文档库 最新最全的文档下载
当前位置:文档库 › 烃源岩测井评价研究

烃源岩测井评价研究

烃源岩测井评价研究
烃源岩测井评价研究

烃源岩测井评价研究概述

摘要:目前围绕着烃源岩的测井评价开展了许多研究工作,本文从烃源岩测井评价的进展和评价方法两方面入手,系统的介绍了烃源岩评价的国内外研究现状和国内常用的评价方法,并指出了目前烃源岩评价中存在的问题,对今后研究工作的开展提出了建议。关键词:烃源岩;测井资料;研究进展;评价方法

引言

烃源岩是油气藏和输油气系统研究的基础,国内外对于烃源岩的研究一直很重视。在对烃源岩的研究过程中也取得也一定的成果。但是,由于构造和沉积环境的影响,烃源岩具有很强的非均质性,给资源评价工作带来一定的困难,许多学者对烃源岩的评价做了进一步的研究。本文对目前有关于烃源岩的测井评价进行总结分析,希望对今后的烃源岩评价工作有所帮助。

1 烃源岩的评价进展

1.1 国外进展

利用测井资料评价烃源岩的主要方面是确定烃源岩中的有机碳含量(toc)。早期关于烃源岩评价的研究主要集中在国外,1945年beer就尝试应用自然伽马曲线识别和定量分析有机质丰度[1]。murry等(1968)作区块分析时得出异常大的地层电阻率是由于生油岩中已饱和了不导电的烃类[2]。swamson将自然伽马异常归因于与有机质相关的铀,他指出铀与有机质存在一定关系[1]。在七十

年代末期由fertl(1979)、leventhal(1981)等人相继找出放射性铀与有机质含量间的经验公式,这期间的研究主要以定性分析为主[1]。herron(1986)将c/o能谱测井信息用于求解烃源岩的有机质丰度,但该方法误差较大并未真正应用到实际评价中[3]。schmoker在八十年代做了许多关于烃源岩的研究,他指出高的自然伽马值与烃源岩间的相关性、用密度测井信息来估算烃源岩有机碳含量、埋藏成岩作用引起的孔隙度减小过程就是一个热成熟过程、碳酸盐岩和砂岩的孔隙度之间呈幂函数等观点[4-6]。meyer(1984)等利用自然伽马、密度、声波和电阻率测井结合来评价烃源岩,总结出了测井响应参数与有机碳含量的岩石判别函数[7]。上面这些国外学者虽然提出了一些计算有机碳含量的经验公式,但是并没有建立定量的数学模型。直到1990年,passey研究出了对碳酸盐岩烃源岩和碎屑岩烃源岩都适用的方法,能够计算出不同成熟度条件下的有机碳含量值[8]。目前该方法依然被很多学者作为研究烃源岩的基础模型。lang等(1994)研究认为在泥页岩正常压实带,实测镜质体、反射率与声波时差间存在很好的半对数关系[9]。但是,由于反射率与声波时差的关系受许多地质因素影响,阻碍其普遍应用。mallick(1995)将实测的有机碳含量与地层密度用最小二乘拟合发现它们呈反比关系[10]。

1.2 国内进展

鉴于烃源岩研究的重要性,国内学者也进行了一系列研究工作。

谭延栋等(1988)应用测井资料对干酪根的响应特征来识别泥岩系中富含干酪根的生油岩[11]。郭永华等(1993)最早尝试利用地层电阻率确定生油岩有机质的成熟度[12]。赵彦超等(1994)借鉴国外研究对herron的方法进行改进,把c/o测井和密度测井结合来识别泥质烃源岩[13]。之后他又以w-s方程为基础使用电阻率重叠法和双孔隙法定性识别烃源岩[14]。陈增智等(1994)建立了碳酸盐岩自然伽马测井资料与有机碳含量相关性的数学模型,估算碳酸盐岩地层剖面中的有机质丰度分布[15]。李国平等(1996)利用含油气饱和度法推算烃源岩的有机质含量[16]。张小莉等(1998)采用多测井组合法来识别煤系烃源岩[17]。许晓宏等(1998)较早的修正passey的模型,应用于国内烃源岩的评价[18]。张志伟等(2000)以此模型为基础区分烃源岩与非烃源岩,定性评价烃源岩的等级[19]。张立鹏等(2001)提出地层弹性参数、铀/钍等几个参数可以反映有机碳含量[20]。在这期间也有学者尝试新的方法[21~23,26],朱振宇等(2002)利用人工神经网络在非结构性计算机问题上的优势对烃源岩测井评价作出了新的尝试[21]。胡佳庆等(2002)依靠地球物理测井资料用人工智能方法自动识别烃源岩有机质丰度[22]。王栋等(2004)研究了核磁共振测井资料评价烃源岩的可行性[23]。张寒等(2007)用地震信息资料可以确定烃源岩的空间展布[26]。陆巧焕(2006)等用测井资料计算有机碳含量和岩石热解生烃潜能来评价生油岩[24]。钱克兵(2006)等建立有

机质热演化程度与埋藏深度预测模型[25]。于翔涛等(2009)将有机质含量计算公式加入了密度考虑因子[27]。王鹂等(2009)绘制了烃源岩层厚度与暗色泥质岩类总厚度关系及烃源岩层总厚度与

有效厚度关系[28]。刘景东等(2010)提出了综合考虑生油岩成熟度和各种测井响应的”反推δlogr”的新方法[29]。卢双舫等(2012)以实际区块研究为基础,确定了优质烃源岩的下限标准[30]。总体来说,国内开展的烃源岩评价工作主要集中在对原有方法的改进和建立测井资料与烃源岩之间关系的经验公式上。

