文档库 最新最全的文档下载
当前位置:文档库 › 钢坯闪光焊接液压系统研究

钢坯闪光焊接液压系统研究

钢坯闪光焊接液压系统研究
钢坯闪光焊接液压系统研究

钢坯闪光焊接液压系统研究

卢 宁1,付永领1,孙新学1,高绪欣2

Development of Hydraulic System for Steel Billet Flash Butt Welding

LU Ning 1,FU Y ong 2ling 1,S UN X in 2xue 1,G AO Xu 2xin 2

(11北京航空航天大学自动化学院,北京 100083;21河北第二建筑工程公司,河北石家庄 050000)

摘 要:根据钢坯闪光焊接大功率,高速度,大负载的要求,设计了一种应用于钢坯闪光焊机的液压系统,主要作用是在焊接过程中完成工件的夹紧和送进。仿真结果表明:该系统不但满足钢坯闪光焊接各项参

数的要求,而且效率高,结构简单。

关键词:闪光焊;钢坯;液压系统;仿真

中图分类号:TC43812 文献标识码:B 文章编号:100024858(2005)0720003205

目前,闪光焊是应用到大截面钢坯焊接的一种有

效手段,闪光焊机是集电参数、压力、位移、温度、时间等多参数的综合系统,闪光对焊设备惯量大(夹具就有数吨重),响应速度要求较高,因此对焊机执行机构提出了很高的要求。最近几年,国外在钢材无头轧制生产领域已经开始这方面的实验和应用,并且取得了显著的成绩。与国外相比,中国在对大功率闪光焊机的研究和应用中还存在一定的差距,并且对无头轧制设备有非常迫切的要求。因此,在国内开发大功率的闪光焊机具有重要意义。

本论文设计了一种大功率闪光焊机的液压系统,本系统适用的焊接对象是横截面100×100~200×200的钢坯。1 钢坯闪光焊机的主要组成钢坯闪光焊机焊接执行装置主要由焊接夹钳、顶锻液压缸和夹持液压缸组成。闪光焊机的组成如图1。

 

图1 闪光焊机的组成

对接装置由2个顶锻液压缸组成,分别布置在钢

坯轴线的两侧。顶锻液压缸用于控制两钢坯间的闪光间隙,提供足够的顶锻力使两钢坯在闪光后结合在一

起。

焊接夹钳用来夹持需要焊接的2个钢坯的端部,其夹持动作由2个夹持液压缸实现,夹钳安装在夹持液压钢的活塞杆上,分别夹持2个钢坯的端部,2个夹钳用2个并行同步工作的液压缸连接起来。夹钳夹持力是保证顶锻正常进行的关键因素,钢坯夹紧力的大小与其材料的高温性能和顶锻力有关。夹紧力太大,热钢坯夹持部分容易压坏,对轧件机械性能产生不利影响;夹紧力太小,顶锻时,钢坯相对夹钳易产生滑移,降低焊口的顶锻效果,试验分析夹持力一般为F 夹=(112~113)F 顶[4]。对于截面积40000mm 2的方坯,夹

持力应达到F =203814kN 。 收稿日期:2004212220

 作者简介:卢宁(1976—

),男,河北定州人,博士研究生,研究方向:新型液压系统与特种机器人。

2 工艺过程

图2为闪光焊的工艺流程图。

准备阶段

闪光阶段

顶锻阶段

系统复位

图2 闪光焊的工艺流程图

211 准备阶段

在准备阶段,保证钢坯夹钳能够充分夹持2个需

要焊接的钢坯的端部,并保证足够的夹持力。为了缩短焊接周期,夹持时间尽量缩短,钢坯闪光焊接一般少于4s [6]。212 闪光过程

闪光过程如图1所示,2对夹钳分别接到焊机的2个电极,接通电源后,使工件逐渐接近,端面局部接触,

工件端面的接触点在高电流密度作用下迅速熔化、蒸发,连续不断爆破。其实质即利用焊机内部电阻和接触电阻后所产生的电阻热对焊件加热来实现焊接的。

闪光阶段主要是加热工件。为了得到高质量的焊接接头、保持闪光过程的稳定,必须保证夹钳的相对移动速度等于闪光烧化速度。在闪光过程中,工件逐渐缩短,端头温度不断升高,工件的烧化速度将加快,因此夹钳的相对移动速度也必须逐渐加快。

213 顶锻

闪光过程结束后,应立即进入顶锻。顶锻的主要作用有:

(1)使工件产生塑性变形,从而实现再结晶,使熔化的金属焊接在一起;

(2)防止金属氧化和有利于排除液态金属。

顶锻压力是钢坯顶锻过程中焊口断面单位面积内的作用力。顶锻压力的大小应足以保证液体金属的全部挤出,并使焊件焊口产生适当的塑性变形。其数值取决于焊件材料的高温性能、顶锻留量及高温区域的大小。实验表明:在相同轧制条件下,焊缝区金属(轧制前后)的强度和韧性随顶锻压力的增加而提高,但当顶锻压力增加到30~40MPa后,强度趋于平缓[3]。对于截面积40000mm2的方坯,顶锻力可以达到F顶= 1568kN,因为顶锻力由2个并行液压缸完成,所以要求每个液压缸的输出力F≥784kN。

另外,为了能缩短顶锻时间,要求瞬间有一个较高的顶锻速度,顶锻速度一般比闪光速度要高出十几倍。实验分析的理想数据为v≥40mm/s[2]。

3 液压系统组成

311 夹持液压系统

如图3所示夹持液压回路采用阀控制方式,方向控制阀控制执行器的方向。系统的执行元件是液压缸,因为负载较大需要的压力相对较高,为了避免在整个回路中存在高压油,系统采用增压缸7和执行缸8组成的执行器(如图3示)。①夹持动作时,三位四通阀4左路接通,同时三位四通电磁阀5左位通电,系统液压油进入增压缸的小腔和液压执行缸的大腔,液压执行缸快速运动,夹持钢坯,液压缸负载为本身内部摩擦力,此时增压缸缩回。②当液压缸夹持住钢坯后,进入增压缸增压阶段,此时三位四通电磁阀4右位通电,同时三位四通阀5左位通电,系统液压油进入增压缸的大腔,增压缸输出高压油到执行缸的大腔。③增压缸7返回时,三位四通阀4左位通电,三位四通阀5左位接通,系统压力油进入增压缸的小腔,使增压缸返回原位;随后三位四通阀4状态保持不变,三位四通阀5右位接通,液压油直接进入执行液压缸的小腔,并且打开液控单向阀,执行缸的大腔回油通过液控单向阀6和三位四通阀5返回油箱,整个夹持周期结束

11过滤器 21变量泵 3、61单向阀

4、51三位四通阀 71增压缸 81执行缸

图3 

夹持液压回路图

1、51过滤器 21恒压式变量泵 31电机 41单向阀

61蓄能器 71伺服阀 81液压缸

图4 对接液压回路

312 对接液压系统

顶锻液压系统为顶锻阶段提供顶锻力和顶锻速度,图4为对接液压系统:执行元件8为对称液压缸,活塞直径250mm,活塞杆直径80mm。控制元件7为M OOGD634伺服阀,工作压力28MPa,额定流量100 L/min,最大空载流量Q N L=180L/min,频率35H z,阻尼ξsv=018。能源供给装置2为恒压式变量泵,额定排量01025L/r额定转速1000r/min。为了保证顶锻时的速度和足够的顶锻压力,本系统采用蓄能器辅助供油,蓄能器充气压力23MPa,最高充液压力28MPa。在对接过程中,蓄能器提供瞬间高速度所需的油量。蓄能器不仅是能源供给装置也是脉动吸收装置,吸收系统压力的波动。

闪光阶段,闪光速度较低,系统需要的供油量较

小,系统压力和流量由变量泵提供。顶锻阶段速度较高,压力较高,顶锻速度一般为闪光速度的几十倍[1],此时系统供油及压力全部由蓄能器提供。

在对接液压系统的控制过程中,位移控制方式非常重要。闪光阶段和顶锻阶段,都是通过位移量的检测来实现过程的转换。特别是闪光阶段,通过控制位移量来实现闪光速度从闪光初速不断加速至闪光末速。由于系统所要求的位移量较大一般为几十毫米,而且要求较高的精度和线性度,本系统选用了LVDT 位移传感器,它具有大位移低精度,小位移高精度的特点,可以满足闪光焊接的要求。

4 仿真分析与优化设计

本论文首先使用仿真软件Easy5对液压系统进行仿真建模,然后根据设计的结果设置液压模型的具体参数,最后对液压系统的一些关键变量的仿真结果进行分析。

411 夹持液压系统

为了降低系统共有压力,夹持系统使用了增压缸和执行缸,从而在使用低的系统压力时就能达到高的夹持力。夹持液压缸的仿真动作时间见下:

1~4s,夹持缸动作,实现夹持动作;

4~7s,增压缸动作,实现夹持液压缸增压;

7~8s,增压缸动作返回;

8~10s,夹持缸返回。

图5a为夹持系统动作仿真曲线。由图可见:①仿真时间1s夹持动作开始,液压缸开始动作,液压缸的位移逐渐增加,在仿真时间315s达到最大位移9 mm,所以夹持动作耗费时间215s,满足设计要求。②仿真时间4s时,进入增压状态,夹持液压缸的输出力增加较快,最终达到212×106N,大大满足设计要求。此时,夹持液压缸有少量位移增加,说明被夹持钢坯有轻微的变形。③仿真时间7s时,增压缸返回,钢坯变形消失,夹持液压缸输出力减小到增压前的状态,系统变量泵输出功率相应减小。④仿真时间8s,夹持缸开始返回原位置。返回耗费时间115s。由功率曲线可知,整个夹持周期变量泵的平均输出功率10kW。412 对接液压系统

对接液压系统顶锻过程的仿真结果如图5b所示,由力曲线图可知设计的对接液压系统顶锻输出的最大力达到900kN,满足F≥784kN的设计要求。另外,顶锻时顶锻瞬间速度达到60mm/s,满足顶锻速度v≥40 mm/s的设计要求。由功率曲线可知,系统顶锻过程最大输出功率为11kW

图5 仿真曲线

413 对接液压系统的优化设计

1)蓄能器安装位置对系统性能的影响

因为钢坯闪光焊机的液压执行元件与液压站的距离较远(20m左右),所以蓄能器的安装位置将直接影响到系统压力的稳定性。

图6为蓄能器在不同安装位置时的仿真曲线, storge-fore为蓄能器靠近伺服阀的曲线,storge back为蓄能器靠近液压泵站的曲线,蓄能器充气压力23 MPa,最高充液压力28MPa。

由仿真的结果可知,两种情况下液压缸的输出位移曲线(AC-P osition AC2)、执行速度曲线(AV P osi2 tion AC2)和输出力曲线(FC F orce SF)基本一致;由功率曲线(PWR-PU)可知,采用storge back方案时系统的液压泵的输出功率较大,但是比较平滑,输出功率稳定;由蓄能器输出压力曲线(PQ AB)可知,蓄能器靠近液压泵站的情况下输出压力变化幅度较小,压力回升较快,稳定性较强。依据液压伺服系统对系统压力平稳性的要求,选择storge back的蓄能器靠近液压泵站的设计方案。

2)蓄能器容量的优化选择

图6 蓄能器安装位置对系统的影响

本文对设计的蓄能器有效体积大小进行了仿真分

析,图7为3种情况的仿真曲线,P 16为蓄能器体积16L 的曲线,P 21为蓄能器体积21L 的曲线,P 25为蓄能器体积25L 的曲线。蓄能器充气压力23MPa 。由图7可知:充气压力23MPa 的情况下,蓄能器的体积大小只对蓄能器的排油压力(PQ AB )和系统功率(PWR PU )有影响。比较3种情况,蓄能器体积选择21L 时,蓄能器压力最稳定,系统功率消耗最小,所以,最终选择体积为21L 的蓄能器

图7 蓄能器容量对系统性能的影响

3)长距离软管管路的直径优化选择

因为钢坯闪光焊机的液压执行元件与液压站的距

离较远(20m 左右),因此管路直径的大小对系统的影响不容忽视;如果选择大直径的管路虽然可以减小管路上的压力损失,但是随着直径增加,管路中的液压油

体积相应增大,高压系统中液压油的可压缩性对系统的影响相应增大,因此长管路的直径大小在一定程度上影响着系统性能。图8为管路直径为15mm ,22mm ,25mm 这3种情况时的仿真曲线,D =22为管路直径22mm 的曲线,D =25为管路直径25mm 的曲线,D =15为管路直径15mm 的曲线

图8 管路直径大小对系统性能的影响

比较管路直径为22mm 和25mm 两种情况,由图8可知:①2种情况的速度曲线基本一致,即反应速度基本一致;②D =22mm 时蓄能器出口压力(见图P storage )变化较小,即系统压力稳定性较好;由Pum p 2P ower 图可知D =22mm 的系统功率要求比D =25mm

的系统小。

比较管路直径为22mm 和15mm 两种情况,由图

商用车空气悬架的结构及其关键技术

何 锋1,杨洪江2,徐 军1

Structure of Air Suspension for C ommercial Vehicles and its K ey T echnologies

HE Feng1,Y ANG H ong2jiang2,X U Jun1

(11贵州大学机械工程学院,贵州贵阳 550003;21贵州前进橡胶有限公司,贵州贵阳 550003)

摘 要:空气悬架以其优良的非线性特性对提高商用车的平顺性和减小道路破坏具有重要作用。该文介绍了商用车空气悬架的结构、特点和应用状况,分析了商用车空气悬架开发的关键技术,为商用车空气悬架的研发提供了一定的理论基础。

关键词:空气悬架;空气弹簧;导向机构;高度控制机构;道路友好性

中图分类号:U463133 文献标识码:B 文章编号:100024858(2005)0720007204

1 前言

空气悬架是以空气弹簧为弹性元件的悬架系统,具有优良的弹性特性,在发达国家的客车和重型货车上得到广泛的应用。近年来,随着我国高速公路的迅猛发展,汽车客货运输量日益增加,对高性能商用车的要求也随之提高。我国汽车行业“十五规划”要求重点发展适应高速公路需要的大中型客车,载货汽车重点发展重型载货汽车。为适应我国客货运输的发展,在商用车上推广使用空气悬架,提高车辆的平顺性,减小道路的破坏,是我国商用车悬架系统发展的方向。

目前通过对国外客车技术的引进,空气悬架已应

 收稿日期:2004212220

 基金项目:贵州省科学技术基金资助项目(黔科基金2003 -3062号)

 作者简介:何锋(1963—),男,贵州贵阳人,副教授,学士,研究方向:汽车系统动力学及控制。

可知:2种情况的速度曲线区别较大,即D=22mm的系统的初始速度高出D=15mm系统的17mm/s,因此,前者焊接时的顶锻效果更好。比较3种情况,并且考虑焊接质量的要求,最终确定液压站与焊机的连接管路直径为22mm。

论文通过以上的优化设计,最终得到以下的优化结果:

①蓄能器位置:蓄能器安装在靠近液压站的位置;

②蓄能器参数:充气压力23MPa,有效体积21L;

③液压站与焊机连接的长管路直径为22mm。

5 结论

(1)根据要求设计的夹持液压系统充分满足要求,实现了快速夹持,高压保持和快速返回。该系统设计简单,性能优越。

(2)对接液压系统设计方案既满足系统负载的参数要求,又符合大功率液压系统对能源高效率的要求。

(3)论文通过优化设计,不但确定了蓄能器最佳安装位置,而且分析了系统性能有较大影响的元件的参数。

(4)该系统设计思想具有较广的应用范围,不仅适用于钢坯闪光焊接,还可以应用到其他大截面闪光焊机上,通用性较强。

参考文献:

[1] 龚勤,等1无头轧制焊机介绍与调试[J]1新疆钢铁,2003

(1).

[2] 王克争1大型闪光焊机的微机控制系统[J]1新技术新工

艺,2002(10).

[3] 王克争1大功率闪光焊机液压系统研究[J]1焊接设备与

材料,2001(4)1

[4] 吴迪120MnS i钢闪光对焊无头轧制焊缝的变形及金相组

织[J]1钢铁,2002(2)1

[5] Massim o Lestani,G iovanni Savador1T echnology and benefits of

the endless welding[J].S tahl And E isen,2002(3).

[6] T erry Austen1E BROS2endless bar rolling system[J]1S teel

T echnology,2003(2).

[7] T erry Austen1R olling process for the production of hot2rolled

long products[J].S tahl And E iesn,2002(3).

