAN 之内的通信,一切处理均在交换机内完成。

不同VLAN 间通信时数据的流程

交换机

路由器端口的

MAC 地址:R

连接蓝色VLAN 的子接口

192.168.2.100/24

汇聚链接

连接红色VLAN

的子接口

192.168.1.100/24

1

2

3

4

5

6

A

192.168.1.1/24

GW192.168.1.100 B

192.168.1.2/24

GW192.168.1.100 C

192.168.2.1/24

GW192.168.2.100 D

192.168.2.2/24

GW192.168.2.100

数据帧

源MAC :A ;目标MAC:B 源IP :192.168.1.1/24 目标IP :192.168.1.2/24

同一VLAN 内的

通信,处理均在交换机内部完成

接下来是这一讲的核心内容,不同VLAN 间的通信。让我们来考虑一下计算机A 与计算机C 之间通信时的情况。

计算机A 从通信目标的IP 地址(192.168.2.1)得出C 与本机不属于同一个网段。因此会向设定的默认网关(Default Gateway ,GW )转发数据帧。在发送数据帧之前,需要先用ARP 获取路由器的MAC 地址。

得到路由器的MAC 地址R 后,接下来就是按图中所示的步骤发送往C 去的数据帧。①的数据帧中,目标MAC 地址是路由器的地址R 、但内含的目标IP 地址仍是最终要通信的对象C 的地址。这一部分的内容,涉及到局域网内经过路由器转发时的通信步骤,有机会再详细解说吧。

交换机在端口1上收到①的数据帧后,检索MAC 地址列表中与端口1同属一个VLAN 的表项。由于汇聚链路会被看作属于所有的VLAN ,因此这时交换机的端口6也属于被参照对象。这样交换机就知道往MAC 地址R 发送数据帧,需要经过端口6转发。

从端口6发送数据帧时,由于它是汇聚链接,因此会被附加上VLAN 识别信息。由于原先是来自红色VLAN 的数据帧,因此如图中②所示,会被加上红色VLAN 的识别信息后进入汇聚链路。路由器收到②的数据帧后,确认其VLAN 识别信息,由于它是属于红色VLAN 的数据帧,因此交由负责红色VLAN 的子接口接收。

接着,根据路由器内部的路由表,判断该向哪里中继。

由于目标网络192.168.2.0/24是蓝色VLAN ,,且该网络通过子接口与路由器直连,因此只要从负责蓝色VLAN 的子接口转发就可以了。这时,数据帧的目标MAC 地址被改写成计算机C 的目标地址;并且由于需要经过汇聚链路转发,因此被附加了属于蓝色VLAN 的识别信息。这就是图中③的数据帧。

交换机

路由器端口的MAC 地址:R

连接蓝色VLAN 的子接口,192.168.2.100/24

连接红色VLAN 的子接口,192.168.1.100/24

1

2

3

4

5

6

A

192.168.1.1/24

GW192.168.1.100 B

192.168.1.2/24

GW192.168.1.100 C

192.168.2.1/24

GW192.168.2.100 D

192.168.2.2/24

GW192.168.2.100

数据帧 源MAC :A ;目标MAC:R 源IP :192.168.1.1/24 目标IP :192.168.2.1/24

数据帧

数据帧

数据帧

源MAC :R ;目标MAC:C 源IP :192.168.1.1/24 目标IP :192.168.2.1/24

交换机收到③的数据帧后,根据VLAN标识信息从MAC地址列表中检索属于蓝色VLAN的表项。由于通信目标——计算机C连接在端口3上、且端口3为普通的访问链接,因此交换机会将数据帧除去VLAN识别信息后(数据帧④)转发给端口3,最终计算机C才能成功地收到这个数据帧。

进行VLAN间通信时,即使通信双方都连接在同一台交换机上,也必须经过:

发送方——交换机——路由器——交换机——接收方

这样一个流程。

三层交换机(1)

使用路由器进行VLAN间路由时的问题

现在,我们知道只要能提供VLAN间路由,就能够使分属不同VLAN的计算机互相通信。但是,如果使用路由器进行VLAN间路由的话,随着VLAN之间流量的不断增加,很可能导致路由器成为整个网络的瓶颈。

交换机使用被称为ASIC(Application Specified Integrated Circuit)的专用硬件芯片处理数据帧的交换操作,在很多机型上都能实现以缆线速度(Wired Speed)交换。而路由器,则基本上是基于软件处理的。即使以缆线速度接收到数据包,也无法在不限速的条件下转发出去,因此会成为速度瓶颈。就VLAN间路由而言,流量会集中到路由器和交换机互联的汇聚链路部分,这一部分尤其特别容易成为速度瓶颈。并且从硬件上看,由于需要分别设置路由器和交换机,在一些空间狭小的环境里可能连设置的场所都成问题。

三层交换机(Layer 3 Switch)

为了解决上述问题,三层交换机应运而生。三层交换机,本质上就是“带有路由功能的(二层)交换机”。路由属于OSI参照模型中第三层网络层的功能,因此带有第三层路由功能的交换机才被称为“三层交换机”。

关于三层交换机的内部结构,可以参照下面的简图。

路由模块

三层交换机

内部是汇聚链路

交换模块

在一台本体内,分别设置了交换机模块和路由器模块;而内置的路由模块与交换模块相同,使用ASIC 硬件处理路由。因此,与传统的路由器相比,可以实现高速路由。并且,路由与交换模块是汇聚链接的,由于是内部连接,可以确保相当大的带宽。

三层交换机(2)

使用三层交换机进行VLAN 间路由(VLAN 内通信)

在三层交换机内部数据究竟是怎样传播的呢?基本上,它和使用汇聚链路连接路由器与交换机时的情形相同。

假设有如下图所示的4台计算机与三层交换机互联。当使用路由器连接时,一般需要在LAN 接口上设置对应各VLAN 的子接口;而三层交换机则是在内部生成“VLAN 接口(VLAN Interface )”。VLAN 接口,是用于各VLAN 收发数据的接口。(注:在Cisco 的Catalyst 系列交换机上,VLAN Interface 被称为SVI ——Switched Virtual Interface )