2 烃源岩评价方法

目前,评价烃源岩的方法主要是利用测井资料定性和定量得判断。另外,还有一些方法是利用数学或者计算机理论作为载体的。

2.1 根据测井资料评价烃源岩的方法

2.1.1 单曲线测井资料评价

自然伽马法:陈增智等[15]以碳酸盐岩中泥质含量(vsh)与有机碳含量(toc)间存在正相关性为依据,采用自然伽马测井求取碳酸盐岩的泥质含量,建立了有机碳含量与自然伽马的关系,达到评价烃源岩的目的。该方法利用了常用的测井资料曲线——自然伽马,曲线普遍性高且容易获取。但是,在建立vsh与toc统计关系时,应充分考虑沉积成岩背景和有机质演化对碳酸盐岩有机质丰度的影响。

c/o能谱测井法:赵彦超等[13]改进了herron的c/o能谱测井评

价烃源岩方法,利用校正过的c/o和si/ca曲线确定地层中的总碳含量(ct)和无机碳含量(nct),它们的差值即为有机碳含量(toc),进而评价烃源岩。该方法对低含量有机碳反应灵敏,对无机碳的含量计算误差较大。另外,其利用了c/o能谱测井和地层密度测井资料,故只适用于泥质岩烃源岩。

核磁共振测井法:核磁共振测井(nmr)可以根据t2(nmr测井的一种测井模式)的弛豫值表征不同来判断油水性质。测井结果主要受地层孔隙流体中氢核的影响,岩石固体骨架中的氢对它无影响,这一独特的特征使得nmr测井不受烃源岩中固态有机质的影响,既测量结果与岩性无关。因此它即适用于泥质岩又适用于碳酸盐岩烃源岩。这项技术的应用前景被看好,王栋等人也对其可行进行了检验[23]。

2.1.2 多曲线测井资料评价

多曲线组合法:张小莉等[17]以实测资料为基础,得出煤层在测井曲表现为高中子、高声波时差、高电阻率和低密度、低自然电位、低自然伽马(煤层的放射性弱);碳质泥岩和暗色泥岩表现为高中子、高声波时差、高电阻率(高于围岩泥岩)、高自然伽马、高铀含量和低密度特征,并且有机碳含量高的层段其自然伽马和铀曲线值相对较高。以此“三高三低”、“五高一低”特征识别煤系烃源岩。多参数组合法:针对泥页岩的测井响应特征,张立鹏等[20]由测井资料导出了弹性参数(b)、总自然伽马与去铀自然伽马差(δgr)、

铀钍比(u/th)、井径差值(δcal)四个地层参数,在泥页岩烃源岩中这些参数表现为“三高一低”(高u/th、高δcal、高δgr、低弹性参数b)这一特征可以评价泥页岩烃源岩。

δlogr法: 目前应用最多最广泛的方法是利用电阻率和孔隙度测井曲线(一般为声波时差)重叠来计算有机碳含量,即δlog r法[8]。采用算术坐标的孔隙度曲线与采用算术对数坐标电阻率曲线进行叠合,产生的幅度差与有机碳含量是线性关系,并且是成熟度的函数,只要确定和估算成熟度,即可用幅度差值对烃源岩地层进行有效识别。这种方法既适用于碳酸盐岩又适用于碎屑岩,另外消除了对孔隙度的依赖关系[31~32]。后期许多学者对此方法进行完善,加入非烃源岩所具有的有机碳含量背景值、密度参数等[18,27]改进计算公式。鉴于此方法人为确定基线值计算幅度差,操作过程繁琐,人为因素影响大,有学者利用计算机叠合曲线自动计算幅度差来解决这一问题[33]。国内在应用此项技术时,主要是针对泥质烃源岩进行应用研究,对碳酸盐岩烃源岩的研究则很少,这可能与国内碳酸盐岩烃源岩特殊的性质有关。

含油气饱和度(sog)法:李国平等[16]对烃源岩含油气饱和度和有机碳含量之间关系研究认为,随埋深增加而增大的含油气饱和度与有机丰度成正比,并与有机质成熟度和类型有直接关系。分别利用阿尔奇公式和双孔隙度曲线交会(中子—密度、中子—声波时差或密度—声波时差交会)得出烃源岩的含油气饱和度和总孔隙度,

进而求取烃源岩中的剩余烃含量(vhc),即可转化求得有机碳含量(toc)。但是,也有研究指出用vhc推算的toc存在较大误差,反而是sog可以提供已成熟有机质所生成烃的量[34],它不仅可以推断出有机质成熟门限值,还可预测实际地层的油气生成量,对评价生油岩及资源评价更具有现实意义。

2.2 基于数学及计算机的方法

2.2.1 人工神经网络

人工神经网络方法在很难用显示函数表达非结构性计算问题方面优越性很大。在烃源岩评价过程中,测井参数xi与烃源岩参数yi 的映射关系不是单值的对应关系。因此,把测井参数空间分解成若干个子空间,用一个基于距离的自组织竞争网络d-konhonen nn提取测井参数向量模式特征,再组合一个基于距离的多层前向网络

d-bpnn作为测井参数到烃源岩的映射分类识别器,实现烃源岩的评价[21]。由于对烃源岩的评价参数划分存在多样化,该方法的使用和研究较少。

2.2.2 人工智能技术

胡佳庆等[22]依靠地球物理测井资料使用人工智能的方法,实现在微机上自动、快速识别烃源岩的有机质丰度。测井资料自动评价技术是在自动识别岩性基础上对综合测井系列选择了自然伽玛gr、井径cal、声波时差ac、深侧向电阻率rt、微侧向电阻率rxo、密度den和中子cn七个参数作为研究岩性的基本变量。结合数学中