闪光对焊施工工艺简介

闪光对焊钢筋连接工艺简介 钢筋闪光对焊是将两根钢筋安放成对接形式,利用焊接电流通过两钢筋接触点产生的电阻热,使金属熔化,产生强烈飞溅,形成闪光,迅速施加顶锻力完成的一种压焊方法,是电阻焊的一种。 1工艺 1、连续闪光焊 适用于钢筋直径较小,钢筋级别较低的条件,所能焊接的钢筋上限直径根据焊机容量、钢筋级别等具体情况而定,应符合表4-10的规定。 连续闪光焊接钢筋上限直径表4-10 连续闪光焊的工艺方法:将钢筋夹紧在对焊机的钳口上,接通电源后,使两钢筋端面局部接触,此时钢筋端面的接触点在高电流密度作用下迅速熔化、蒸发、爆破,呈高温粒状金属从焊口内高速飞溅出来;当旧的接触点爆破后,又形成新的接触点,这就出现连续不断爆破过程,钢筋金属连续不断送进(以一定送进速度适应其焊接过程的烧化速度)。钢筋经过一定时间的烧化,使其焊口达到所需要的温度,并使热量扩散到焊口两边,形成一定宽度的温度区,这时,以相当压力予以顶锻,将液态金属排挤在焊口之外,使钢筋焊合,并在焊口周围形成大量毛刺。由于热影响区较窄,故在接合面周围形成较小的凸起,于是,焊接过程结束,两钢筋对接焊成的外形见图4-10。

2、预热闪光焊 在钢筋直径或级别超出表4-10的规定时,如果钢筋端面较平整,则宜采用预热闪光焊。 预热闪光焊的工艺方法:在进行连续闪光焊之前,对钢筋增加预热过程。将钢筋夹紧在对焊机的钳口上,接通电源后,开始以较小的压力使钢筋端面接触,然后又离开,这样不断地离开又接触,每接触一次,由于接触电阻及钢筋内部电阻使焊接区加热,拉开时产生瞬时的闪光。经上述反复多次,接头温度逐渐升高,实现了预热过程。预热后接着进行闪光与顶锻,这两个过程与连续闪光焊一样。 采用UN2-150型或UN17-150-1型对焊机进行大直径钢筋焊接时,宜首先采取锯割或气割方式对钢筋端面进行平整处理;然后采用预热闪光焊工艺,并应符合下列要求:闪光过程应强烈、稳定;顶锻凸块应垫高;应准确调整并严格控制各过程的起点和止点。 3、闪光-预热闪光焊 适用于钢筋端面不平整的情况。闪光-预热闪光焊是在预热闪光之前再增加闪光过程,使不平整的钢筋端面“闪”成较平整的。 4、焊后热处理 对于IV级钢筋,应采用预热闪光焊或闪光-预热闪光焊工艺进行焊接。当接头拉伸试验结果发生脆性断裂,或弯曲试验不能达到要求时,尚应在焊机上进行焊后热处理,热处理工艺方法如下: (1)待接头冷却至常温,将电极钳口调至最大间距,重新夹紧。 (2)应采用最低的变压器级数,进行脉冲式通电加热:每次脉冲循环包括通电时间和间歇时间宜为3s。 (3)焊后热处理温度就应在750~850℃(桔红色)范围内选择,随后在环境温度下自然冷却。 2常用焊机 对焊机由机架、导向机构、动夹具、固定夹具、送进机构、夹紧机构、支座(顶座)、变压器、控制系统等几部分组成,见图2-1和图3-1-1的示意图。

焊接操作工艺规范

为了能更好的规范各种焊接操作,保证焊接质量。 二、适用范围 本规范适用于泰瑞公司焊接作业生产。 三、凸焊操作工艺规范 (一)、焊前准备: 1、检查设备 ①焊前接通焊机的水、气、电路,开启控制箱电源。操作者检查水、气、电管路有无异常现象。设备人员检查网络控制参 数(网络电压:360-420V,气压:不小于0.4MPa,冷却水循环是否畅通良好,流量充足,并且焊机无漏气、漏水、漏电。) ②检查凸焊机,要求电极同轴并升降平稳、压力调节敏捷、程序控制正常、变压级数闸刀接触良好。 2、焊接工艺参数: ①凸焊工艺参数: 端母凸焊焊接工艺规范见及h 于0.3 MPa iJuf, ②凸焊螺母抗扭强度参数: 崔凸焊螺母上施加扭矩后.坤接和位产生分离或分裂时的破坏扭絶值应大严下表中所列故 * 3、焊接工艺试片 每班生产前作工艺试片,检查试片凸焊质量并按要求记录(附表格),要选用与产品焊接时同规格、同牌号的螺母/螺栓 和同厚度、同材料的试片作试验。 ①凸焊螺母试片检验方法 外观检查:要求无螺纹损伤、裂纹、允许有轻微飞溅和少量的金属挤岀,但不影响螺栓的拧入。 螺栓试装法:选用与凸焊螺母相配的螺栓,要求不能借用任何工具,直接用手能将螺栓顺利拧入螺母孔内,则为合格;反之螺栓不能拧入或拧入困难,则为不合格。

强度试验法:将丄件固定在丄作台上,把扭力扳手上的专用套筒套在螺母上,用手扳动扭力扳手。如丄件上螺母承受规定的扭力而不脱落,则为合格;如试片上螺母承受的扭力未达到要求或达到要求后脱落,则为不合格。应调整工艺参数,重新做试片,直到试片合格为止。 ②、承面凸焊螺栓试片检验方法: 产品强度试验:将自制带帽钢螺母拧在焊好的螺柱上,注意钢螺母与工件留一段距离,套筒放在带帽钢螺母上,(如下图所 示)。用扭力扳手将钢螺母拧到规定扭矩;如螺栓没有松动且螺栓根部焊缝区域无明显变形、裂纹,则该螺栓焊接合格。如螺栓脱落、焊缝区域有明显裂纹或明显的凸起,则该螺栓焊接不合格。 (二)螺母、承面螺栓凸焊的操作 1、对操作人员要求:操作者须经严格培训,合格后持证上岗。 2、清理焊件表面油污、锈蚀或 其它脏物。各工位操作者全数检验, 检验员抽检。 3、螺母凸焊的操作: 穿戴好手套、护袖、围裙、眼镜等劳保用品,在焊前检查都合格后,才能进行凸焊作业。两电极处在打开状态,把工件上的螺母孔对准下电极的定位销,落在下电极上并扶正工件;必须保证工件的螺母孔落到定位销的底部与下电极的支撑面贴合,而不能压在定位销的定位台阶上,影响工件螺母孔与凸焊螺母的同轴度。接着把凸焊螺母套在定位销上(螺母凸起部分朝向工件如下图所示),手迅速离开。踩下控制踏板,上电极在气缸的作用下,往下移动压在螺母上进行焊接。控制开关踩下后需保持几秒钟,直到凸焊螺母与工件之间火花一闪螺母上凸点被压溃,两件焊在一起为止,两电极自动打开。将焊好后的工件往上移,从定位销上取下,放到工件摆放架或储物箱里。在焊接过程中需注意安全,戴好防护器具。特别是在放螺母时,严禁踩控制踏 板;应等螺母放好,手缩回后,才能踩控制踏板。 工件 下电极 操作过程注意事项: ①工件上的螺母孔没落到定位销的底部,而 是压在定位销的定位台阶上,容易导致螺母焊偏; ②工件与下电极的支撑面不贴合,螺母孔局 部平面易变形; ③螺母套在定位销没落到位(螺母斜放,卡在定位销上),导致螺纹损坏及定位销易磨损。承面凸焊螺栓的操作: 穿戴好手套、护袖、围裙、眼镜等劳保用品,在焊前检查都合格后,才能进行凸焊作业。两电极处在打开状态,把工件上的螺栓过孔对准下电极的螺栓过孔定位销,落在下电极上并扶正工件;必须保证工件的螺栓过孔周围型面与下电极的支撑面贴合,否则影响工件过孔与凸焊螺栓的同轴度。接着把承面螺栓通过工件上的螺栓过孔放入下电极的螺栓过孔定位销内。踩下控制踏板,上电极在气缸的作用下,往下移动压在螺栓承面端进行焊接。控制开关踩下后滞留片刻,直到凸焊螺栓与工件之间火花一闪螺栓上凸点被压溃,两件焊在一起为止。两电极自动打开。将焊好后的工件往上移,从定位销上取下,放到工件摆放架或储物箱上。在焊接过程中需注意安全,戴好防护器具。特别是在放螺栓时,严禁踩控制踏板;应等螺栓放好,手缩回后,才能踩控制踏板。 操作过程注意事项: ①工件上的螺栓过孔没与定位销过孔对齐,影响焊接螺栓与工件的同轴度; ②工件与下电极的支撑面不贴合,螺母孔局部平面易变形。 (三)凸焊产品的检验规范: 1、焊接过程中操作者全数自检,检验员对焊好的工件用目测的方法对螺母数量、焊接位置及用螺栓试装法和强度试验的方法对焊接质量进行抽检,并按附表要求进行记录。 2、产品岀现焊接缺陷时:该工位暂停工作,提请维修人员检查焊机的各项参数,找岀原因,进行故障排除。对同批工件进行全检,找岀所有不合格品。对凸焊螺母不合格品用丝锥进行清丝;强度检验后,对有变形的焊接部位应进行钣金修复;对凸焊螺母、螺栓已脱落的工件应重新凸焊或C02加焊。 四、点焊操作工艺规范: 编制 r 编制部门标准化 标记处数更改文件号签字日期装焊技术科批准 上电极 局部放大

