文档库 最新最全的文档下载
当前位置:文档库 › 基于改进差分进化算法的烧结矿配料优化

基于改进差分进化算法的烧结矿配料优化

基于改进差分进化算法的烧结矿配料优化
基于改进差分进化算法的烧结矿配料优化

基于改进差分进化算法的烧结矿配料优化

李凯斌, 卢建刚, 吴燕玲, 孙优贤

浙江大学工业控制技术国家重点实验室,杭州(310027)

E-mail :kbli@https://www.wendangku.net/doc/6112581662.html,

摘 要:本文针对差分进化算法(differential evolution algorithm)存在的早熟问题和停滞现象作了改进并把改进的算法应用于烧结矿配料优化,用matlab 编程,仿真结果表明符合实际生产工艺要求,证明了改进的差分进化算法对烧结矿配料优化的有效性,从而指出了改进的差分进化算法在配料优化中的应用价值。

关键词:差分进化,停滞,烧结矿,配料优化 中图分类号:TF541

1.前言

钢铁企业中炼铁系统能耗占整个钢铁生产能耗的60% ~70% ,生产成本也占54% ~58%,所占比重都较大[1]。而烧结又是生产高炉炼铁精料的关键工序,烧结生产中,可以将不同原料,熔剂进行精确配料,以调整烧结矿化学成分,满足高炉对炉料成分的要求。烧结矿的优化配料是一项极其重要的工作,配料的目的在于:根据不同种类的铁矿石的化学成分,将原料矿进行合理的搭配,使混匀矿的化学成分符合烧结生产的要求。烧结矿配料优化从上个世纪80年代就开始研究,最初运用的是线性规划方法,优化对象也仅限于烧结矿的化学成分[2]。近几十年来,进化算法发展十分迅速,其应用也越来越广泛。其中由Rainer Storn 和Kenneth Price 提出的差分进化算法[3] (differential evolution ,简称DE)作为一种较新的全局优化算法,以其收敛性好,模型简单,容易实现,控制参数比较少得到广泛应用。在日本召开的第一届国际禁化优化计算竞赛(ICEO)中[6],DE 表现突出,已经成为进化算法(EA)的一个重要分支。近几年来,DE 在约束优化计算,模糊控制器优化设计,神经网络优化,滤波器设计等方面得到了广泛应用。本文运用改进的差分进化算法对烧结矿配料进行优化。

2.差分进化算法

DE 作为一种较新的全局搜索算法与遗传算法,进化规划,进化策略不同,它是由父代个体差分矢量构成变异算子,然后按一定交叉概率,父代个体与变异个体进行交叉,生成试验体,最后在父代与试验体之间根据适应度选择个体。

2.1 差分进化原理

(1)选定种群规模N ,加权因子F ∈[0,2]最大进化代数MAX G ,杂交率CR ∈[0,1] (2)生成初始种群0W :{w 0

i (i=1,2,…N)},令进化代数G=0 (3)对G

i w 执行(4)~(6)步,生成G+1代

(4)变异:1G i w +?=G i w +F(G j w -G k

w )其中1≤j ,k ≤N ,且i ,j ,k 互异 (5)杂交:1G ij w +=1()()

G

ij G ij w random CR w random CR +?>??≤??? 其中G

ij w 为第G 代第i 个个体的第j 个基因,CR 为

杂交率,random ∈[0,1]

(6)选择:

1G i

w

+= 111(()())

(()())

G G G i i i G G G

i i i w A w A w w A w A w +++?≤??>?? ()G i A w 为第G 代第 i 个个体的适应值

(7)G=G+1,若G 超过了MAX G 或者精度达到要求则停止,否则转到第(3)步。

2.2 差分进化算法的早熟问题

DE 是根据父代个体间的差分矢量进行变异,交叉和选择,与遗传算法很类似所以也存在着易陷于局部最优过早收敛的现象[7

,8]

。本文采用自适应变异算子,能根据算法的搜索进

展情况,自适应地确定变异率,使算法在初期有较大的变异率保持个体的多样性,避免早熟;在后期随着进化代数的增加逐步降低变异率,保留优良信息,避免最优解遭到破坏,增加了搜索到全局最优解的概率。算法设计如下:

F=F0*(1)2

MAX

G

G ?