为了与使用路由器进行VLAN 间路由对比,让我们同样来考虑一下计算机A 与计算机B 之间通信时的情况。首先是目标地址为B 的数据帧被发到交换机;通过检索同一VLAN 的MAC 地址列表发现计算机B 连在交换机的端口2上;因此将数据帧转发给端口2。

使用三层交换机进行VLAN 间路由(VLAN 间通信)

接下来设想一下计算机A 与计算机C 间通信时的情形。针对目标IP 地址,计算机A 可以判断出通信对象不属于同一个网络,因此向默认网关发送数据(Frame 1)。

路由模块

交换模块 A (MAC )

192.168.1.1/24 GW192.168.1.100

B (MA

C )

192.168.1.2/24 GW192.168.1.100

C (MAC )

192.168.2.1/24 GW192.168.2.100

D (MAC )

192.168.2.2/24 GW192.168.2.100

红色VLAN 接口

192.168.1.100/24

蓝色VLAN 接口 192.168.2.100/24

源MAC:A;目标MAC:B 源IP :192.168.1.1 目标IP :192.168.1.2

1

2

3

4

VLAN 内通信在交换模块内部完成

交换机通过检索MAC 地址列表后,经由内部汇聚链接,将数据帧转发给路由模块。在通过内部汇聚链路时,数据帧被附加了属于红色VLAN 的VLAN 识别信息(Frame 2)。 路由模块在收到数据帧时,先由数据帧附加的VLAN 识别信息分辨出它属于红色VLAN ,据此判断由红色VLAN 接口负责接收并进行路由处理。因为目标网络192.168.2.0/24是直连路由器的网络、且对应蓝色VLAN ;因此,接下来就会从蓝色VLAN 接口经由内部汇聚链路转发回交换模块。在通过汇聚链路时,这次数据帧被附加上属于蓝色VLAN 的识别信息(Frame 3)。

交换机收到这个帧后,检索蓝色VLAN 的MAC 地址列表,确认需要将它转发给端口3。由于端口3是通常的访问链接,因此转发前会先将VLAN 识别信息除去(Frame 4)。最终,计算机C 成功地收到交换机转发来的数据帧。

整体的流程,与使用外部路由器时的情况十分相似——都需要经过发送方→交换模块→路由模块→交换模块→接收方。

加速VLAN 间通信的手段

流(Flow )

根据到此为止的学习,我们已经知道VLAN 间路由,必须经过外部的路由器或是三层交换机的内置路由模块。但是,有时并不是所有的数据都需要经过路由器(或路由模块)。 例如,使用FTP (File Transfer Protocol )传输容量为数MB 以上的较大的文件时,由于MTU 的限制,IP 协议会将数据分割成小块后传输、并在接收方重新组合。这些被分割的数据,“发

路由模块

交换模块

A (MAC )

192.168.1.1/24 GW192.168.1.100

B (MA

C )

192.168.1.2/24 GW192.168.1.100

C (MAC )

192.168.2.1/24 GW192.168.2.100

D (MAC )

192.168.2.2/24 GW192.168.2.100

红色VLAN 接口

192.168.1.100/24

蓝色VLAN 接口 192.168.2.100/24 Frame 1

源MAC:A;目标MAC:R 源IP :192.168.1.1 目标IP :192.168.2.1

1

2 3 4

Frame 2

附加红色VLAN 识别信息

源MAC:A;目标MAC:R 源IP :192.168.1.1 目标IP :192.168.2.1

Frame 3

附加蓝色VLAN 识别信息

源MAC:R;目标MAC:C

源IP :192.168.1.1 目标IP :192.168.2.1

Frame 4

源MAC:R;目标MAC:C 源IP :192.168.1.1 目标IP :192.168.2.1

(完整版)子网划分与VLAN技术详解

子网划分与VLAN技术详解 子网划分 子网划分定义:Internet组织机构定义了五种IP地址,有A、B、C三类地址。A类网络有126个,每个A类网络可能有16777214台主机,它们处于同一广播域。而在同一广播域中有这么多结点是不可能的,网络会因为广播通信而饱和,结果造成16777214个地址大部分没有分配出去。可以把基于类的IP网络进一步分成更小的网络,每个子网由路由器界定并分配一个新的子网网络地址,子网地址是借用基于类的网络地址的主机部分创建的。划分子网后,通过使用掩码,把子网隐藏起来,使得从外部看网络没有变化,这就是子网掩码。 子网掩码 RFC 950定义了子网掩码的使用,子网掩码是一个32位的2进制数,其对应网络地址的所有位置都为1,对应于主机地址的所有位都置为0。由此可知,A类网络的默认子网掩码是255.0.0.0,B类网络的默认子网掩码是255.255.0.0,C类网络的默认子网掩码是255.255.255.0。将子网掩码和IP地址按位进行逻辑“与”运算,得到IP地址的网络地址,剩下的部分就是主机地址,从而区分出任意IP地址中的网络地址和主机地址。子网掩码常用点分十进制表示,我们还可以用网络前缀法表示子网掩码,即“/<网络地址位数>”。如138.96.0.0/16表示B类网络138.96.0.0的子网掩码为255.255.0.0。 路由器判断IP 子网掩码告知路由器,地址的哪一部分是网络地址,哪一部分是主机地址,使路由器正确判断任意IP地址是否是本网段的,从而正确地进行路由。例如,有两台主机,主机一的IP 地址为222.21.160.6,子网掩码为255.255.255.192,主机二的IP地址为222.21.160.73,子网掩码为255.255.255.192。现在主机一要给主机二发送数据,先要判断两个主机是否在同一网段。 主机一 222.21.160.6即:11011110.00010101.10100000.00000110 255.255.255.192即:11111111.11111111.11111111.11000000 按位逻辑与运算结果为:11011110.00010101.10100000.00000000 主机二 222.21.160.73 即:11011110.00010101.10100000.01001001 255.255.255.192即:11111111.11111111.11111111.11000000 按位逻辑与运算结果为:11011110.00010101.10100000.01000000 两个结果不同,也就是说,两台主机不在同一网络,数据需先发送给默认网关,然后再发送给主机二所在网络。那么,假如主机二的子网掩码误设为255.255.255.128,会发生什么情况呢? 让我们将主机二的IP地址与错误的子网掩码相“与”: 222.21.160.73 即:11011110.00010101.10100000.01001001 255.255.255.128即:11111111.11111111.11111111.10000000 结果为11011110.00010101.10100000.00000000 这个结果与主机一的网络地址相同,主机一与主机二将被认为处于同一网络中,数据不