轧钢生产工艺流程介绍

轧钢生产工艺流程介绍 1、棒材生产线工艺流程 钢坯验收→加热→轧制→倍尺剪切→冷却→剪切→检验→包装→计量→入库 (1)钢坯验收〓钢坯质量是关系到成品质量的关键,必须经过检查验收。 ①、钢坯验收程序包括:物卡核对、外形尺寸测量、表面质量检查、记录等。 ②、钢坯验收依据钢坯技术标准和内控技术条件进行,不合格钢坯不得入炉。 (2)、钢坯加热 钢坯加热是热轧生产工艺过程中的重要工序。 : ①、钢坯加热的目的 钢坯加热的目的是提高钢的塑性,降低变形抗力,以便于轧制;正确的加热工艺,还可以消除或减轻钢坯内部组织缺陷。钢的加热工艺与钢材质量、轧机产量、能量消耗、轧机寿命等各项技术经济指标有直接关系。 ②、三段连续式加热炉 所谓的三段即:预热段、加热段和均热段。 预热段的作用:利用加热烟气余热对钢坯进行预加热,以节约燃料。(一般预加热到300~450℃) 加热段的作用:对预加热钢坯再加温至1150~1250℃,它是加热炉的主要供热段,决定炉子的加热生产能力。 均热段的作用:减少钢坯内外温差及消除水冷滑道黑印,稳定均匀加热质量。③、钢坯加热常见的几种缺陷 ( a、过热 钢坯在高温长时间加热时,极易产生过热现象。钢坯产生过热现象主要表现在钢

的组织晶粒过分长大变为粗晶组织,从而降低晶粒间的结合力,降低钢的可塑性。过热钢在轧制时易产生拉裂,尤其边角部位。轻微过热时钢材表面产生裂纹,影响钢材表面质量和力学性能。 为了避免产生过热缺陷,必须对加热温度和加热时间进行严格控制。 b、过烧 钢坯在高温长时间加热会变成粗大的结晶组织,同时晶粒边界上的低熔点非金属化合物氧化而使结晶组织遭到破坏,使钢失去应有的强度和塑性,这种现象称为过烧。 过烧钢在轧制时会产生严重的破裂。因此过烧是比过热更为严重的一种加热缺陷。过烧钢除重新冶炼外无法挽救。 避免过烧的办法:合理控制加热温度和炉内氧化气氛,严格执行正确的加热制度和待轧制度,避免温度过高。 { c、温度不均 钢坯加热速度过快或轧制机时产量大于加热能力时易产生这种现象。温度不均的钢坯,轧制时轧件尺寸精度难以稳定控制,且易造成轧制事故或设备事故。 避免方法:合理控制炉温和加热速度;做好轧制与加热的联系衔接。 d、氧化烧损 钢坯在室温状态就产生氧化,只是氧化速度较慢而已,随着加热温度的升高氧化速度加快,当钢坯加热到1100—1200℃时,在炉气的作用下进行强烈的氧化而生成氧化铁皮。氧化铁皮的产生,增加了加热烧损,造成成材率指标下降。 减少氧化烧损的措施:合理加热制度并正确操作,控制好炉内气氛。 e、脱碳

闪光对焊

闪光对焊技术交底 定义: 电阻焊件装配成对接接头,接通电源,并使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点(产生闪光),使端面金属熔化,直至端部在一定深度范围内达到预定温度时,迅速施加顶锻力完成焊接的方法。 一、闪光对焊用途 二、闪光对用途定义 三、钢筋闪光对焊定义 四、对焊工艺 1、连续闪光对焊 2、预热闪光对焊 3、闪光-预热闪光焊 五、闪光对焊原理 六、见证取样 一、闪光对焊用途 闪光对焊广泛用于碳钢、合金钢、有色金属的管、棒、板、型材之间的对焊或异类金属之间的对焊。 二、闪光对用途定义 闪光对焊的原理是利用对焊机使两端金属接触,通过低电压的强电流,待金属被加热到一定温度变软后,进行轴向加压顶锻,形成对焊接头。 三、钢筋闪光对焊定义 钢筋闪光对焊是将两根钢筋安装放成对接形式,利用焊接电流通过两根钢筋接触点产生的电阻热,使接触点金属熔化,产生强烈飞溅,形成闪光,迅速施加顶锻力完成的一种压焊方法。 四、对焊工艺 钢筋闪光对焊的焊接工艺可分为连续闪光烛、预热闪光焊和闪光-预热闪光焊等,根据钢筋品种、直径、焊机功率、施焊部位等因素选用。 1、连续闪光对焊 连续闪光对焊的工艺过程包括:连续闪光和顶锻过程。施焊时,先闭合一次电路,使两根钢筋端面轻微接触,此时端面的间隙中即喷射出火花般熔化的金属微粒---闪光,接着徐徐移动钢筋使两端面仍保持轻微接触,形成连接闪兴。当闪光到预定的长度,使钢筋端头加热到将近熔点时,就以一定的压力迅速进行顶锻。先带电顶锻,再元电顶锻到一定长度,焊接接头即告完成。 2、预热闪光对焊 预热闪光对焊是在连续闪光焊前增加一次预热过程,以扩大焊接热影响区。其工艺过程包

钎焊工艺标准规范标准

'' 钎焊工艺规范 1范围 本标准规定了各相关部门与人员针对钎料、钎剂以及钎焊工序过程中的相应职责;钎料和钎剂的使用要求;钎焊前的基本要求;钎焊工艺要求;补焊注意事项;钎焊质量的检验;注意事项和安全要求。 本标准适用于湖南元亨工厂设计、生产所有空调产品以及零部件过程中的钎焊工序。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有版本修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可适用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本均适用于本标准。 GB/T 10046-2000 银基钎料 GB/T 6418-93 铜基钎料 GB/T 11618-1999 铜管接头 GB 11363 钎焊接头强度试验方法 GB 8619 钎缝强度试验方法 GB 11364 钎料铺展性及填缝性试验方法 3定义: 3.1. 钎焊:钎焊是利用熔点稍低于母材的钎料和母材一起加热,使钎料熔化,并通过毛细管作用原理扩散和填满钎缝间隙,形成牢固的一种焊接方法。 3.2.钎剂:去除钎焊金属和液体钎料表面上的氧化膜,保护钎焊金属和钎料在加热过程中不继续氧化,以改善钎料对母材表面的润湿性,促进钎缝的形成。 4钎料和钎剂的使用要求: 4.1.钎料(焊丝)的作用:利用高温熔化的液态钎料润湿钎焊金属(母材)表面并均匀地铺展,直至致密地填满结合面的间隙而形成牢固接头。 4.2.钎剂(助焊剂)的作用:去除钎焊金属和液体钎料表面上的氧化膜,保护钎焊金属和钎料在加热过程中不继续氧化,以改善钎料对母材表面的润湿性,促进钎缝的形成。 4.3.钎料中磷的成分可以增加钎料的铺展性和浸润性,但是会增加焊接处的脆性;锌和铬能增加焊接强度和抗冲击性;含锌钎料的焊接后的外观比含铬钎料的焊接外观稍差,但铬蒸气对人的健康有伤害。 5 钎焊前的基本要求 焊接位置、焊接配合间隙、配合面的表面处理、焊接材料的准备、插入深度和清洁度是钎焊前需要注意的六大要素。 5.1.焊接位置:一般情况下优先选择钎料垂直向下漫流的方式,其次选择水平漫流方式;非特殊情况下不能采用垂直向上漫流方式。 5.2.焊接配合间隙:指对特定的钎料在其钎焊温度下,在被焊接处的径向间隙。要求外接管杯口内径至少应比将要插入管的外径大0.06mm,一般情况下管与管之间的配合间隙不能超过表(2)中的极限值。

钢筋闪光对焊连接

工作行为规范系列 钢筋闪光对焊连接(标准、完整、实用、可修改)