其中F0是变异参数, MAX G 是最大进化代数,G 是当前进化代数。自适应变异算子在算法开始变异率为F=2F0,具有较大的变异率,从而保持个体的多样性,随着算法进展变异率逐步降低,到了算法后期变异率接近1,从而避免最优解遭到破坏。

2.3 差分进化算法的停滞现象

差分进化算法存在停滞现象[4]。看一个简单的例子:有两个参数x1,x2的优化问题,种群大小为4,当前种群有4个个体A ,B ,C ,D 经过变异式(4)下一代最多可能得到24个试验解,其中只有6个可能代替A(同样代替B ,C ,D 的也是6个),如果这6个试验解的适应值都低于A ,那根据选择式(6),A 将会进入下一代,若同样的情形也发生在B ,C ,D ,那下一代种群不会有新个体产生,则算法陷于停滞。这种停滞现象不会收敛但种群仍然是多样性的,因此不同于早熟现象。

DE 的停滞现象和产生的试验解个数n 有关,若n 越大产生停滞的危险就越小,对于常规差分进化算法来说 :

32323232(1)(32)(0)

(32)2()D N N N CR n N N N D N CR N N N N otherwise ???+?=?

=??+???=????+????

其中D 为变量个数,种群大小N ,交叉率CR 对n 都有影响,种群越大,n 个数越多,停滞越不会发生,CR 不宜取1,因为这样会大大减少n 个数。此外变异率F 的取值对n 也有很大影响。如果F=1那么F(B-C)+D=F(D-C)+B 因此也会减少n 的个数。综上所述,差分进化算法的停滞现象与种群大小,F 和CR 的取值有关,小种群容易产生停滞,F ,CR 的取值不当也可能产生停滞。

本文针对差分进化算法的停滞现象提出算法终结的另一个条件:如果连续N 代产生新个体的数量比较少则算法结束,重新产生初始个体,并对N ,F ,CR 其中的作调整。在计算过程中可以根据具体情况来设定N 的值,本文在实验中的N 值等于8。产生初始个体的方法为:首先计算出当前种群个体的上下限h 和l ,在这个范围内随机生成新个体,这样可以有效的缩小搜索范围,个体数量大约占种群大小的80%,然后在当前停滞的种群中选择最优个体a ,重新在最优个体周围按正态分布生成新个体,如下式:

i a =i a +N(0,σ) i ∈1,2,...M

()

2j

h l G

σ?=

× j ∈(0,1) 其中N(0,σ)为高斯分布,

M 为基因个数,G 为当前停滞时的进化代数,j 是在0到1的数,本文中j=0.5。按正态分布在最优个体周围产生的个体取20%,用两种方法产生的全部个体来代替当前种群。这样产生个体在可行解内不但具有多样性而且还有一部分个体分布在当前的最优个体附近,利于算法收敛并可以有效解决停滞现象。除了重新产生新个体外,还可以对F ,CR 作稍微的调整,要根据不同的具体情况而定。本文采用这种改进的差分进化算法对烧结矿配料进行优化,取得了很好的效果。

3. 烧结矿配料优化

3.1 数学模型

对于烧结配料来说,目标函数就是所配加的所有原料的成本最低[9]。即: F=1

min

n

i i

i C X

=∑ 其中i C 为各原料的单价(元/t), i X 为各原料的用量(万t)。

3.2 约束条件

约束条件主要是烧结矿化学成分约束,如全铁(TFe )、二氧化硅(2SiO )、氧化(CaO )、三氧化二铝(23Al O )、氧化镁(MgO )、硫(S )、碱度控制(2/CaO SiO )、烧损等。 (1)满足各种化学成分的要求: min 1

n

i i

MAX i X P X

X =≤≤∑ i P 为各原料中不同化学成分的含

(2)烧结矿碱度约束: 2

CaO

b d SiO ≤

≤ b 、d 分别为烧结矿碱度的波动范围 (3)满足各种原料用量非负约束和所有原料总量约束:i X 0≥, 1

n

i i

i A X

Q =≥∑,其中i A 是

各种精铁矿及粉矿的使用量;Q 是烧结矿的总产量(万t)。

4.实例仿真

已知各种精铁矿和粉矿的化学成分及价格(如表1所示) [5],现根据条件求出在以下约束条件下的最优配料比。 烧结矿成分为:

TFe =52% 一53.5%;2/CaO SiO = 1.65 ±0.15;CaO = 12% 一13% ; 2SiO =7% 一

8% ;23Al O = 1.5% 一3% ;S < 0.15% ;MgO =3% 一4%

参与烧结矿配比的各种矿的要求是:澳大利亚粉150-200kg /t ,朝鲜精矿90-200kg /t ,海南粉矿≤160kg /t ,轧钢皮≥20kg /t ,弱磁精矿300-400kg /t ,消石灰≤50kg /t ,煤粉≤100kg /t ,熔剂粉200-300kg /t ,此次试验烧结总量Q =1000k 。

表1 各种精铁矿及粉矿的化学成分及价格

Table 1 The chemical composition and price of all used mines

化学成分/%

品种

TFe

FeO

2SiO 23

Al O CaO MgO

S

烧损 单价

元/t 澳大利亚粉1()X 61.97 1.22 5.08 2.80 0.47 0.23 0.042 4.13 102 弱磁精矿 2()X 66.03 27.48 3.64 1.58 0.92 1.46 0.379 2.18 55.1 朝鲜精矿 3()X 60.48 24.48 13.65 1.54

1.12 0.38 0.045 1.11 85

海南粉矿 4()X 53.60 2.13 15.61 2.35 1.17 0.44 0.258 2.11 81 轧钢皮 5()X 71.20 63.85 2.03

1.39

0.28 0.54 0.03 0.97 55

熔剂粉 6()X 1.26 0.40 1.23 0.40 42.0810.38

- 43.70 13.25

消石灰 7()X 0.93 0.27 1.23 0.54 63.970.74 - 31.29 26

煤灰粉

8()X

-

- 8.20 4.49 0.95 0.23 0.59 -

50

由上述条件可得出如下数学模型:

minF=0.1021X +0.05512X +0.0853X +0.0814X +0.0555X +0.013256X +0.0267X + 0.058X 各种化学成分约束为:

0.52Q ≤0.61971X +0.66032X +0.60483X +0.5364X +0.7125X +0.01266X +0.00937X ≤ 0.535Q

0.07Q ≤0.05081X +0.03642X +0.13653X +0.15614X +0.02035X +0.01236X +0.01237X +0.0828X ≤0.08Q

0.015Q ≤0.0281X +0.01582X +0.01543X +0.02354X +0.01395X +0.0046X +0.00547X + 0.04498X ≤0.03Q

0.12Q ≤0..0471X +0.00922X +0.01123X +0.01174X +0.00285X +0.42086X +0.63977X +0.00958X ≤0.13Q

0.03Q ≤0.00231X +0.01462X +0.00383X +0.00444X +0.00545X +0.13086X +0.00747X +0.00238X ≤0.04Q

0.000421X +0.003792X +0.000453X +0.002584X +0.00035X +0.00598X ≤0.0015Q -0.08421X -0.05452X -0.22773X -0.26154X -0.03275X +0.39936X -0.60427X - 0.1348X ≤0 -0.0741X -0.04722X -0.20043X -0.23034X -0.02875X +0.40176X +0.60827X -0.11768X ≥0 烧损约束:

0.95871X +0.97822X +0.98893X +0.97894X +0.99035X +0.5636X +0.6877X +0.24368X ≥Q 各矿的用量约束: 1501X ≤≤200 3002X ≤≤400

903X ≤≤200

4X ≤160 5X ≥20

2006X ≤≤300

7X ≤50 8X ≤100

对上述问题,选择种群规模N=60,杂交参数CR=0.5,变异率F=0.8,进化代数MAX G =1000。用matlab 编程仿真得到各种矿用量及成本和烧结矿的化学成分含量分别如表2和表3所示:

表2 各种矿的需求量(kg /t)及成本(元/t)仿真结果 Table 2 The simulation result of needs and price of all used mines

澳大利亚粉

弱磁精矿

朝鲜精矿

海南粉轧钢皮熔剂矿消石灰 媒粉 成本

现使用值 212 456 87 152 17 257 41 92.4 76.45 广义乘子法 162.0011 421.4526 96.7762151.378818.8988230.871240.0563 82.76 69.5118免疫遗传算法 150.0001 428.3990 97.0010151.21220.0001228.073139.9899 80.00 68.5597传统的DE 155.5448 426.1130 97.8842152.322519.7745228.002139.3068 81.209 68.8857改进的DE