浅谈vlan技术毕业论文

目录 1、vlan技术简介…………………………………………………….41.关于局域网(LAN)……………………………………………4 2.什么是VLAN………………………………………………………5 3.VLAN 的优点………………………………………………………7 4.VLAN的分类………………………………………………………9 5.VLAN的应用………………………………………………………102、Vlan的划分方式…………………………………………………10 1. 基于端口划分的VLAN…………………………………………10 2.基于MAC地址划分VLAN…………………………………………11 3.基于网络层划分VLAN …………………………………………11 4.根据IP组播划分VLAN…………………………………………123、VLAN的配置 1.三层交换机构建的VLAN网络结构……………………………13 2.三层共享有用……………………………………………………17 3.三层交换技术……………………………………………………19 4.VLAN 应用举例…………………………………………………20 5.交换机应用分析…………………………………………………204、VLAN技术在校园网中的应用 1校园网概况………………………………………………………22 2 校园网具体情况介绍……………………………………………22 3 学校系统情况……………………………………………………22 4 校园网系通划……………………………………………………23结束语…………………………………………………………………24致谢……………………………………………………………………24参考文献………………………………………………………………25

VLAN的划分实验报告

VLAN的划分实验报告 实验目的和要求: 目的: 1、学会创建vlan。 2、能够按照端口划分vlan的方法将端口划分到对应的vlan中。 3、学会vlan的中继。 要求: 1、深入理解划分vlan的意义。 2、能够配置基本的vlan划分的命令。 3、能够查看vlan的结果并作测试。 网络拓扑与分析设计: 内容: 1:创建vlan,可以采用两种创建vlan的方式。 2:将端口划分进vlan。 3:实现跨交换机的vlan的通信(vlan的中继)。 4:实现不同vlan的通信(根据自己的基础,可以对该内容选做)。 注意:做该实验可以使用PT,也可以使用神州数码的3600交换机,但是不能够选用神州数码的5526. 实验步骤与调试过程: 1.打开Cisco Packet tracer,拖入一个路由器Router1,两个交换机Switch1、Switch2,八个PC 机PC1-PC8,PC1-PC4用Copper Straight-Through线分别连接Switch1的F0/0-F0/4口,PC5-PC8用Copper straight-through线分别连接Switch2的F0/0-F0/4口,Switch1与Switch2用Copper Cross-Over线连接,路由器Router1用Copper Straight-Through连接Switch1的F0/24口,建立完整的网络拓扑; 2.点击PC、进入Desktop设置IP,PC1(IP Address 192.168.0.2 Subnet Mask 255.255.255.0 Default Gateeway 192.168.0.1);PC2(IP Address 192.168.0.3 Subnet Mask 255.255.255.0 Default Gateeway192.168.0.1);PC3(IP Address 192.168.1.2 Subnet Mask 255.255.255.0 Default Gateeway 192.168.1.1);PC4(IPAddress 192.168.1.3 Subnet Mask 255.255.255.0 Default Gateeway 192.168.1.1);PC5(IP Address 192.168.0.4 Subnet Mask 255.255.255.0 Default Gateeway 192.168.0.1);PC6(IP Address 192.168.0.5 Subnet Mask 255.255.255.0 Default Gateeway 192.168.0.1);PC7(IP Address 192.168.1.4 Subnet Mask 255.255.255.0 Default Gateeway 192.168.1.1);PC8(IP Address 192.168.1.5 Subnet Mask 255.255.255.0 Default Gateeway 192.168.1.1); 3.在两个交换器上创建VLAN。在交换机的特权模式下,输入vlan database、vlan 2 name VLAN2的命令,创建了以个名为VLAN2的vlan2;。相同步奏创建VLAN3. 4.在两个交换机上,静态成员分配,PC1、PC2、PC5、PC6属于VLAN2,PC3、PC4、PC7、

DA000005 VLAN技术原理ISSUE1.0

课程 DA000005 VLAN技术原理 ISSUE 1.0

目录 课程说明 (1) 课程介绍 (1) 课程目标 (1) 第1章虚拟局域网(VLAN)概述 (2) 1.1 VLAN的产生 (2) 1.2 VLAN的类型 (6) 1.2.1 基于端口的VLAN (6) 1.2.2基于MAC地址的VLAN (7) 1.2.3基于协议的VLAN (8) 1.2.4基于子网的VLAN (9) 第2章 IEEE802.1Q协议 (10) 2.1 协议概述 (10) 2.2 VLAN帧格式 (11) 2.3 VLAN链路 (12) 2.3.1 VLAN链路的类型 (12) 2.3.2 VLAN帧在网络中的通信 (14) 2.3.3 Trunk和VLAN (15)

课程说明 课程介绍 本课程介绍虚拟局域网(VLAN)的原理,VLAN 在功能和操作上与传统LAN 基本相同,可以提供一定范围内终端系统的互联。IEEE于1999年颁布了用 以标准化VLAN实现方案的802.1Q协议标准草案。 课程目标 完成本课程的学习后,您应该能够: ●了解VLAN 产生的原因 ●了解划分VLAN的方法 ●掌握VLAN的帧格式 ●掌握以太网帧在通信过程中的变化