编号:FS-QG-25583钢筋闪光对焊连接 Rebar flash butt welding connection 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 钢筋闪光对焊连接 施工准备 焊接工人应有上岗证方能上岗。 当调换焊工或更换焊接钢筋的规格和品种时,应先制作对焊试件进行冷弯试验,合格后才能成批焊接。 对焊前应清除端头约150mm范围内的铁锈、污泥等,以免夹具和钢筋间因接触不良而引起打火,如钢筋有端头有弯曲,应予以调直或切除。 操作要点: 施焊时采用连续闪光工艺:先闭合一次电路,使两钢筋端面轻微接触,此时端面的间隙中即喷射出火花般熔化的金属微粒――闪光,接着徐徐移动钢筋使两端面仍保持轻微接触,形成连续闪光。当闪光到预定的长度,使钢筋端头加热

到将近熔点时,就以一定的压力迅速进行顶锻。先带电顶锻,再无电顶到一定长度,焊接接头即告完成。 焊接时应夹紧钢筋,且使两钢筋端面的凸出部分相接触,以利均匀加热和保证焊缝与钢筋轴线相垂直。 焊接完毕后,应待接头处由红色变为黑色才能松开夹具,平稳地取出钢筋,以免引起接头弯曲。 不同直径的钢筋可以对焊,但其截面比不宜大于1.5。 焊接场地应有防风、防雨措施,以免接头区骤然冷却,发生脆裂。当气温较低时,接头部位可适当用保温材料覆盖。 焊接接头应在监理的见证取样下,按规范要求进行抽样检验。 对焊缺陷及防止措施 项次 异常现象和缺陷种类 防止措施 1烧化过分剧烈并产生强烈的爆炸声 (1)降低变压器级数 (2)减缓烧化速度

对接焊焊接工艺评定资料讲解

焊接工艺评定资料 (WPQ) 编号: DZ/WPQ-17 名称: WCB与A105 用J422手工电弧焊的对接焊工艺评定执行标准:ASME锅炉及压力容器规范1X 《焊接和钎焊评定标准》 母材型号:WCB与A105 焊材型号(牌号):E4303(J422) 完成日期: 大众阀门集团有限公司

WPQ资料目录

焊接工艺指导书 WPS

大众阀门集团有限公司

接头(QW-402) 接头形式: 破口对接焊 根部间隙: 衬垫:有 无 √ QW-482 焊接工艺规程(WPS )的推荐格式 (参见ASME 锅炉及压力容器规范第Ⅸ卷,QW-200.1) 公司名称 大众阀门集团有限公司 签字人 WPS No. W/J4-17 日期 2012.5.15 所根据的PQR No DZ/PQR-17 修改号 日期 焊接方法 手工电弧对接焊(SMAW ) 自动化程度(自动、手工、半自动) 手工 母材(QW-403) P-No : 1 Group No. 2 与 P-No : 1 Group No. 2 相焊 钢号和等级或UNS No :A216 WCB 、J03002 与钢号和等级或UNS No :A105、K03504相焊 化学成分和力学性能: C Mn Si P S δb MPa δsMPa A216 WCB ≤0.30 ≤1.00 ≤0.60 ≤0.04 ≤0.045 485-655 ≥250 A105 ≤0.35 0.60-1.05 0.10-0.35 ≤0.035 ≤0.040 ≥485 ≥250 厚度范围: 母材:坡口焊缝 1.5~20mm 角焊缝 不限 最大焊道厚度≤1/2in (13mm ) 是: √ 否: 填充金属(QW-404) SFA No : GB/T5177 AWS No : J422(E4303) F-No : N/A A-No : 1 填充金属尺寸: Φ3.2、Φ4.0 填充金属产品形式 实芯焊条 附加填充金属: N/A 评定的焊缝金属厚度范围 Max.20mm 坡口焊: 其他; 焊材金属化学成分(%) C Si Mn P S Cr Ni Mo V Ti Nb ≤0.12 ≤0.25 0.3~0.6 ≤0.04 ≤0.035 / / / / / /

电子元器件焊接工艺要求

电子元器件焊接工艺规范 一、目的 规范电子元器件手工焊接操作,保证产品质量,提高生产效率,制定此工艺规范,要求生产二部全体员工严格遵守。 二、手工焊接工具要求 1、焊锡丝的选择要求 1)直径为1.0mm的焊锡丝,用于铜插孔焊接,焊片和PCB板的注 锡,一些较大元器件的焊接。 2)直径为0.8mm的焊锡丝,用于普通类电子元器件焊接。 3) 直径为0.6mm的焊锡丝,用于贴片及较小型电子元器件焊接。2、电烙铁的功率选用要求 1)焊接常规电子元器件及其它受热易损件的元件时,考虑选用35W 内热式电烙铁。 2)焊接导线、铜插孔、焊片以及给PCB板镀锡时,要选用60W的 内热式电烙铁。 3)拆卸一些电子元器件及热缩管热缩时,考虑选用热风枪。 3、电烙铁使用注意事项 1)新的烙铁在使用之前必须先给它蘸上一层锡(给烙铁通电,然后 在烙铁加热到一定的时候就用锡条靠近烙铁头),使用久了的烙铁将烙铁头部锉亮,然后通电加热升温,并将烙铁头蘸上一点松香,待松香冒烟时在上锡,使在烙铁头表面先镀上一层锡。 2)电烙铁通电后,不用时应放在烙铁架上,但较长时间不用时应切 断电源,防止高温“烧死”烙铁头(被氧化)。要防止电烙铁烫坏其他元器件,尤其是电源线,若其绝缘层被烙铁烧坏而不注意便

容易引发安全事故。 3)不要把电烙铁猛力敲打,以免震断电烙铁内部电热丝或引线而产 生故障。 4)电烙铁使用一段时间后,可能在烙铁头部留有锡垢,在烙铁加热 的条件下,我们可以用湿布轻檫。如有出现凹坑或氧化块,应用细纹锉刀修复或者直接更换烙铁头 三、电子元器件的安装 1、元器件引脚折弯及整形的基本要求 手工弯引脚可以借助镊子或小螺丝刀对引脚整形。所有元器件引脚均不得从根部弯曲,一般应留1.5mm以上;电阻,二极管及其类似元件要将引脚弯成与元件成垂直状再进行装插。 2、元器件插装要求 1)电子元器件插装要求做到整齐、美观、稳固,元器件应插装到位, 无明显倾斜、变形现象。同时应方便焊接和有利于元器件焊接时的散热。 2)电阻,二极管及其类似元件与线路板平行,要尽量将有字符的元 器件面置于容易观察的位置。 3)电容、三极管、电感、可控硅及类似元件要求引脚垂直安装,元 件与线路板垂直。 4)集成电路、集成电路插座装插件时注意引脚顺序不能插反且安装 应到位,元件与线路板平行。 5)有极性的元件在装插时要注意极性,不能将极性装反。 6)相同元件安装时要求高度统一,手工插焊遵循先低后高,先小后

闪光对焊施工工艺处理标准规定

2.钢筋闪光对焊施工工艺标准 2.1.总则 2.1.1.适用范围 本工艺适用于直径14~25mm的HPB235、HRB335、HRB400钢筋接长的对焊焊接。 2.1.2.术语 (1)闪光对焊:闪光对焊是将两根钢筋安放成对接形式,利用焊接电流通过两根钢筋接触点产生的电阻热,使接触点金属熔化,产生强烈的飞溅,形成闪光,迅速施加顶锻力完成的一种压焊方法。 (2)对焊连接:通过钢筋热熔顶锻压力作用,使两根钢筋热熔后粘接,将一根钢筋受到的力传递至另一根钢筋的连接方法。 (3)抗拉强度:接头试件在拉伸试验过程中,按钢筋公称面积计算所达到的最大拉应力值。 2.1. 3.基本规定 (1)含有焊接接头的钢筋在冷拉过程中,若在接头部位发生断裂时,可切除热影响区后再焊再拉;但不得多于两次。且其冷拉工艺与要求应符合现行国家标准《混凝土结构工程施工质量验收规范》(GB50204)的规定。 (2)在工程开工或每批钢筋正式焊接之前,应进行现场条件下的焊接性能试验。合格后,方可正式生产。试件数量与要求,应与质量检查与验收时间相同。

(3)钢筋焊接施工之前,应清除钢筋或钢板焊接部位和与电极接触的钢筋表面上的锈斑、油污、杂物等;当钢筋端部有弯折、扭曲时,应予以矫直或切除。 (4)进行闪光对焊时,应随时观察电源电压的波动情况。当电源电压下降大于5%或小于8%时,应提高焊接变压器级数;当大于或等于8%时,不得进行焊接。 (5)焊机应经常维护保养和定期检修,确保正常使用。 (6)对从事钢筋焊接施工的班组及有关人员应经常进行安全生产教育,执行现行国家标准《焊接与切割安全》GB9448中有关规定,并应执行和实施安全技术措施,加强焊工的劳动保护,防止发生烧伤、触电、火灾、爆炸以及烧坏焊接设备等事故。 (7)钢筋连接件的混凝土保护层厚度宜符合《混凝土结构工程施工质量验收规范》(GB50204)中,关于钢筋混凝土保护层最小厚度的规定,且不得小于15mm,连接件之间的横向净距不宜小于25mm。 (8)不同直径的钢筋焊接时,其直径差不宜大于2~3mm。 2.2.施工准备 2.2.1.技术准备 (1)操作人员必须经过专门的技术培训,经考核合格后持证上岗。 (2)做好各级技术交底工作。 2.2.2.材料准备 (1)按照设计要求与规范规定,提出准确完善的加工计划及产品数量。