149.8897 424.3990 96.0034

151.175

18.8865

227.875

39.7982 80.541 68.3446

表3 烧结矿化学成分含量(%)

Table 3 The percentage of chemical composition of sinters

TFe

2SiO

CaO

23

Al O MgO S

2/CaO SiO

现使用值 52.40 7.87 12.90 2.40 3.17 0.065 1.65 广义乘子法 53.1691 7.1388 12.9372 2.7684 3.1806 0.0234 1.8312 免疫遗传算法 53.1780 7.002 12.9420 2.8771 3.1899 0.0199 1.850 传统的DE 53.1335 7.0084 12.8740 2.7564 3.1879 0.0195 1.863 改进的DE

53.4043 7.0562 12.7641

2.7977

3.1878 0.0179

1.858

传统的DE与改进的DE(MDE)仿真结果图如下:

图1. DE和改进得DE仿真结果比较

Fig.1 The compare of simulation between DE and modified DE

由上表和图中可以看出,针对配料系统优化问题,改进的差分进化算法在优化效果上要优于广义乘子法,免疫遗传算法和传统的差分进化算法并且在计算速度上要比传统的DE更快。

5. 结论

本文对差分进化算法的停滞现象进行了分析,并针对其早熟和停滞问题对差分进化算法进行了改进,将其应用于烧结矿配料优化,仿真结果表明了该算法在烧结矿配料优化的可行性。相比于其他的优化算法寻优能力更强,由于差分进化算法的容易实现,控制参数少,是一种比较实用的计算方法,因此也给烧结矿配料优化提供了一种较好优化的算法。

参考文献

[1]吕学伟,白晨光,邱贵宝,欧阳奇.基于遗传算法的烧结配料综合优化研究[J].钢铁2007,4:102-106.

[2]姚志超.考虑性能的烧结优化配料模型[J].包头钢铁学院学报,2003,21(3):263—267.

[3]WANG F S,CHIOU J P. Optimal control and optimal time 1ocation problems of differential algebraic systems by differential evolution[J].Industrial Engineering Chemistry Research 1997,36(1):5348—5357.

[4]Jouni Lampinen,Lvan Zelinka:On Stagnation of The Differential Evolution Algorithm[J],Proceedings of MENDEL,2000:1-9.

[5]李智,姚驻斌.免疫遗传算法在烧结矿配料优化中的应用[J].上海金属2004,11:182-188.

[6]Price K,Differential Evolution vs. the Function of the 2nd ICEO[A].IEEE Int Conf on Evolutionary Computation[C].Indianupolis,1997:153-157.

[7]Price K.Differential Evolution:A Fast and Simple Numerical Optimizer[A].1996 Biennial Conf of the North American Fuzzy Information Processing Society[C].New York,1996:524-527.

[8]王小平,曹立明.遗传算法一理论、应用与软件实现[M].西安交通大学出版社,2002.

[9]范晓慧,王海东.烧结过程数学模型与人工智能[M].中南大学出版社,2002.

Sintering Burdening Optimization Based on Improved Differential Evolution Algorithm

Li Kaibin,Lu Jiangang,Wu Yanling,Sun Youxian

State Key Laboratory of Industrial Control Technology, Zhejiang University,

Hangzhou (310027)

Abstract

Aiming to the prematurity and stagnation of Differential evolution algorithm, an improved differential evolution algorithm was proposed and applied to sintering burdening problem, the simulation shows that optimization result meets the requirements of reality in production and proves new algorithm is practical in sintering burdening optimization, so it indicates the potential application value of modified differential evolution algorithm in sintering burdening optimization.