第1章虚拟局域网(VLAN)概述 1.1 VLAN的产生 传统的局域网使用的是HUB,HUB只有一根总线,一根总线就是一个冲突域。 所以传统的局域网是一个扁平的网络,一个局域网属于同一个冲突域。任何 一台主机发出的报文都会被同一冲突域中的所有其它机器接收到。后来,组 网时使用网桥(二层交换机)代替集线器(HUB),每个端口可以看成是一 根单独的总线,冲突域缩小到每个端口,使得网络发送单播报文的效率大大 提高,极大地提高了二层网络的性能。但是网络中所有端口仍然处于同一个 广播域,网桥在传递广播报文的时候依然要将广播报文复制多份,发送到网 络的各个角落。随着网络规模的扩大,网络中的广播报文越来越多,广播报 文占用的网络资源越来越多,严重影响网络性能,这就是所谓的广播风暴的 问题。 由于网桥二层网络工作原理的限制,网桥对广播风暴的问题无能为力。为了 提高网络的效率,一般需要将网络进行分段:把一个大的广播域划分成几个 小的广播域。

浅谈VLAN技术(一)

浅谈VLAN技术(一) 摘要:随着网络的不断扩展,接入设备逐渐增多,迫切需要一种技术解决在局域网内部出现的访问冲突与广播风暴一类的问题,VLAN的产生就解决这个问题。本文介绍了VLAN技术的概念、优点,详细描述了VLAN的划分方法,给出了一个简单的公司内部进行VLAN的划分实例。 关键词:VLAN;网络管理 一、VLAN技术概述 VLAN(VirtualLocalAreaNetwork)也就是虚拟局域网,是一种建立在交换技术基础之上的,通过将局域网内的机器设备逻辑地而不是物理地划分成一个个不同的网段,以软件方式实现逻辑工作组的划分与管理的技术。VLAN的作用是使得同一VLAN中的成员间能够互相通信,而不同VLAN之间则是相互隔离的,不同的VLAN间的如果要通信就要通过必要的路由设备。 二、VLAN的优点 (一)可以控制网络广播 在没有应用VLAN技术的局域网内的整个网络都是广播域,这样就使得网内的一台设备发出网络广播时,在局域网内的任何一台设备的接口都能接收到广播,因此当网络内的设备越来越多时,网络上的广播也就越来越多,占用的时间和资源也就越来越多,当广播多到一定的数量时,就会影响到正常的信息的传送。这样就能导致信息延迟,严重的可以造成网络的瘫痪、堵塞,严重的影响了正常的网络应用,这就是所谓的网络风暴。 在应用了VLAN技术的局域网中,缩小了广播的广播域,在一个VLAN中的广播风暴也不会影响到其他的VLAN,从而有效地减少了广播风暴对局域网网络的影响。 (二)增强了网络的安全性 在局域网中应用VLAN技术可以把互相通信比较频繁的用户划分到同一个VLAN中,这样在同一个工作组中的信息传输只在同一个组内广播,从而也减轻了因广播包被截获而引起的信息泄露,增强了网络的安全性。 (三)简化网络管理员的管理工作 在应用VLAN技术后网络管理员就可以轻松的管理网络,灵活构建虚拟工作组。用VLAN可以划分不同的用户到不同的工作组,同一工作组的用户也不必局限于某一固定的物理范围,网络构建和维护更方便灵活。 三、VLAN的划分方法 (一)根据端口来划分VLAN 许多VLAN厂商都利用交换机的端口来划分VLAN成员。被设定的端口都在同一个广播域中。例如,一个交换机的1,2,3,4,5端口被定义为虚拟网AAA,同一交换机的6,7,8端口组成虚拟网BBB。这样做允许各端口之间的通讯,并允许共享型网络的升级。但是,这种划分模式将虚拟网限制在了一台交换机上。 第二代端口VLAN技术允许跨越多个交换机的多个不同端口划分VLAN,不同交换机上的若干个端口可以组成同一个虚拟网。 以交换机端口来划分网络成员,其配置过程简单明了。因此,从目前来看,这种根据端口来划分VLAN的方式仍然是最常用的一种方式。不足之处是不够灵活,当一台机器设备需要从一个端口移动到另一个新的端口,但是新端口与旧端口不在同一个VLAN之中时,要修改端口的VLAN设置,或在用户计算机上重新配置网络地址,这样才能使这台设备加入到新的VLAN。 (二)根据MAC地址划分VLAN 这种划分VLAN方法的最大优点就是当用户物理位置移动时,即从一个交换机换到其他的交换机时,就无需对它进行重新配置,自动把它添加到相应的VLAN中。所以,可以认为这种

实验报告2配置SVI实现VLAN间路由 - 副本

关于实验报告的说明(一)对教师和学生的基本要求 1、参加实验的学生需提交实验报告, 一个实验写一个实验报告。实验报告要求字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。 2、教师应根据学生在实验中和在实验报告书写中反映出来的认真程度、实验效果、理解深度、独立工作能力、科学态度等给予出恰当的评语,并指出实验报告中的不妥之处,然后依照评分细则,采用100分制评出成绩并签名和评定日期。如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。 3、学期结束后任课教师要及时收交学生实验报告,并按要求给出学生实验报告成绩册和学生实验报告上交到系办公室。 (二)内容填写要求1、实验项目名称:要用最简练的语言反映实验的内容。 2、实验目的和要求:目的和要求要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。3、实验内容及步骤:这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。只写主要操作步骤,不要照抄实习指导,要简明扼要。还应该画出实验流程图,再配以相应的文字说明,这样既可以节省许多文字说明,又能使实验报告简明扼要,清楚明白。4、实验结果:根据实验目的将原始资料系统化、条理化,用准确的专业术语客观地描述实验现象和结果,要有时间顺序以及各项指标在时间上的关系。 5、实验总结:根据相关的理论知识对所得到的实验结果进行解释和分析和总结。也可以写一些本次实验的心得以及提出一些问题或建议。、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