常用的多元统计分析将上述基本变量浓缩成反映岩性的一个综合特征值,经阶梯式模式识别自动确认岩性界面内的煤岩和泥质岩,再将测井参数经过模拟建立泥质岩的有机碳、氯仿沥青和总烃的多参数计算公式,来分析煤岩和泥质岩的有机质丰度。这一方法为利用测井信息快速评价烃源岩提供了一种新的途径。

2.2.3 地震反射法

张寒等[26]人对渤海湾盆地湖相烃源岩地震反射特征作出分析认为,半湖相—湖相烃源岩在地震反射轴具有低频、高连续、强振幅的特点,反射结构为平行—亚平行状态,容易识别。其中,低频、高连续、强振幅反映的是一个密集的反射段,一般为富含有机质的泥岩类沉积物地震反射,平行—亚平行反射结构主要为深水环境中以水平沉积为主的湖相地层反射特征,据此可判断泥岩是否进入生油门限和能否成为有效烃源岩。另外,需要加入钻井资料进行层位标定来区分具有类似反射特征的沉积组合。因此,综合油气地质特征与地球物理反射特点是正确识别烃源岩的关键。

3 结语

目前,识别烃源岩的δlogr技术研究和应用最为广泛,但是对有机碳含量背景值和烃源岩成熟程度等因素的估计存在不确定性,造成评价误差。另外,根据测井资料评价烃源岩要考虑到测井曲线垂向分辨率有限,无法确定那些厚度明显小于两条曲线叠合的组合分辨率层段的有机质含量。电测井在烃源岩测井评价的应用上多是定

性或半定量的,没有建立起烃源岩的导电模型,有些学者利用了泥质砂岩的导电模型来进行烃源岩评价,取得了一定成果。但是,直接使用泥质砂岩导电模型评价烃源岩的是否可行还缺少实验和理

论基础,应深化烃源岩的电化学性质与有机质之间关系的理论分析和实验研究,建立相应的烃源岩测井评价解释模型。

参考文献:

[1] o.宽拉,谭廷栋,廖明书,等译.测井解释基础与数据采集[m].北京:石油工业出版杜,1992.

[2] 郭永华,何炳骏.利用电测井资料确定生油岩有机质的成熟度[j].石油勘探与开发,1993,20(3):22-26.

[3] herron s l. derivadon of a total organic carbon log for source rock evaluation[j]. spwla 27th annual logging symposium. 1986, paper hh.

[4] schmoker j w. determination of organic-matter content of appalachian devonian shales from gamma ray logs[j]. aapg bulletin, l981, 65: 1285~1298.

[5] schmoker j w. heater t c. organic carbon in bakken formation,united states portion of williston basin[j]. aapg bulletin, 1983, 67:3165~3174.

[6] schmoker j w. sandstone porosity as function of thermal maturity[j]. geology, 1988, 16: 1007~1010.

[7] meyer b l, nederlof m h, identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity cross-plots[j]. aapg, 1984, 68 (2): 121~129.

[8] passey q r, creaney s, kulla j b. a practical model for organic richness from porosity and resistivity logs [j]. aapg, 1990, 74(12): 1777~1794.

[9] lang w h. the determination of thermal maturity in potential source rocks using interval transit time interval velocity[j]. the log analyst. 1994, 35: 47~59.

[10] mallick r k, raju s v. application of wireline logs in characterization and evaluation of generation potential of palaeocene-lower eocene source rocks in parts of upper assam basin , india [j]. the log analyst, 1995, 32(2): 49~63. [11] 谭廷栋. 测井识别生油岩方法[j].测井技术,1988, 12(6):1~11.

[12] 郭永华,何炳骏.利用电测井资料确定生油岩有机质的成熟度—以渤海辽东湾资料为例[j].石油勘探与开发,1993, 20(3):22~26.

[13] 赵彦超,马正,姚光庆. 碳氧比测井——一种潜在的生油岩评价工具[j]. 测井技术,1994, 18(4):240~247.

[14] 赵彦超,马正,姚光庆. wamnan-smith方程在生油岩评价中的应用:重叠法和双孔隙度法[j]. 地球科学, 1995, 20(3):306~313.

[15] 陈增智,郝石生,席胜利. 碳酸盐岩烃源岩有机质丰度测井评价方法[j]. 石油大学学报(自然科学版),1994, 18 (4):16~19.

[16] 李国平等. 测井地质及油气评价新技术[m]. 北京:石油工业出版社, 1996.

[17] 张小莉,沈英.吐哈盆地侏罗系煤系地层烃源岩的测井研究[j].测井技术, 1998, 22(3):183~185.

[18] 许晓宏,黄海平,卢松年.测井资料与烃源岩有机碳含量的定量关系研究[j]. 江汉石油学院学报, 1998, 20 (3) : 8~121.

[19] 张志伟,张龙海.测井评价烃源岩的方法及其应用效果[j]. 石油勘探与开发,2000, 27 (3): 84~87.

[20] 张立鹏,边瑞雪,杨双彦,等. 用测井资料识别烃源岩[j]. 测井技术, 2001, 25 (2): 146~152.