Keywords:differential evolution, stagnation, sinter, burdening optimization

作者简介:

李凯斌(1983-),男,硕士研究生。

卢建刚(1968-),男,博士、副教授,从事复杂工程系统的建模、控制与优化的研究。

烧结配料的优化控制

烧结配料的优化控制 莱钢自动化部 杜春雷 [摘 要]莱钢银前配料PL C 系统针对常规控制存在的问题,通过实现料批控制功能和数字变频控制功能动态优化烧 结原料的配比,大大提高了烧结矿产品的质量。 [关键词]配料制度 料批控制 数字变频控制 优化控制 1.前言 随着工业自动化水平的提高和普及,计算机控制技术逐渐引入到烧结生产中,大多采用了DCS (集散控制系统)或PL C 控制系统,基本实现了烧结生产的自动化控制。但莱钢在烧结质量控制方面,特别是配料生产中缺乏优化控制手段,主要靠基础自动化及人工经验操作,输送到265m 2烧结机的各种原料难以得到理想化的配比,从而烧结矿的质量也难以保证。莱钢银前烧结PL C 系统通过实现料批控制功能和数字变频控制功能,从而实 现对烧结配料生产的优化控制。 2.莱钢银前烧结配料生产工艺概述 莱钢银前烧结配料室共有15个料仓,分别储存参与烧结的各种含铁原料、溶剂和燃料,由13台宽带给料机和两台双螺旋给料机(下生石灰)将原料打到13台配料称和两台螺旋称(称量生石灰),经过称量后按料头料尾对齐的原则配比后进入一混一皮带,再经过两台混合机加水搅拌均匀后,输送到265m 2烧结机。如下图1 。 配料是烧结生产的一个重要环节,它既影响着生产成本,又影响着高炉冶炼指标。 3.配料PL C 系统的硬件配置和组态软件3.1现场控制站选用QUAN TUM 系列PL C 完成基础设备级自动控制。3.2组态软件 采用基于M icrsoft W indow s 2000环境的CON CEPT 2.6编程软件,为整个控制系统提供一个统一的开发环境。监控软件 — 652—

差分进化算法及应用研究

湖南大学 硕士学位论文 差分进化算法及应用研究 姓名:吴亮红 申请学位级别:硕士 专业:控制理论与控制工程指导教师:王耀南 20070310

硕士学位论文 摘要 论文首先介绍了智能优化算法的产生对现代优化技术的重要影响,阐述了智能优化算法的研究和发展对现代优化技术和工程实践应用的必要性,归纳总结了智能优化算法的主要特点,简要介绍了智能优化算法的主要研究内容及应用领域。 对差分进化算法的原理进行了详细的介绍,给出了差分进化算法的伪代码。针对混合整数非线性规划问题的特点,在差分进化算法的变异操作中加入取整运算,提出了一种适合于求解各种混合整数非线性规划问题的改进差分进化算法。同时,采用时变交叉概率因子的方法以提高算法的全局搜索能力和收敛速率。用四个典型测试函数进行了实验研究,实验结果表明,改进的差分进化算法用于求解混合整数非线性规划问题时收敛速度快,精度高,鲁棒性强。 采用非固定多段映射罚函数法处理问题的约束条件,提出了一种用改进差分进化算法求解非线性约束优化问题的新方法。结合差分进化算法两种不同变异方式的特点,引入模拟退火策略,使算法在搜索的初始阶段有较强的全局搜索能力,而在后阶段有较强的局部搜索能力,以提高算法的全局收敛性和收敛速率。用几个典型Benchmarks函数进行了测试,实验结果表明,该方法全局搜索能力强,鲁棒性好,精度高,收敛速度快,是一种求解非线性约束优化问题的有效方法。 为保持所求得的多目标优化问题Pareto最优解的多样性,提出了一种精英保留和根据目标函数值进行排序的多目标优化差分进化算法。对排序策略中目标函数的选择方式进行了分析和比较,并提出了一种确定进化过程中求得的精英解是否进入Pareto最优解集的阈值确定方法。用多个经典测试函数进行了实验分析,并与NSGA-Ⅱ算法进行了比较。实验结果表明,本文方法收敛到问题的Pareto前沿效果良好,获得解的散布范围广,能有效保持所求得的Pareto最优解的多样性。 提出了一种新的基于群体适应度方差自适应二次变异的差分进化算法。该算法在运行过程中根据群体适应度方差的大小,增加一种新的变异算子对最优个体和部分其它个体同时进行变异操作,以提高种群多样性,增强差分进化算法跳出局部最优解的能力。对几种典型Benchmarks函数进行了测试,实验结果表明,该方法能有效避免早熟收敛,显著提高算法的全局搜索能力。提出了将该改进算法用来整定不完全微分PID控制器最优或近似最优参数的新方法。为克服频域中常用的积分性能指标如IAE,ISE和ITSE的不足,提出了一种新的时域性能指标对控制器性能进行测试和评价。用三个典型的控制系统对提出的ASMDE-PID控制器进行了测试。实验结果表明,该方法实现容易,收敛性能稳定,计算效率高。与ZN,GA和ASA方法相比,DE在提高系统单位阶跃响应性能方面效率更高,鲁棒性更强。 为了提高差分进化算法的全局搜索能力和收敛速率,提出了一种双群体伪并行差分