分析VLAN技术概念及划分方法

分析VLAN技术概念及划分方法 一、VLAN技能概述 A, VLAN skills summary VLAN(Virtual Local Area Network)也就是虚拟局域网,是一种建立在交流技能根底之上的,经过将局域网内的机器设备逻辑地而不是物理地区分红一个个不一样的网段,以软件办法完成逻辑作业组的区分与办理的技能。VLAN的作用是使得同一VLAN中的成员间能够彼此通讯,而不一样VLAN之间则是彼此阻隔的,不一样的VLAN间的若是要通讯就要经过必要的路由设备。 VLAN ( Virtual Local Area Network ) is a virtual local area network, is a kind of built on the foundation of communication skills, after the equipment will be LAN logical rather than physical area into a different network segment, complete the distinction between logical operations group in software way and management skills. The role of VLAN is to make the members in the same VLAN can communicate with each other, and not the same between VLAN is another barrier, not the same between VLAN

VLAN技术原理及方案解析

Vlan技术原理 在数据通信和宽带接入设备里,只要涉及到二层技术的,就会遇到VLAN。而且,通常情况下,VLAN在这些设备中是基本功能。所以不管是刚迈进这个行业的新生,还是已经在这个行业打拼了很多年的前辈,都要熟悉这个技术。在论坛上经常看到讨论各种各样的关于VLAN的问题,在工作中也经常被问起关于VLAN的这样或那样的问题,所以,有了想写一点东西的冲动。 大部分童鞋接触交换这门技术都是从思科技术开始的,讨论的时候也脱离不了思科的影子。值得说明的是,VLAN是一种标准技术,思科在实现VLAN的时候加入了自己的专有名词,这些名词可能不是通用的,尽管它们已经深深印在各位童鞋们的脑海里。本文的描述是从基本原理开始的,有些说法会和思科技术有些出入,当然,也会讲到思科交换中的VLAN。 1. 以太网交换原理 VLAN的概念是基于以太网交换的,所以,为了保持连贯性,还是先从交换原理讲起。不过,这里没有长篇累牍的举例和配置,都是一些最基本的原理。 本节所说的以太网交换原理,是针对‘传统’的以太网交换机来说的。所谓‘传统’,是指不支持VLAN。 简单的讲,以太网交换原理可以概括为‘源地址学习,目的地址转发’。考虑到IP层也涉及到地址问题,为了避免混淆,可以修改为‘源MAC学习,目的MAC转发’。从语文的语法角度来讲,可能还有些问题,就再修改一下‘根据源MAC进行学习,根据目的MAC进行转发’。总之,根据个人习惯了。本人比较喜欢‘源MAC学习,目的MAC转发’的口诀。 稍微解释一下。 所谓的‘源MAC学习’,是指交换机根据收到的以太网帧的帧头中的源MAC地址

来建立自己的MAC地址表,‘学习’是业内的习惯说法,就如同在淘宝上买东西都叫‘宝贝’一样。 所谓的‘目的MAC转发’,是指交换机根据收到的以太网帧的帧头中的目的MAC 地址和本地的MAC地址表来决定如何转发,确定的说,是如何交换。 这个过程大家应该是耳熟能详了。但为了与后面的VLAN描述对比方便,这里还是简单的举个例子。 Figure 1-1: |-------------------------------| | SW1 (Ethernet Switch) | |-------------------------------| | | |port1 |port 2 | | |-------| |-------| | PC1| | PC2| |-------| |-------| 简单描述一下PC1 ping PC2的过程:(这里假设,PC1和PC2位于同一个IP网段,IP地址分别为IP_PC1和IP_PC2,MAC地址分别为MAC_PC1和MAC_PC2) 1). PC1首先发送ARP请求,请求PC2的MAC。目的MAC=FF:FF:FF:FF:FF:FF(广播);源MAC=MAC_PC1。 SW1收到该广播数据帧后,根据帧头中的源MAC地址,首先学习到了PC1的MAC,建立MAC地址表如下: MAC地址端口 MAC_PC1 PORT 1 2). 由于ARP请求为广播帧,所以,SW1向除了PORT1之外的所有UP的端

浅谈VLAN技术的应用

浅谈VLAN技术的应用 巩义市第二职业中专孙建垒 【摘要】虚拟局域网(VLAN)技术是目前局域网中的一项常用技术;VLAN技术是在不改变局域网上节点物理位置的基础上,按照功能、部门、应用等因素划分为若干“逻辑工作组”;VLAN技术有效避免了广播风暴,增强了局域网的安全性。本文介绍了VLAN的概念、原理、优点以及其分类,并实现了VLAN在企业局域网上的配置和验证方法。 【关键词】VLAN 广播风暴虚拟局域网交换机 在企业局域网中,数据通信通常满足20/80模式,即其中20%的流量属于远程用户,80%的流量属于本地用户,同时本地用户又隶属于不同的部门,如财务部、人事部及销售部等,怎样保证同部门内和部门间的资源安全,协调各部门工作则是十分重要的。那么VLAN技术会成为其中不可缺少的技术之一。 1 VLAN的优势简介 VLAN(Virtual Local Area Network)的中文名为“虚拟局域网”。是一种将局域网设备从逻辑上划分成一个个网段,从而实现虚拟工作组的新兴数据交换技术。这一新兴技术主要应用在有VLAN协议的第三层以上交换机之中。 VLAN技术允许网络管理者将一个物理的局域网逻辑地划分成不同的广播域,每一个VLAN都是按照企业的一个职能部门来划分,包含着一组具有相同工作特点的计算机。它是按功能划分而不是按物理划分,同一个VLAN内的各个工作站无须被放置在同一个物理空间里,这些工作站可以不属于同一个物理局域网网段,一个VLAN内部的广播和单播流量都不会转发到其他VLAN中。因此使用VLAN技术可以控制流量,减少设备投资,简化网络管理,提高网络的安全性。 2 使用VLAN的优点 2.1减少网络管理开销 网络管理员采用VLAN技术轻松管理整个企业局域网络。例如,企业内部由于业务调整,人员部门间相互调动,需要将变动的人员的计算机归入相应的新的工作组。如果局域网内采用了VLAN技术,网管员只需更改交换机上的几条设置,就能迅速地建立适应新需要的VLAN网络,不用花时间和人力去搬动电脑。 2.2 控制网络上的广播 大量的广播可以形成广播风暴,VLAN可以提供建立防火墙的机制,防止交换网络的过量广播。使用VLAN,可以将某个交换端口或用户赋予某一个特定的VLAN组,该VLAN 组可以在一个交换网中或跨接多个交换机,在一个VLAN中的广播不会送到VLAN之外。同样,相邻的端口不会收到其他VLAN产生的广播。这样可以减少广播流量,释放带宽给用户应用,减少广播的产生。 2.3 增加网络的安全性 VLAN就是一个单独的广播域之间相互隔离,这大大提高了网络的利用率,确保了网络的安全保密性。人们在VLAN上经常传送一些保密的、关键性的数据。保密的数据应提供访问控制等安全手段。一个有效和容易实现的方法是将网络分段成几个不同的广播组,网络管理员限制了VLAN中用户的数量,禁止未经允许而访问VLAN中的应用。交换端口可以