[21] 朱振宇,王贵文,朱广宇. 人工神经网络法在烃源岩测井评价中的应用[j]. 地球物理学进展, 2002, 17(1): 137~140. [22] 胡佳庆,陆芸兰,蔡洪正. 用测井资料自动评价烃源岩[j]. 上海地质, 2002, 83(3): 32~35.

[23] 王栋,姜在兴,贾孟强,等. 利用核磁共振测井资料进行烃

源岩评价[j]. 西安石油大学学报, 2004 , 19 (2): 29~32. [24] 陆巧焕,张晋言,李绍霞. 测井资料在生油岩评价中应用[j]. 测井技术,2006, 30(1): 80~83.

[25] 钱克兵,彭宇,王圣柱,等. 东营凹陷孔二段烃源岩特征及测井评价[j]. 断块油气田,2006, 13 (5): 15~17.

[26] 张寒,朱光有. 利用地震和测井信息预测和评价烃源岩——以渤海湾盆地富油凹陷为例[j]. 石油勘探与开发,2007, 34(1):55~59.

[27] 于翔涛. 测井技术在烃源岩评价中的应用[j]. 长江大学学

报(自然科学版),2009, 6(2):198~201.

[28] 王鹂,唐成磊,王飞. δlgr技术在烃源岩评价中的应用[j]. 断块油气田,2009, 16 (2) :52~54.

[29] 刘景东,孙波,田超,等.“反推δlogr”法及其在生油岩

有机质丰度评价中的应用[j]. 岩性油气藏, 2010, 12(4) :85~88.

[30]卢双舫,马延伶,曹瑞成,等. 优质烃源岩评价标准及其应用:以海拉尔盆地乌尔逊凹陷为例[j]. 地质科学——中国地质大

学学报,2012,37(3): 25~29.

[31] 朱振宇,刘洪, 李幼铭. δlog r技术在烃源岩识别中的应

用与分析[j]. 地球物理学进展, 2003, 18 (4): 647~649. [32] 王方雄,苏坚. 电阻率和孔隙度测井曲线重叠法的新应用

[j]. 江汉石油学院学报,2001, 23 (增刊): 69~70.

[33] 刘超. 测井资料评价烃源岩方法改进及作用[m]. 东北石油大学硕士论文,2011.

[34] 石强,李剑,李国平,等. 利用测井资料评价生油岩指标的探讨[j]. 天然气工业,2004,24(9):30~32.

烃源岩测井响应特征及识别评价方法

天然气勘探 收稿日期:2012-08-08;修回日期:2012-09- 29.基金项目:国家“973”项目(编号:2009CB219406);国家科技重大专项(编号:2008ZX05025- 004)联合资助.作者简介:杨涛涛(1981-),男,陕西西安人,工程师,硕士,主要从事海域油气勘探与综合评价工作.E-mail:yang tt_hz@petrochina.com.cn.烃源岩测井响应特征及识别评价方法 杨涛涛1,2,范国章1,2,吕福亮1,2,王 彬1,2,吴敬武1,2,鲁银涛1, 2 (1.中国石油天然气股份有限公司杭州地质研究院,浙江杭州310023; 2.中国石油集团杭州地质研究所,浙江杭州310023 )摘要:烃源岩识别评价是油气地质研究的基础工作之一,是石油地质学研究的热点。常规的岩心样品分析虽能提供准确的烃源岩地球化学指标,但受样品来源和分析化验经费的限制,单口井往往很难获得连续的地球化学分析数据,难以满足精细勘探的需要。测井信息纵向分辨率高、资料连续准确,且烃源岩在测井曲线上具有明显的响应特征。通过对前人烃源岩测井识别评价研究成果的充分调研,详细地阐述了烃源岩在自然伽马、电阻率、声波时差、密度和中子等测井曲线上的响应特征,基于此开展烃源岩测井识别评价。为不断提高烃源岩测井评价精度,国内外学者研究了测井信息与烃源岩定量化学指标的对应关系。系统介绍了多种基于测井资料的烃源岩定量评价方法,并建立了相应的计算模型。通过该模型可直接获取烃源岩的有机质丰度等参数,在实际应用中取得了不错的效果。关键词:烃源岩;测井响应特征;定性识别;ΔLg R法;定量评价中图分类号:TE122.1+ 15 文献标志码:A 文章编号:1672-1926(2013)02-0414- 09引用格式:Yang Taotao,Fan Guozhang,LüFuliang,et al.The logging features and identificationmethods of source rock[J].Natural Gas Geoscience,2013,24(2):414- 422.[杨涛涛,范国章,吕福亮,等.烃源岩测井响应特征及识别评价方法[J].天然气地球科学,2013,24(2):414- 422.]0 引言 烃源岩控制着油气分布,对其识别评价是油气地质研究的基础工作之一,如何快速准确地识别烃源岩一直是研究的热点。岩心样品分析虽能提供准确的烃源岩地球化学指标,但受样品来源和分析化验经费的限制,单井往往难以获得连续的分析数据,常以有限分析数据的平均值来代表烃源岩品质,并以此评估 某层段烃源岩的生烃潜力[ 1 ]。由于有机质具有较强的非均质性[2- 3],实验分析方法不但研究周期长,分析 费用昂贵, 而且评价结果受分析样品代表性影响较大,掩盖了局部高(或低)丰度对烃源岩评价的影响,特别是当缺少取心样品或岩屑受到污染时,评价结果将受到严重影响,难以满足油气勘探的需要。 测井资料具有纵向分辨率高、资料连续准确等特点,可反映地层岩性及流体等特征,国内外学者一直致力于探讨烃源岩与测井资料之间的关系。前人 利用对烃源岩敏感的自然伽马、电阻率、声波时差和密度等测井曲线,提出多种烃源岩定性识别方 法[3- 22];依据测井信息与烃源岩定量化学指标的对 应关系,建立了相应的计算模型,可直接获取烃源岩 各项参数,在实际应用中取得了较好的效果[ 23- 32]。经分析资料刻度后,烃源岩测井识别评价获得纵向连续数据,可弥补分析资料不足而造成烃源岩识别评价的困难, 也具有经济、快捷的特点。本文在对烃源岩测井识别评价充分调研的基础上,详细阐述了烃源岩测井响应特征,系统介绍了烃源岩测井定性识别及定量评价方法,以期对深化测井资料在烃源岩研究应用方面有所裨益。 1 国内外研究现状 1.1 国外概况 国外学者[3- 9]从20世纪40年代起探索烃源岩 测井识别评价。早在1945年Beers等就开始使用 第24卷第2期2013年4月天然气地球科学 NATURAL GAS GEOSCIENCEVol.24No.2 Ap r. 2013