对接焊缝角焊缝焊接工艺评定规则

对接焊缝、角焊缝焊接工艺评定规则(1)简介:1、焊缝的连接形式评定对接焊缝焊接工艺时,采用对接焊缝试件。对接焊缝试件评定合格的焊接工艺亦适用于角焊缝。评定非受压角焊缝焊接工艺时,可仅采用角焊缝试件。板材对接焊缝试件评定合格的焊接工艺适用于管 ... 、焊缝的连接形式 评定对接焊缝焊接工艺时,采用对接焊缝试件。对接焊缝试件评定合格的焊接工艺亦适用于角焊缝。评定非受压角焊缝焊接工艺时,可仅采用角焊缝试件。 板材对接焊缝试件评定合格的焊接工艺适用于管材的对接焊缝,管材对接焊缝试件评定合格的焊接工艺也适用于板材的对接焊缝。 管与板角焊缝试件评定合格的焊接工艺适用于板材的角焊缝,板材的角焊缝评定合格的焊接工艺也适用于管与板角焊缝试件。 焊接工艺因素 焊接工艺因素分为重要因素、补加因素和次要因素。 重要因素是指影响焊接接头抗拉强度和弯曲性能的焊接工艺因素。. 补加因素是指影响焊接接头冲击韧性的焊接工艺因素。当规定进行冲击试验时,需增加补加因素。次要因素是指对要求测定的力学性能无明显影响的焊接工艺因素。 焊接接头的力学性能包括抗拉强度与冲击韧性,而弯曲性能除有力学性能性质外,还表现为工艺性能。按照制订本标准时的重新评定焊接工艺判断准则,将焊接工艺因素分为重要因素、补加因素和次要因素。 变更或增加补加因素要不要重新评定焊接工艺,要看焊件是否要求冲击试验来决定,当规定冲击试验时,补加因素当作重要因素对待;当不规定冲击试验时,补加因素当作次要因素对待。

焊接接头的力学性能包括抗拉强度与冲击韧性,而弯曲性能除有力学性能性质外,还表现为将焊接工艺因素分为重要因素、按照制订本标准时的重新评定焊接工艺判断准则,工艺性能。. 补加因素和次要因素。 变更或增加补加因素要不要重新评定焊接工艺,要看焊件是否要求冲击试验来决定,当规定冲击试验时,补加因素当作重要因素对待;当不规定冲击试验时,补加因素当作次要因素对待。.

焊接工艺规范及操作规程

焊接工艺规范及操作规程 1.目的和适用范围 1.1 本规范对本公司特殊过程――焊接过程进行控制,做到技术先进、经济合理、安全适用、确保质量。 1.2 本规范适用于各类铁塔结构、桁架结构、多层和高层梁柱框架结构等工业与民用建筑和一般构筑物的钢结构工程中,钢材厚度≥4mm的碳素结构钢和低和金高强度结构钢的焊接。适用的焊接方法包括:手工电弧焊、气体保护焊、埋弧焊及相应焊接方法的组合。2.本规范引用如下标准: JGJ81-2002《建筑钢结构焊接技术规程》 GB50205-2001《钢结构工程施工质量验收规范》 GB50017-2003《钢结构设计规范》 3.焊接通用规范 3.1 焊接设备 3.1.1 焊接设备的性能应满足选定工艺的要求。 3.1.2 焊接设备的选用: 手工电弧焊选用ZX3-400型、BX1-500型焊机 CO2气体保护焊选用KRⅡ-500型、HKR-630型焊机 埋弧自动焊选用ZD5(L)-1000型焊机 3.2 焊接材料 3.2.1 焊接材料的选用应符合设计图纸的要求,并应具有钢厂和焊接材料厂出具的质量证明书或检验报告;其化学成份、力学性能和其它质量要求必须符合国家现行标准规定。3.2.2 焊条应符合现行国家标准《碳钢焊条》(GB/T5117),《低合金钢焊条》(GB/T5118)的规定。 3.2.3 焊丝应符合现行国家标准《熔化焊用钢丝》(GB/T14957)、《气体保护电弧焊用碳钢、低合金钢焊丝》(GB/T8110)及《碳钢药芯焊丝》(GB/T10045)、《低合金钢药芯焊丝》(GB/T17493)的规定。 3.2.4 埋弧焊用焊丝和焊剂应符合现行国家标准《埋弧焊用碳钢焊丝和焊剂》(GB/T5293)、《低合金钢埋弧焊用焊剂》(GB/T12470)的规定。

轧制缺陷分析

1.折叠是钢材表面形成的各种折线,这种缺陷往往贯穿整个产品的纵向。产生折叠的原因是由于轧制厂追求高效率,压下量偏大,产生耳子,下一道轧制时就产生折叠,折叠的产品折弯后就会开裂,钢材的强度大下降。 2.麻面是由于轧槽磨损严重引起钢材表面不规则的凹凸不平的缺陷。由于厂家要追求利润,经常出现轧槽轧制超标。 3.结疤原因有两点:1.钢材材质不均匀,杂质多。2。导卫设备简陋,容易粘钢,这些杂质咬人轧辊后易产生结疤。 4.裂纹,原因是它的坯料气孔多,在冷却的过程中由于受到热应力的作用,产生裂痕,经过轧制后就有裂纹。 5.刮伤,原因是设备简陋,易产生毛刺,刮伤钢材表面。深度刮伤降低钢材的强度。 6.伪劣钢材无金属光泽,呈淡红色或类似生铁的颜色,原因有两点二1、它的坯料是土坯。2、轧制的温度不标准,他们的钢温是通过目测的,这样无法按规定的奥氏体区域进行轧制,钢材的性能自然就无法达标。 7.伪劣钢材的横筋细而低,经常出现充不满的现象,原因是厂家为达到大的负公差,成品前几道的压下量偏大,铁型偏小,孔型充不满。 8.伪劣钢材的横截面呈椭圆形,原因是厂家为了节约材料,成品辊前二道的压下量偏大,这种螺纹钢的强度大大地下降,而且也不符合螺纹钢外形尺寸的标准。

9.优质钢材的成分均匀,冷剪机的吨位高,切头端面平滑而整齐,而伪劣材由于材质差,切头端面常常会有掉肉的现象,即凹凸不平,并且无金属光泽。而且由于伪劣材厂家产品切头少,头尾会出现大耳子。 10.伪劣钢材材质含杂质多,钢的密度偏小,而且尺寸超差严重,所以在没有游标卡尺的情况下,可以对它进行称量核对。比如对于螺纹钢20,国家标准中规定最大负公差为5%,定尺9M时它的单根理论重量为120公斤,它的最小的重量应该是:22 X(l-5%)=20.9公斤,称量出来单根的实际重量比20.9公斤小,则是伪劣钢材,原因是它负公差超过了5%。一般来说整相称量效果会更好,主要考虑到累积误差和概率论这个问题。 11.伪劣钢材的内径尺寸波动较大,原因是;l、钢温不稳定有阴阳面。2、钢的成分不均匀。3、由于设备简陋,地基强度低,轧机的弹跳大。会出现有同一周内内径变化较大,这样的钢筋受力不均匀易产生断裂。 12.优质材的商标和印字都比较规范。 13.三钢材直径16以上的大螺纹,两商标之间的间距都在IM以上。 14.伪劣钢材螺纹钢的纵筋经常呈波浪形。 15.伪劣钢材厂家由于没有行车,所以打包比较松散。侧面呈椭圆形。

L415M--φ406.4x8--管状对接焊接工艺评定(氩弧焊打底-焊条下向焊盖面)教学提纲

XX公司 焊接工艺评定 编号:PQR162-SMAW/GMAW-Fe1-8编制: ___________________________ 审核: ___________________________ 批准: ___________________________ 、焊接工艺评定任务书( 共1页) 二、预焊接工艺规程(pWPS)(共2页)焊接工艺评定报告(共3页) 四、焊接工艺规程(WPS)(共2页) 五、附件(共11页 )