vlan技能技术总结(知识点)

精心整理 第二周:局域网及vlan技术 一、组建局域网的条件 1.从硬件的角度来说,需要“直连线”网线把本身独立的个人电脑,连接到“交换机”上。 三、端口安全 练习3:为交换机SW2的端口f0/5,设置端口安全,绑定PC5,的mac地址,安全模式设置为“shutdown” SW2(config)#intf0/5//进入到端口F0/5 SW2(config-if)#switchportmodeaccess

//设置端口为数据接入模式 SW2(config-if)#switchportport-security //启动端口安全 SW2(config-if)#switchportport-securitymac-address //为本端口绑定MAC地址 练习5:为交换机SW1连接交换机SW2的端口F0/10设置端口安全,允许最大连接数为“3”,安全模式设置为“protect” SW1(config)#intf0/10 SW1(config-if)#switchportmodetrunk SW1(config-if)#switchportport-security

SW1(config-if)#switchportport-securitymaximum3 //允许端口F0/10最多对应3个MAC地址 SW1(config-if)#switchportport-securityviolationprotect 四、组建虚拟局域网 1.首先,这些处于局域网中的个人电脑能够通信。 2. 3. 4. 5. 6. 7.和f0/2收 8.如何让交换机为端口进行分组: 练习6:把交换机SW1端口f0/1和f0/2分到编号是“10”的虚拟局域网,f0/3和f0/4分到编号是“20”的虚拟局域网。 把交换机“SW2”的f0/5和f0/6分到编号是“20”的虚拟局域网。为交换机相连的端口开启“trunk”

浅谈vlan技术在网络工程中的应用

龙源期刊网 https://www.wendangku.net/doc/605781245.html, 浅谈vlan技术在网络工程中的应用 作者:吕小刚 来源:《山东工业技术》2015年第14期 摘要:在信息技术快速发展的过程中vlan技术也在不断地发展。随着该项技术的快速发展,vlan在网络工程中的应用越来越广泛。网络工程在vlan技术的支撑下,发展得更为迅速,进而促进了网络信息技术的快速发展。本文就vlan技术在网络工程中的应用进行简单分析。 关键词:vlan技术;网络工程;应用 0 引言 社会的快速发展,促使计算机技术获得迅速发展与广泛应用。现如今在社会各方面都快速发展的过程中,网络技术与局域网的重新组合在要求逐渐升高。在局域网的各项技术中,vlan 技术是其中一种非常重要的技术。对网络建设人员而言,掌握vlan技术是必备要素,并且还 要对其进行熟练地运用。在网络管理的过程中,利用vlan技术能够有效保证网络安全。在计 算机技术快速发展的过程中,vlan技术在网络工程中的应用越来越广泛。vlan技术不仅可以满足局域网组建的相关要求,还能够对网络进行灵活的分段,进而提高网络安全。 1 vlan技术的概述 vlan技术又被人们称为是虚拟局域网,主要应用在底层交换机端口网络用户的逻辑分段方面。该项技术在使用的过程中,并不会由于网络用户的物理位置受到限制而不能对其进行网络分段[1]。通常情况下,一个vlan就能够在一个交换机或者是跨交换机上实现。但是vlan在对网络用户进行分组的时候,需要根据网络用户的位置、作用、部门以及网络用应用程度和协议来完成。从这就可以了解到,vlan技术在应用的过程中能够显示出多项优点。而在分析的时候就可以发现,vlan技术具有其他技术所不具备的特点。vlan技术具备较高的安全性与便捷性与极强的扩张性,可以对用户的工作组进行优化组合,进而提高管理的灵活性与效率。在网络工程中,vlan技术可以有效弥补传统网络技术存在的不足之处,在使用方面优越性表现得非常突出。从便捷的角度来看,vlan技术中指存在一个aland就能够不受到空间的限制,对工作站的位置进行随意变动;从安全的角度来看,将vlan技术应用到网络工程,只要具备vlan成员的分组数据,就可以通过验证;而从扩展性的角度来看,vlan技术促使网络宽带获得更广泛的空间,并且网络性能的使用程度大大提高 2 vlan技术在网络工程中的应用 相较于网络工程的其他技术,vlan技术具有一定的独特性。而也正是基于该项技术的独特性,促使vlan技术在网络工程中获得更广泛的应用。 2.1 应用vlan技术实现子网共享