测井地质学思考题

测井地质学思考题 1、地层倾角测井判断古水流方向 倾角测井能够反映沉积构造信息、准确计算层理倾向、倾角。因此,对于地下地质研究,利用倾角资料分析古水流是最重要的方法。有两种方式确定古水流: (1)利用倾角测井微细处理成果图,统计目的段内所有纹层倾向,取其主要方向代表古水流。这种方法使用大范围内古水流砂体内部前积结构,取其主要方向代表古水流(2)统计目的层段内所有蓝模式矢量的方向,取其主要方向代表古水流。这种方法适用于大范围内古水流系统研究。 将区内由地层倾角测井资料(经过沉积学特殊处理)判断的古水流方向(主次)标注在平面位置上。选井应全区均匀分布,可以控制各个相带的古水流系统方向。每口井在选取方向时,一定要是目的层段砂体的精细处理矢量图的蓝模式方向,或者用沉积施密特图的主峰方向控制每口井的局部古水流方向。 3、测井构造分析:地层产状获取方法。 现代地层倾角测井和井壁成像测井技术能准确确定地层产状和构造要素(包括褶皱、断层和不整合面等)。 岩层最初形成时,大都是水平的或近于水平的。如果发生构造运动,如褶皱运动,水平成层的岩层形成褶曲形态,各岩层的褶曲是按同一轴面套叠的,以后再沉积,新的沉积岩层在新的褶曲运动下又形成了新的褶曲,又按新的轴面套叠。 (1)通过倾角测井获取地层产状。 倾角测井每个矢量代表该深度点的地层在井眼面积范围内测到的产状。井内不同深度点的矢量,从套叠关系分析,相当于构造不同部位的矢量。将各部位的矢量通过套叠关系都集中到一个岩层构造面上,就能将岩层的构造形态恢复出来。 地层倾角测井研究构造与沉积时,在矢量图上可以把地层倾角的矢量与深度的关系大致分为四类:红色、蓝色、绿色和白色模式。 在组合矢量模式中,对于每一种构造的不同形态都唯一地对应了一种组合矢量模式,但是反过来则不成立,即同一个矢量模式具有多解性,但是我们可以结合其它资料排除那些不正确的解。在井中经常钻遇多个构造,它们的组合模式将是各单个构造组合矢量模式的再组合。 (2)通过井壁成像技术获取地层产状。 井壁成像测井资料主要是井壁的数字成像图,用色彩及辉度来表现构造现象。由于裂缝和层面处岩性的突变,造成了岩石的电导性或岩石的密度有突然的变化,在成像测井的图像上就会表现为一条明显的暗色条带,追踪这个条带的变化趋势,可以计算出断层的产状及褶皱的要素。 4、裂缝的测井响应分析及其主要特征。 P179-186 5、裂缝型储层中裂缝的定量产状及储层参数识别方法。 P186-192 6、如何通过测井资料分析现今地应力场的方向。 P198 7、烃源岩的测井响应及其识别方法。

烃源岩报告

有效烃源岩的识别与控制因素 摘要:有效烃源岩的研究是油气勘探中首先必须要解决的首要问题,然而目前烃源岩识别及其生烃潜力估算还存在一些问题,为了正确对盆地或凹陷的有效烃源岩进行识别,本文从有效烃源岩的定义出发,介绍了有效烃源岩的识别方法,阐述了它的发育环境和保存条件,探讨了有效烃源岩在油气藏形成和保存方面的重要意义,阐述了研究过程中应注意的问题。 关键词:有效烃源岩;识别标志;控制因素 1、有效烃源岩的定义 烃源岩是油气形成的物质基础,也是石油勘探过程中首先必须研究的问题。随着研究的深入,石油地质学家在烃源岩基础上进一步识别出了有效烃源岩。有效烃源岩是指既有油气生成又有油气排除的岩石,它在某种程度上控制着盆地内油气藏的分布[1]。必须强调的是,它们生成和排出的烃类应足以形成商业性油气藏[2],否则有效烃源岩的定义将难以在生产实践中应用。可见,有效烃源岩的评价标准必须与勘探实践相结合。 2、有效烃源岩的识别 如何判断一个地区的烃源岩是否为有效烃源岩,或者如何让从大范围的烃源岩中识别出有效烃源岩,通过多年的研究地质学家总结了一些具体方法,概括起来,主要是地质手段和数值模拟,具体研究时是这两种手段的结合。有效烃源岩的识别主要从以下几个方面入手[3]:2.1、烃源岩发育的规模 烃源岩发育规模包括两个方面,一是平面上的烃源岩展布情况,一是剖面上烃源岩厚度。这两方面受当时沉积期水体发育的控制。中国东部中新生代盆地包括断陷和拗陷两类。断陷以渤海湾盆地为主,拗陷以松辽盆地为主。渤海湾盆地在断陷时期,湖盆大多为不对称箕状。陡坡一侧水体深,沉积厚度达,是有效烃源岩发育部位;缓坡区域水体相对浅,烃源岩一般发育规模小。松辽盆地是典型大型拗陷盆地,湖盆面积大,沉降中心和沉积中心一致。在沉积期内烃源岩大规模发育,面积广,厚度大,构成了大庆油田巨大的物质基础。总的来说,水体的发育影响着烃源岩的发育规模。 2.2烃源岩的排烃能力 在确定了有效烃源岩的规模后,还必须考虑它的排烃能力。一个地区的烃源岩规模大,