焊接工艺评定任务书 工程单位: XX 公司 委托编号: PQR162 焊接位置: 水平固定 委托日期: 2013年03月06日 接头型式: 板状对接 接头编号: PQR162 机械化程度(手工、半自动、自动)半自动 焊接方法: SMAW/GMAW 保护焊: 氩气保护焊 执行标准 NB/T47014 要求完成日期: 2013年03月27日 接头型式简图: 母材:钢号: L415M 与 L415M 相焊 规格:0 406.4 X 8 焊材牌号: E6010 / E71T8-Ni1JH8 规格: 焊条0 3.2 /焊丝0 2.0 注:对每一种母材与焊接材料的组合均需分别填表。

预焊接工艺规程(pWPS) 共2页第1页单位名称:xx公司 预焊接工艺规程编号:pWPS-162 日期2013年03月07日所依据焊接工艺评定报告编号: PQR162 焊接方法:SMAW/GMAW 机动化程度(手工、机动、自动): 手工焊接接头: 坡口形式:V 衬垫(材料及规格):/ 其他:/ 母材: 类别号Fe-1 组别号Fe-1-2 与类别号Fe-1 组别号Fe-1-2 相焊或 标准号GB/T9711-2011 材料代号L415M 与标准号GB/T9711-2011 材料代号L415M 相焊 对接焊缝焊件母材厚度范围:8.0mm 角焊缝焊件母材厚度范围:__________________ / ___________________________________________________________ 管子直径、壁厚范围:对接焊缝/ 角焊缝/ 其他/ 焊材类别:FeT-1FeS-1 焊材标准: 填充金属尺寸:? 3.2? 2.0 焊材型号:// 焊材牌号(金属材代号):E6010E71T8-Ni1JH8 填充金属类别:// 对接焊缝焊件焊缝金属厚度范围:10mm 角焊缝焊件焊缝金属厚度范围:/ C Si Mn P S Cr Ni Mo V Ti Nb 注:对每一种母材与焊接材料的组合均需分别填表。

焊接工艺操作规范

技术规范 规范名称:焊接工艺操作规范 规范编号:LF/QD(8C)-25-2010 版号: A/0 页数: 受控状态: 编制:日期:2010年12月7日审核:日期:2010年12月8日批准:日期:2010年12月10日

文件编号:LF/QD(8C)-25-2010 第0次修订 标题:焊接工艺操作规范 修订日期: 实施日期:2010.12.12 版号:A/0 页码:1/2 1 范围 本规范规定了焊接工作应遵守的基本原则,适用于本厂各种焊接。 2 焊前准备 2.1清理适合作业场地,作业区5米以内不允许有任何易燃易爆物品。 2.2穿戴干燥的工作服、工作鞋,在潮湿地方作业,必须加强防触电措施。 2.3检查焊机是否安全完好(绝缘及接地情况);注意高压侧不得串入低压侧,焊机上端接线长度不超过3米;调整焊接电流与焊条要求电流相一致。 2.4按手续领取配套的焊接工件,检查工件的上道工序加工质量是否满足焊接要求。 2.5根据焊接工件的材质和工艺要求,领取当班所需的相应材质、相应型号的焊条。 2.6焊接前必须消除焊件上的铁锈、油污、水分等杂质。 3手工电弧焊工艺 3.1焊接工艺参数的选择 3.1.1焊条直径:焊条直径大小,主要取决于焊件厚度、接头型式、焊缝位置、焊道层次等因素确定,焊条直径的选用按表1。 表1 焊条直径与板厚的关系 焊缝位置、焊道层次等因素确定。焊接电流的大小可参考表2。 表2 焊接电流与焊条直径的关系 3.1.3焊缝层数:焊缝层数视焊件厚度而定,中厚板一般都采用多层焊。焊缝层数多些,有利于提高焊缝金属的塑性、韧性,但焊件变形倾向亦增加,应综合考虑后确定。 3.1.4电源种类和极性:直流电源的电弧稳定、飞溅少、焊缝质量好。因此,重要焊接结构件或厚板大刚度结构件的焊接,应采用直流弧焊电源。其余情况下,应优先考虑采用交流弧焊电源。碱性焊条施焊或薄板焊接应采用直流反接。酸性焊条施焊,宜采用直流正接。 3.2定位焊:焊接结构过程中均应先通过点固焊(定位焊)进行组装定位后,再焊接成一体。 3.2.1定位焊工艺要求:定位焊缝两头应平滑,不应有明显的裂纹、夹渣等缺陷。 3.2.2对于刚性较大的构件或有裂纹倾向的构件,应采取必要的热处理措施,以防定位焊缝产生裂纹。 3.3手工电弧焊操作技术

钢坯加热工艺

钢坯加热工艺 加热工艺制度包括加热温度、加热速度、加热时间、加热制度等。 一、 加热温度 钢的加热温度是指钢料在炉内加热完毕出炉时的表面温度。确定钢的加热温度不仅要根据钢种的性质,而且还要考虑到加工的要求,以获得最佳的塑性,最小的变形抗力,从而有利于提高轧制的产量、质量,降低能耗和设备磨损。实际生产中加热温度主要由以下几方面来确定。 A 加热温度的上限和下限 碳钢和低合金钢加热温度的选择主要是借助于铁碳平衡相图(图1-1)。当钢处于奥氏 图1-1 Fe-C 合金状态图(其中指出了加热温度界限) 1—锻造的加热温度极限;2—常化的加热温度极限; 3—淬火时的温度极限; 4—退火的温度极限 表1-1 碳钢的最高加热温度和理论过烧温度 含碳量(%) 最高加热温度(℃) 理论过烧温度(℃) 0.1 0.2 0.5 0.7 0.9 1.1 1.5 1350 1320 1250 1180 1120 1080 1050 1490 1470 1350 1280 1220 1180 1140

体区其塑性最好,加热温度的理论上限应当是固相线AE(1400~1530℃),实际上由于钢中偏析及非金属夹杂物的存在,加热还不到固相线温度就可能在晶界出现熔化而后氧化,晶粒间失去塑性,形成过烧。所以钢的加热温度上限一般低于固相线温度100~150℃。碳钢的最高加热温度和理论过烧温度见表3-1。加热温度的下限应高于A c3线30~50℃。根据终轧温度再考虑到钢在出炉和加工过程中的热损失,便可确定钢的最低加热温度。终轧温度对钢的组织和性能影响很大,终轧温度越高,晶粒集聚长大的倾向越大,奥氏体的晶粒越粗大,钢的机械性能越低。所以终轧温度也不能太高,最好在850℃左右,不要超过900℃,也不要低于700℃。 B 加热温度与轧制工艺的关系 上面讨论的仅是确定加热温度的一般原则。实际生产中,钢的加热温度还需结合压力加工工艺的要求。如轧制薄钢带时为满足产品厚度均匀的要求,比轧制厚钢带时的加热温度要高一些;坯料大加工道次多要求加热温度高些,反之小坯料加工道次少则要求加热温度低些等。这些都是压力加工工艺特点决定的。 高合金钢的加热温度则必须考虑合金元素及生成碳化物的影响,要参考相图,根据塑性图、变形抗力曲线和金相组织来确定。 目前国内外有一种意见,认为应该在低温下轧制,因为低温轧制所消耗的电能,比提高加热温度所消耗的热能要少,在经济上更合理。 二、加热速度 钢的加热速度通常是指钢在加热时,单位时间内其表面温度升高的度数,单位为℃/h。有时也用加热单位厚度钢坯所需的时间(min/cm);或单位时间内加热钢坯的厚度(cm/min)来表示。钢的加热速度和加热温度同样重要。在操作中常常由于加热速度控制不当,造成钢的内外温差过大,钢的内部产生较大的热应力,从而使钢出现裂纹或断裂。加热速度愈大,炉子的单位生产率愈高,钢坯的氧化、脱碳愈少,单位燃料消耗量也愈低。所以快速加热是提高炉子各项指标的重要措施。但是,提高加热速度受到一些因素的限制,对厚料来说,不仅受炉子给热能力的限制,而且还受到工艺上钢坯本身所允许的加热速度的限制,这种限制可归纳为在加热初期断面上温差的限制,在加热末期断面上烧透程度的限制和因炉温过高造成加热缺陷的限制。下面分述它们对加热速度的影响: A 在加热初期,钢坯表面与中心产生温度差。表面的温度高,热膨胀较大,中心的温度低,热膨胀较小。而表面与中心是一块不可分割的金属整体,所以膨胀较小的中心部分将限制表面的膨胀,使钢坯表面部分受到压应力;同时,膨胀较大的表面部分将强迫中心部分和它一起膨胀,使中心受到拉应力。这种应力叫做“温度应力”或“热应力”。显然,从断面上的应力分布来看,表面与中心处的温度应力都是最大的,而在表面与中心之间的某层金属则既不受到压应力也不受到拉应力。可以证明,钢坯加热时的温度应力曲线与温度曲线一样,也是呈抛物线分布。 加热速度愈大,内外温差愈大,产生的温度应力也愈大。当温度应力在钢的弹性极限以内时,对钢的质量没有影响,因为随着温度差的减小和消除,应力会自然消失。当温度应力超过钢的弹性极限时,则钢坯将发生塑性变形,在温度差消除后所产生的应力将不能完全消失,即生成所谓残存应力。如果温度应力再大,超过了钢的强度极限时,则在加热过程中就会破裂。这时温度应力对于钢坯中心的危害性更大,因为中心受的是拉应力,一般钢的抗拉强度远低于其抗压强度,所以中心的温度应力易造成内裂。 如果钢的塑性很好,即使在加热过程中形成很大的内外温差,也只能引起塑性变形,以任意速度加热,都不会因温度应力而引起钢坯断裂。如果钢的导热性好(或导热系数高),则在加热过程中形成的内外温差就小(因Δt=qS/2λ),因而加热时温度应力所引起的塑性变形或断裂的可能性较小。低碳钢的导热系数大,高碳钢和合金钢的导热系数小,因而高碳钢