实验五VLAN设置实验报告

实验五VLAN设置 一实验目的 1.理解VLAN的基本概念和技术原理 2.掌握VLAN的配置方法 3.掌握VLAN的测试方法 4.明确VLAN技术的用途 二实验内容 1.单交换机的VLAN设置与测试 2.跨交换机的VLAN设置与测试 三实验环境 1. 2126交换机一台,3350交换机一台,PC机4台,网线4条,交换机配置线2条,用于连接两台交换机的UTP交叉线(直通线)一条。 2. 配置软件:WINDOWS系统下的超级终端。 3. 测试:DOS下的PING命令。 四实验所需主要命令 1.Vlan<好> [name]; 创建VLAN https://www.wendangku.net/doc/605781245.html,;VLAN命名 3.interface fastethernet 0/端口号;进入对应端口的端口模式 4.switchport mode access; 设置端口未存取模式 5.switchport mode trunk; 设置端口未trunk级联模式 6.switchport accss vlan ;将端口添加到指定VLAN 7.show vlan; 显示VLAN配置信息 8.show spanning-tree vlan;显示VLAN的spanning-tree 五实验步骤 单交换机的VLAN设置与测试 1)够着如下图所示的网络(其中PCI兼作配置终端)。 1

2)连接超级终端;(具体过程见实验二) 3)查看当前的VLAN设置; 4)添加VLAN,创建一个标号未2的VLAN; 5)在VLAN的配置模式下,修改器名字为VLAN02; 6)添加端口到VLAN中; 7)检查当前的VLAN配置; 8)测试VLAN中主机的连通性; 9)再添加一个3号VLAN(名为VLAN03); 10)删除VLAN; 以上操作命令: Switch>en Switch# Switch#config Configuring from terminal, memory, or network [terminal]? Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#hostname S2126G S2126G(config)#show vlan S2126G#show vlan(显示当前VLAN设置) S2126G#config 2

vlan技术(知识点)

第二周:局域网及vlan技术 一、组建局域网的条件 1.从硬件的角度来说,需要“直连线”网线把本身独立的个人电脑,连接到“交换机”上。 2.从软件的角度来说,需要连接到局域网的个人电脑,拥有IP地址。 (1)IP地址的分配,首先要求处于同一个局域网的个人电脑拥有相同的网络位。 (2)其次在拥有相同的网络位的前提先,必须拥有不同的主机位。 (3)处于同一个局域网的电脑拥有相同的“子网掩码”。练习1:组建局域网,局域网中拥有四台电脑,局域网处于192.168.1.0网络中,子网掩码是255.255.255.0 四台电脑的IP地址的主机位分别是“1”、“2”、“3”、“4”。 二、组建多台交换机组成的局域网 1.要求首先每个交换机都能够通过连接,实现自己建立的局域网。 2.交换机之间需要通过“反线”的网线进行连接。 3.多台交换机连接的个人电脑必须处于同一个网段。拥有相同的网络位,不同的主机位,相同的子网掩码。 练习2:组建由两台交换机组成的局域网,网络地址如练习1。

三、端口安全 练习3:为交换机SW2的端口f0/5,设置端口安全,绑定PC5,的mac地址,安全模式设置为“shutdown” SW2(config)#int f0/5 //进入到端口F0/5 SW2(config-if)#switchport mode access //设置端口为数据接入模式 SW2(config-if)#switchport port-security //启动端口安全 SW2(config-if)#switchport port-security mac-address 0010.1158.ECEA //为本端口绑定MAC地址 SW2(config-if)#switchport port-security violation shutdown //设置控制规则为遇到非绑定的MAC地址的数据包的时候,关闭端口。 练习4:为交换机SW2的端口f0/6设置端口安全,绑定PC6的mac地址,安全模式设置为“protect” SW2(config)#int f0/6 //进入端口 SW2(config-if)#switchport mode access //设置端口为数据接入模式 SW2(config-if)#switchport port-security //启动端口安全

计算机网络实验报告-vlan

. 贵州大学明德学院 《计算机网络》 实 验 报 告 专业:_________________________ 班级:_________________________ 姓名:_________________________ 学号:_________________________ 指导教师:_________________________ 日期:_______年______月______日

一、基本信息: 二、课程实验器材(软硬件设备、器件): 三、实验目的及要求: 熟悉静态路由的实现方法 四、实验拓扑结构及地址规划:

五、本实验中各网络设备的配置文件(或原理): Router1 interface FastEthernet0/0 ip address 192.168.1.6 255.255.255.248 duplex auto speed auto ! interface FastEthernet0/1 ip address 1.1.1.1 255.255.255.252 duplex auto speed auto ! ip classless ip route 192.168.2.0 255.255.255.248 1.1.1.2 Router3 interface FastEthernet0/0 ip address 192.168.2.6 255.255.255.248 duplex auto speed auto ! interface FastEthernet0/1 ip address 1.1.1.2 255.255.255.252 duplex auto speed auto

一文读懂VLAN和VXLAN技术

一文读懂VLAN和VXLAN技术 VLAN(Virtual Local Area Network)的中文名为“虚拟局域网”。VLAN是一种将局域网设备从逻辑上划分成一个个网段,从而实现虚拟工作组的数据交换技术。这一技术主要应用于交换机和路由器中,但主流应用还是在交换机之中。但又不是所有交换机都具有此功能,只有VLAN协议的第二层以上交换机才具有此功能。802.1Q的标准的出现打破了虚拟网依赖于单一厂商的僵局,从一个侧面推动了VLAN的迅速发展。 1、交换机端口工作模式简介 交换机端口有三种工作模式,分别是Access,Hybrid,Trunk。 Access类型的端口只能属于1个VLAN,一般用于连接计算机的端口; Trunk类型的端口可以允许多个VLAN通过,可以接收和发送多个VLAN的报文,一般用于交换机之间连接的端口; Hybrid类型的端口可以允许多个VLAN通过,可以接收和发送多个VLAN的报文,可以用于交换机之间连接,也可以用于连接用户的计算机。 Hybrid端口和Trunk端口在接收数据时,处理方法是一样的,唯一不同之处在于发送数据时:Hybrid端口可以允许多个VLAN的报文发送时不打标签,而Trunk端口只允许缺省VLAN的报文发送时不打标签。 2、基本概念(tag,untag,802.1Q) untag就是普通的ethernet报文,普通PC机的网卡是可以识别这样的报文进行通讯; tag报文结构的变化是在源mac地址和目的mac地址之后,加上了4bytes的vlan信息,也就是vlan tag头;一般来说这样的报文普通PC机的网卡是不能识别的 下图说明了802.1Q封装tag报文帧结构 带802.1Q的帧是在标准以太网帧上插入了4个字节的标识。其中包含: 2个字节的协议标识符(TPID),当前置0x8100的固定值,表明该帧带有802.1Q的标记信息。