烃源岩综合评价

作业一烃源岩综合评价 1、根据所给某钻井地层剖面(图1),确定烃源岩的层位(段); 自然伽马测井原理:曲线是测量地层放射性的测井曲线,地层中的泥质含量越高曲线的值越高,岩石的颗粒越细,说明沉积时水体的环境就越安静,水体动荡幅度小,有机质就越容易保存;而在砂岩中,由于水体动荡水中含氧量高,有机质会被氧化,保存下来的就少。 据钻井剖面图在一、三、五段中自然伽马相对呈高值,视电阻率呈低值,因此烃源岩层主要位于一、三、五段,其它层段含有很少的烃源岩,可以忽略不计。 2、统计各层段烃源岩的厚度; 第一层的烃源岩厚度约为12m,第三层的烃源岩厚度约为30m,第五段烃源岩厚度约为30m。 3、根据所给地球化学分析数据(表1),确定烃源岩的有机质丰度、类型和成熟度;

C:有机质成熟度:通过镜质体反射率Ro求得

4、根据已有资料,计算各层段烃源岩的生烃强度; 由于题中未给出烃源岩的面积和厚度因此只能计算单位体积的烃源岩生烃

5、烃源岩综合评价 由以上可知有机质为Ⅲ型干酪根,为腐殖型有机质。Ⅲ型干酪根在生成烃类时主要是产气。干酪根成熟度大都在成熟阶段,只有一个在高成熟阶段,说明此烃源岩已经生成过原油,但还有一定的生油潜力。单位体积生烃强度以须一段、须三段、须五段较大,而须二段、须四段、须六段的单位体积生烃强度较前面三段小,说明在生油潜力方面前面三段较好,后面两段的生烃潜力较前面三段更差一些。据岩性柱状图可知一、三、五段的烃源岩的厚度较大,而二、四、六段的厚度较小,说明一、三、五段的总的有机质含量更高,最后生成的烃类也更多。 二、四、六段烃源岩的生烃量要比一、三、五段少得多,但还是有一定的烃类生成。 总体来说须一段、须三段、须五段是较好的烃源岩,须二段、须四段、须六段较差一些。

烃源岩测井评价研究

烃源岩测井评价研究概述 摘要:目前围绕着烃源岩的测井评价开展了许多研究工作,本文从烃源岩测井评价的进展和评价方法两方面入手,系统的介绍了烃源岩评价的国内外研究现状和国内常用的评价方法,并指出了目前烃源岩评价中存在的问题,对今后研究工作的开展提出了建议。关键词:烃源岩;测井资料;研究进展;评价方法 引言 烃源岩是油气藏和输油气系统研究的基础,国内外对于烃源岩的研究一直很重视。在对烃源岩的研究过程中也取得也一定的成果。但是,由于构造和沉积环境的影响,烃源岩具有很强的非均质性,给资源评价工作带来一定的困难,许多学者对烃源岩的评价做了进一步的研究。本文对目前有关于烃源岩的测井评价进行总结分析,希望对今后的烃源岩评价工作有所帮助。 1 烃源岩的评价进展 1.1 国外进展 利用测井资料评价烃源岩的主要方面是确定烃源岩中的有机碳含量(toc)。早期关于烃源岩评价的研究主要集中在国外,1945年beer就尝试应用自然伽马曲线识别和定量分析有机质丰度[1]。murry等(1968)作区块分析时得出异常大的地层电阻率是由于生油岩中已饱和了不导电的烃类[2]。swamson将自然伽马异常归因于与有机质相关的铀,他指出铀与有机质存在一定关系[1]。在七十

年代末期由fertl(1979)、leventhal(1981)等人相继找出放射性铀与有机质含量间的经验公式,这期间的研究主要以定性分析为主[1]。herron(1986)将c/o能谱测井信息用于求解烃源岩的有机质丰度,但该方法误差较大并未真正应用到实际评价中[3]。schmoker在八十年代做了许多关于烃源岩的研究,他指出高的自然伽马值与烃源岩间的相关性、用密度测井信息来估算烃源岩有机碳含量、埋藏成岩作用引起的孔隙度减小过程就是一个热成熟过程、碳酸盐岩和砂岩的孔隙度之间呈幂函数等观点[4-6]。meyer(1984)等利用自然伽马、密度、声波和电阻率测井结合来评价烃源岩,总结出了测井响应参数与有机碳含量的岩石判别函数[7]。上面这些国外学者虽然提出了一些计算有机碳含量的经验公式,但是并没有建立定量的数学模型。直到1990年,passey研究出了对碳酸盐岩烃源岩和碎屑岩烃源岩都适用的方法,能够计算出不同成熟度条件下的有机碳含量值[8]。目前该方法依然被很多学者作为研究烃源岩的基础模型。lang等(1994)研究认为在泥页岩正常压实带,实测镜质体、反射率与声波时差间存在很好的半对数关系[9]。但是,由于反射率与声波时差的关系受许多地质因素影响,阻碍其普遍应用。mallick(1995)将实测的有机碳含量与地层密度用最小二乘拟合发现它们呈反比关系[10]。 1.2 国内进展 鉴于烃源岩研究的重要性,国内学者也进行了一系列研究工作。