钢筋闪光对焊工艺详解

钢筋闪光对焊工艺 施工准备 1、材料及主要机具: 1.1钢筋:钢筋的级别、直径必须符合设计要求,有出厂证明书及复试报告单。进口钢筋还应有化学复试单,其化学成分应满足焊接要求,并应有可焊性试验。 1.2主要机具:对焊机及配套的对焊平台、防护深色眼镜、电焊手套、绝缘鞋、钢筋切断机、空压机、水源、除锈机或钢丝刷、冷拉调直作业线。 2、作业条件: 2.1焊工必须经过培训考试合格并持有建设行政主管部门颁发的有效的作业证书。 2.2对焊机及配套装置、冷却水、压缩空气等应符合要求。 2.3电源应符合要求,当电源电压下降大于5%,小于8%时,应采取适当提高焊接变压器级数的措施;大于8%时,不得进行焊接。 2.4作业场地应有安全防护设施,防火和必要的通风措施,防止发生烧伤、触电及火灾等事故。 2.5熟悉料单,弄清接头位置。 操作工艺 1、工艺流程: 检查设备→选择焊接工艺及参数→试焊、作模拟试件→试件送试→确定焊接参数→工程钢筋焊接→质量检验→现场按规范取度试件试验。 2、连续闪光对焊工艺过程: 闭合电路→闪光(两钢筋端面轻微接触)→连续闪光加热到将近熔点(两钢筋端面徐徐移动接触)→带电顶锻→无电顶锻 3、预热闪光对焊工艺过程: 闭合电路→断续闪光预热(两钢筋端面交替接触和分开)→连续闪光加热到将近熔点(两钢筋端面徐徐移动接触)→带电顶锻→无电顶锻

4、闪光一预热闪光对焊工艺过程: 闭合电路→一次闪光闪平端面(两钢筋端面轻微徐徐接触)→连续闪光预热(两钢筋端面交替接触和分开)→二次连续闪光加热到将近熔点(两钢筋端面徐徐移动接触)→带电顶锻→无电顶锻 5、焊接工艺方法选择:当钢筋直径小于18㎜可采用连续闪光焊。当钢筋直径较大(大于20mm),端面较平整,宜采用预热闪光焊;当端面不够平整,则应采用闪光一预热闪光焊。 6、焊接参数选择:闪光对焊时,应合理选择调伸长度、烧化留量、顶锻留量以及变压器级数等焊接参数。 6.1调伸长度:焊接前,两钢筋端部从电极钳伸出的长度。取值一般为:I级钢0.75~1.25d;II级钢1.0~1.5d(d为钢筋直径);直径小的取小值。 6.2闪光留置与闪光速度:闪光留置是指闪光过程中,闪出金属所消耗的钢筋长度。其取值:连续闪光焊为两钢筋严重压伤部分之和,另加8㎜;预热闪光焊为8-10㎜;闪光-预热-闪光焊的一次闪光为两钢筋切断时刀口严重压伤部分之和,二次闪光为8-10㎜。 闪光速度由快到慢,开始接近于零,而后约1㎜/S,终止时达1.5-2㎜/S。 6.3预热留量与预热频率:预热留量取值为预热闪光焊为4-7㎜;闪光-预热-闪光焊2-7㎜。 预热频率:I级钢宜取高些,II级钢适中(1-2次/S),以扩大接头处加热范围。 6.4顶锻留量、顶锻速度与顶锻压力:顶锻留量指在闪光结束,将钢筋顶锻压紧时因接头处挤出金属而缩短的钢筋长度。一般宜取4-6.5㎜(直径的取大值),其中有电顶锻留量约占1/3,无电顶锻留量约占2/3,焊接时必须控制得当。 顶锻速度越快越好,顶锻压力应足以将全部的熔化金属从接头内挤出,而且还要使邻近接头处(10㎜)的金属产生适当的塑性变形。 6.5变压器级次用以调节焊接电流大小。高级别钢筋或直径大钢筋,其级次要高。焊接时如火花过大并有强烈声响,应降低变压器级次。当电压降低5%左右时,应提高变压器级次1级。 6试焊、模拟焊试件:在工程钢筋正式焊接前,应按选择的焊接参数焊接6个试件,其中3个做拉力试验,3个做冷弯试验。经试验合格后,方可按确定的焊接参数成批生产。 7、对焊焊接操作:

(完整版)棒材生产流程

轧钢生产工艺流程 1、棒材生产线工艺流程 钢坯验收→加热→轧制→倍尺剪切→冷却→剪切→检验→包装→计量→入库 (1)钢坯验收〓钢坯质量是关系到成品质量的关键,必须经过检查验收。 ①、钢坯验收程序包括:物卡核对、外形尺寸测量、表面质量检查、记录等。 ②、钢坯验收依据钢坯技术标准和内控技术条件进行,不合格钢坯不得入炉。 (2)、钢坯加热 钢坯加热是热轧生产工艺过程中的重要工序。 ①、钢坯加热的目的 钢坯加热的目的是提高钢的塑性,降低变形抗力,以便于轧制;正确的加热工艺,还可以消除或减轻钢坯内部组织缺陷。钢的加热工艺与钢材质量、轧机产量、能量消耗、轧机寿命等各项技术经济指标有直接关系。 ②、三段连续式加热炉 所谓的三段即:预热段、加热段和均热段。 预热段的作用:利用加热烟气余热对钢坯进行预加热,以节约燃料。(一般预加热到300~450℃) 加热段的作用:对预加热钢坯再加温至1150~1250℃,它是加热炉的主要供热段,决定炉子的加热生产能力。 均热段的作用:减少钢坯内外温差及消除水冷滑道黑印,稳定均匀加热质量。 ③、钢坯加热常见的几种缺陷 a、过热 钢坯在高温长时间加热时,极易产生过热现象。钢坯产生过热现象主要表现在钢的组织晶粒过分长大变为粗晶组织,从而降低晶粒间的结合力,降低钢的可塑性。 过热钢在轧制时易产生拉裂,尤其边角部位。轻微过热时钢材表面产生裂纹,影响钢材表面质量和力学性能。 为了避免产生过热缺陷,必须对加热温度和加热时间进行严格控制。 b、过烧 钢坯在高温长时间加热会变成粗大的结晶组织,同时晶粒边界上的低熔点非金属化合物氧化而使结晶组织遭到破坏,使钢失去应有的强度和塑性,这种现象称为过烧。 过烧钢在轧制时会产生严重的破裂。因此过烧是比过热更为严重的一种加热缺陷。过烧钢除重新冶炼外无法挽救。 避免过烧的办法:合理控制加热温度和炉内氧化气氛,严格执行正确的加热制度和待轧制度,避免温度过高。 c、温度不均 钢坯加热速度过快或轧制机时产量大于加热能力时易产生这种现象。温度不均的钢坯,轧制时轧件尺寸精度难以稳定控制,且易造成轧制事故或设备事故。 避免方法:合理控制炉温和加热速度;做好轧制与加热的联系衔接。 d、氧化烧损 钢坯在室温状态就产生氧化,只是氧化速度较慢而已,随着加热温度的升高氧化速度加快,当钢坯加热到1100—1200℃时,在炉气的作用下进行强烈的氧化而生成氧化铁皮。氧化铁皮的产生,增加了加热烧损,造成成材率指标下降。 减少氧化烧损的措施:合理加热制度并正确操作,控制好炉内气氛。

相关文档