计算机网络实验报告二vlan配置

实验二vlan配置 姓名:谢英明班级:1421302 学号:201420130315 实验目的 1、根据拓扑图进行网络布线,理解VLAN的基本概念和技术原理 2、执行交换机上的基本配置任务,掌握VLAN的配置方法 3、创建 VLAN 4、检验 VLAN 配置,掌握VLAN的测试方法 5、明确VLAN技术的用途 实验设备 交换机两台PC机四台 实验拓扑图 实验步骤

设置各个主机的IP地址 Host A PCA login: root password: linux [root@PCA root]# ifconfig eth0 10.65.1.1 netmask 255.255.0.0 Host B PCA login: root password: linux [root@PCA root]# ifconfig eth0 10.66.1.1 netmask 255.255.0.0 Host C PCA login: root password: linux [root@PCA root]# ifconfig eth0 10.65.1.3 netmask 255.255.0.0 Host D PCA login: root password: linux [root@PCA root]# ifconfig eth0 10.66.1.3 netmask 255.255.0.0 配置各台交换机 交换机A的端口8配置成vlan2 其余端口默认 交换机B的端口8配置成vlan2 其余端口默认 实验结果及分析 用Host A依次去ping其他的主机,结果如下图所示:

分析:由于与Host B属于不同网络不同vlan所以不通,与Host C属于同一网络同一vlan所以通,与Host D属于不同网络不同vlan所以不通。 用Host A去pingHost D,结果如下图所示:

VLAN技术详解(免费下载)

VLAN技术详解 1.VLAN的概念 1.1什么是VLAN VLAN(Virtual Local Area Network)又称虚拟局域网,是指在交换局域网的基础上,采用网络管理软件构建的可跨越不同网段、不同网络的端到端的逻辑网络。一个VLAN组成一个逻辑子网,即一个逻辑广播域,它可以覆盖多个网络设备,允许处于不同地理位置的网络用户加入到一个逻辑子网中。VLAN是一种比较新的技术,工作在OSI参考模型的第2层和第3层,VLAN之间的通信是通过第3层的路由器来完成的。 在此让我们先复习一下广播域的概念。广播域,指的是广播帧(目标MAC地址全部为1)所能传递到的范围,亦即能够直接通信的范围。严格地说,并不仅仅是广播帧,多播帧(Multicast Frame)和目标不明的单播帧(Unknown Unicast Frame)也能在同一个广播域中畅行无阻。 本来,二层交换机只能构建单一的广播域,不过使用VLAN功能后,它能够将网络分割成多个广播域。 那么,为什么需要分割广播域呢?那是因为,如果仅有一个广播域,有可能会影响到网络整体的传输性能。具体原因,请参看附图加深理解。 A B 图中,是一个由5台二层交换机(交换机1~5)连接了大量客户机构成的网络。假设这时,计算机A需要与计算机B通信。在基于以太网的通信中,必须在数据帧中指定目标MAC

地址才能正常通信,因此计算机A必须先广播“ARP请求(ARP Request)信息”,来尝试获取计算机B的MAC地址。交换机1收到广播帧(ARP请求)后,会将它转发给除接收端口外的其他所有端口,也就是Flooding了。接着,交换机2收到广播帧后也会Flooding。交换机3、4、5也还会Flooding。最终ARP请求会被转发到同一网络中的所有客户机上。 请大家注意一下,这个ARP请求原本是为了获得计算机B的MAC地址而发出的。也就是说:只要计算机B能收到就万事大吉了。可是事实上,数据帧却传遍整个网络,导致所有的计算机都收到了它。如此一来,一方面广播信息消耗了网络整体的带宽,另一方面,收到广播信息的计算机还要消耗一部分CPU时间来对它进行处理。造成了网络带宽和CPU运算能力的大量无谓消耗。 广播信息是那么经常发出的吗? 读到这里,您也许会问:广播信息真是那么频繁出现的吗? 答案是:是的!实际上广播帧会非常频繁地出现。利用TCP/IP协议栈通信时,除了前面出现的ARP外,还有可能需要发出DHCP、RIP等很多其他类型的广播信息。 ARP广播,是在需要与其他主机通信时发出的。当客户机请求DHCP服务器分配IP地址时 ,就必须发出DHCP的广播。而使用RIP作为路由协议时,每隔30秒路由器都会对邻近的其他路由器广播一次路由信息。RIP以外的其他路由协议使用多播传输路由信息,这也会被交换机转发(Flooding)。除了TCP/IP以外,NetBEUI、IPX和Apple Talk等协议也经常需要用到广播。例如在Windows下双击打开“网络计算机”时就会发出广播(多播)信息。(Windows XP除外……) 总之,广播就在我们身边。下面是一些常见的广播通信: ● ARP请求:建立IP地址和MAC地址的映射关系。 ● RIP:选路信息协议(Routing Infromation Protocol)。 ● DHCP:用于自动设定IP地址的协议。 ● NetBEUI:Windows下使用的网络协议。 ● IPX:Novell Netware使用的网络协议。 ● Apple Talk:苹果公司的Macintosh计算机使用的网络协议。 1.2 VLAN的实现机制 在理解了“为什么需要VLAN”之后,接下来让我们来了解一下交换机是如何使用VLAN分割广播域的。首先,在一台未设置任何VLAN的二层交换机上,任何广播帧都会被转发给除接收端口外的所有其他端口(Flooding)。例如,计算机A发送广播信息后,会被转发给端口2、3、4。

相关文档