烃源岩综合评价报告

CHINA UNIVERSITY OF PETROLEUM 烃源岩综合评价报告 班级 姓名 学号 指导教师 2015年10月25日

前言 通过对某坳陷背斜及西部斜坡进行钻探取样,得到的各探井S3顶面深度、泥岩厚度及各项地化指标数据(见表1-1)分析,所得各项结果如下: 1、根据各探井数据及取样地化特征得到该坳陷S3暗色泥岩厚度、有机碳含量及镜质体反射率得到等值线分布平面图,再综合分析得到烃源岩综合评价图。 2、根据总烃/有机碳、“A”/有机碳、饱和烃、镜质体反射率、OEP及地温与深度关系,得到该坳陷S3烃源岩演化剖面图,据此将烃源岩演化分为未成熟阶段、成熟阶段和高成熟阶段。 由各项结果可知,该地区有利烃源岩分布多集中在背斜的翼部且深度较深的坳陷部位,分布面积较广,有很好的油气勘探前景。 一、烃源岩的演化特征 (一)烃源岩生油门限 根据绘图烃源岩演化剖面图可以看出,总烃/有机碳、“A”/有机碳和饱和烃随深度有相同的变化趋势(见附图1),在深度1400—1900m有较大值,氯仿沥青“A”在1200m处开始大量增加,代表此时的烃源岩开始大量生油。三者都在1600m处达到最大值。 据各井位镜质体反射率和地温数据拟合镜质体反射率—深度曲线和地温—深度曲线,从曲线上得出Ro=0.5时生油门限为54oC,对应的深度为1200m,意味着埋深达到1200m时该烃源岩达到成熟开始生烃。 而从OEP曲线也可以看出,生油门限以上,其随深度加深而骤降,生油门限以下下降较缓慢。在生油门限处OEP约为1.7,当烃源岩达到成熟阶段其值几乎都集中在1.2以下且幅度变化范围小,即奇数碳占优势,代表岩石中有机质向石油转化程度高,这也验证了前面所判断,此时烃源岩已经达到成熟。 (二)烃源岩演化阶段 参照镜质体反射率曲线根据有机质成熟度将烃源岩演化分为三个阶段: 未成熟阶段:深度<1200m,温度<54oC,Ro<0.5; 成熟阶段:深度1200m—2140m,温度54oC--85oC,0.52140m,温度>85 oC,Ro>1.2。

测井资料评价烃源岩方法及其进展 t

[收稿日期]2009205220  [作者简介]袁东山(19752),男,1998年江汉石油学院毕业,博士,现主要从事石油地质和油气地球化学方面的研究工作。 测井资料评价烃源岩方法及其进展 袁东山 南京大学地球科学系,江苏南京210093 中国石化石油勘探开发研究院无锡石油地质研究所,江苏无锡214151 王国斌 (新疆油田分公司勘探公司,新疆克拉玛依834000) 汤泽宁 (新疆油田分公司风城油田作业区,新疆克拉玛依834000) 李 刚 (新疆油田分公司井下作业公司,新疆克拉玛依834000) [摘要]在经典烃源岩地球化学评价中,一般都是对所取烃源岩样品进行分析测试,通过得到的各种实验 数据判断烃源岩性质,有效的指导了油气勘探与评价。但是烃源岩具有的宏观和微观非均质性使得分析 样品一般只具有特殊性,解决该问题的理想方法是连续的取心及无间隔的样品分析,这从实际操作和研 究经费上来说都是不现实的。随着测井技术提高,利用测井资料分析烃源岩成为可能,并能克服取样有 限的缺点,使得烃源岩在纵向上能够得到连续性的分析,因此利用测井资料的解释成果并结合经典地球 化学分析测试数据,能够更有效的预测和评价烃源岩的性质。 [关键词]测井;烃源岩;地球化学;评价 [中图分类号]TE1221113[文献标识码]A [文章编号]100029752(2009)0420192203 石油地球化学因其在研究烃源岩中有机质的性质以及油气生成、运移和聚集等方面具有极其重要的作用,一直是为油气勘探提供有利地区和资源评价的重要技术手段。在常规烃源岩性质的研究中,一般通过对有针对性采集的烃源岩样品(岩心、岩屑和露头样品)的有机地球化学分析,采用一系列系统的参数来评价有机质的丰度、类型以及成熟度,为油气勘探部署和资源评价提供了科学依据。但在研究过程中,烃源岩地球化学研究的缺点也逐渐显现:①随着技术的发展以及科学研究的需要,烃源岩地球化学分析项目和样品数逐渐增多,但钻井取心井段和岩心(泥岩)样品有限而且分析费用昂贵、分析周期长;②岩屑样品存在不确定性和不稳定性,分析所得数据可能存在较大误差;③某些研究区探井取心样品因研究和保存等方面的原因,样品基本不存在或已经无法准确使用;④某些研究区勘探程度较低,没有很好的井下岩心样品供于研究;⑤露头样品因长期曝露于地表,已经不能准确反映烃源岩的原始面貌;⑥烃源岩因多种因素使之存在明显的宏观和微观上的非均质性[1]。测井技术的发展使烃源岩纵向上的连续性、准确的研究得到可能,因此常规地球化学研究与测井技术的结合,能有效的解决以上问题,从而更科学的评价烃源岩。 1 测井评价烃源岩的理论依据 烃源岩的测井研究工作最早开始于20世纪40年代,早期主要涉及于烃源岩层段的识别[2]以及有机质丰度的预测,目前利用测井资料研究烃源岩的有机质丰度[3~17]、类型[18]和成熟度[15,18~23]的研究均可见,但是烃源岩岩性的复杂性(泥页岩烃源岩、碳酸盐岩烃源岩和煤系烃源岩)以及烃源岩的成熟程度都对测井资料评价烃源岩提出挑战,但也取得了重大进展。 测井资料用来评价烃源岩的理论依据是烃源岩含有大量的有机物质,使其具有不同于其他岩石特征的地球物理属性。理论假设烃源岩由岩石骨架、固体有机质和充填孔隙的流体3部分组成,而非烃源岩?291?石油天然气学报(江汉石油学院学报)  2009年8月 第31卷 第4期Journal of Oil and G as T echnology (J 1J PI ) Aug 12009 Vol 131 No 14

烃源岩测井识别与评价方法研究

文章编号:100020747(2002)0420050203 烃源岩测井识别与评价方法研究 王贵文1,朱振宇2,朱广宇3 (1.石油大学(北京);2.中国科学院地质与地球物理研究所;3.东南大学) 摘要:烃源岩测井评价通过纵向连续的高分辨率测井信息估算地层的有机碳含量,弥补了因取心不足而造成的在区域范围内识别与评价烃源岩的困难,为资源量估算及油气勘探决策提供地质依据。研究了用Δlg R 、多元统计分析和人工神经网络方法根据测井信息识别与评价烃源岩的方法,用这些方法对塔里木盆地台盆区21口井寒武2奥陶系进行烃源岩层段识别与评价,将测井资料处理成果与岩心的有机地化、地质录井资料相互检验,证实所用方法基本满足烃源岩评价的需要。图6参7(朱振宇摘) 关键词:烃源岩;有机碳含量;多元统计;人工神经网络;测井信息;识别中图分类号:P631.811 文献标识码:B 有机碳含量(TOC )是反映岩石有机质丰度最主要的指标。对岩心、岩屑样品进行有机地球化学分析,可获得有机质丰度和转化率等系列参数。然而,岩心样品有限,分析费用昂贵且费时,特别是岩屑分析结果可能不准确。利用测井曲线估算地层有机碳含量,既可以克服以上缺点,同时容易得到区域范围的地层有机碳含量数据,为资源量估算及油气勘探决策提供地质依据。笔者在充分考察前人有关烃源岩测井分析方法的基础上,分析与对比Δlg R 法、多元统计分析法和人工神经网络法[127]的特点,并将这些方法运用于塔里木盆地台盆区寒武2奥陶系烃源岩的测井分析与评价中,取得了较好的效果。 1烃源岩的测井响应 富含有机碳的烃源岩具有密度低和吸附性强等特征。假设富含有机碳的烃源岩由岩石骨架、固体有机质和孔隙流体组成,非烃源岩仅由岩石骨架和孔隙流体组成(见图1a ),未成熟烃源岩中的孔隙空间仅被地层水充填(见图1b ),而成熟烃源岩的部分有机质转化为液态烃进入孔隙,其孔隙空间被地层水和液态烃共同充填(见图1c )。测井曲线对岩层有机碳含量和充填孔隙的流体物理性质差异的响应,是利用测井曲线识别和评价烃源岩的基础 。 图1 岩石组成示意图 正常情况下,有机碳含量越高的岩层在测井曲线上的异常越大,测定异常值就能反算出有机碳含量。测井曲线对烃源岩的响应主要有:①在自然伽马曲线和能谱测井曲线上表现为高异常,原因是烃源岩层一般富含放射性元素,如吸咐特殊元素U 。②烃源岩层密度低于其它岩层,在密度曲线上表现为低密度异常,在声波时差曲线上表现为高时差异常。③成熟烃源岩层在电阻率曲线上表现为高异常,原因是其孔隙流体中有液态烃,不易导电,利用这一响应可识别烃源岩成熟与否。 2识别烃源岩的Δlg R 技术 将声波时差曲线(专门刻度孔隙度的测井曲线)叠合在电阻率曲线上(最好是探测仪器所测曲线),两条曲线的幅度差(以每个深度增量来确定)即为Δlg R 。幅度差用相对刻度表示,即每两个对数电阻率循环为 -328μs/m (100μs/δt ),相对于1个电阻率单位的比率为-164μs/m (50μs/δt )。以细粒的非烃源岩为基线,基 线定义在两条曲线“轨迹”一致或在一个有意义的深度段正好重叠处。 Δlg R 与TOC 呈线性关系,并且是成熟度的函数。如果成熟度可以确定,可以将Δlg R 转换为TOC 。Passey 等(1990)经过分析后,提出了相应的经验公式: TOC =Δlg R ×10 a 其中a =2.297-0.1688LOM LOM 是热变指数,反映有机质成熟度,可以根据大量样品分析(如镜质体反射率分析)得到,或从埋藏史和热史评价中得到。 5 石 油 勘 探 与 开 发 2002年8月 PETRO LE UM EXP LORATI ON AND DE VE LOP ME NT V ol.29 N o.4

相关文档
相关文档 最新文档