烧结机配料系统优化及运用

烧结机配料系统优化及运用 优化方法 ⑴提高雷达料位计准确度及可靠性。料位计是用来测量配料仓料位的仪表。由于受到安装角度、灰尘、仓壁挂料等影响,时常出现测量不准的情况,确保其测量准确性。有些需要在法兰处改变角度,加垫片等措施解决。同时避免在发射角内有造成假反射的装置。特别要避免在距离天线最近的1/3 锥形发射区内有障碍装置( 因为障碍装置越近,虚假反射信号越强) 。同时用一个折射板将过强的虚假反射信号折射走。这样可以减小假回波的能量密度,使传感器较容易地将虚假信号滤出。对雷达波信号进行滤波处理,雷达料位计下端的喇叭口四散发射的雷达波会碰到料灌或者在正常下料时探测到正在落下的料。由此需要调整角度使其尽可能的对准料面。 ⑴由于配料物料潮湿粘连、下料口不合适、传输皮带偶尔跑偏、水平度不佳等因素,会造成瞬间下料激变给下料量带来较大波动、PID 调节的死区在这里经常会显得起不了多大作用,通常的做法会使在理想状况下调节的很精确的PID 调节程序带来一些问题,会使下料量上下波动寻找在死区范围内的调节参数。为了避免下料激变带来的波动,又进行了处理。首先,屏蔽突变较大的料流信号,在正常运行中,比较当前料流信号和上一个料流信号,比例过大或者过小则屏蔽当前信号,使用上一个料流信号代替当前的信号。其次,设置动态的死区范围,根据下料设定值的大小来动态调节死区的范围。固定的死区在变动设定下料量大小时,容易产生精度不准,影响配料精度。此外,在实际下料时,调节功能块中测量范围、比例、积分时间,使下料量反馈接近于设定值。 ⑴增加全自动生产方式。系统送电后,将现场操作箱转换开关打到自动位,即可实现全自动操作。方式默认为定时震动,也可通过画面选点击启动的方式进行启动。间隔、循环间隔均可在画面进行设定。由料位确定方式也可在画面进行料位设定。当料位低于设定的值时,自动震动。可在画面暂停和停止,暂停恢复后继续震动过程,停止后再启动重新进行整个过程。⑴针对白石灰螺旋加水执行器关不死的情况,将原有老旧执行器更换型号为奥托克IKM18,对其零点附近的调校更加准确,反复试验看是否漏水,直到关紧位置。另外增加管道电动开关阀门,做好连锁,开机是自动启动,停机时自动关闭,此为双保险。实现自动换仓。在换仓操作时若不能实现自动无缝换仓,只能由人工手动启停拉式皮带,此时的延时若不停止所有参与配料的皮带则会带来配比的失衡。只有停止配料线,频繁的换仓意味着频繁的停机。改造后仪表的功能得到利用,自动换仓成为现实,使得生产能顺利稳定进行。 实施效果 通过对雷达料位计进一步的调整、调试,使其更加精确,使其具有重要的参考价值和连锁必要条件,减少了人工劳动强度。配料秤波动大通过优化的程序处理,使得配料皮带秤运行更加平稳,减少变频器输出频率忽上忽下的不稳定,使配料配比稳定在较高水平。增加的

烧结自动化系统设计 —烧结配料自动控制系统设计 翻译文档

河北联合大学轻工学院 COLLEGE OF LIGHT INDUSTRY, HEBEI UNITED UNIVERSITY 中英文翻译 设计题目:烧结自动化系统设计 —烧结配料自动控制系统设计 学生姓名: 学号: 专业班级:09自动化3班 学部:信息科学与技术部 指导教师: 2013年5月30日

目录 原文 (1) 译文 (5)

原文 如今社会钢铁行业发展迅速,前景十分良好,随着高炉对烧结矿品质要求的不断提高,配料已成为烧结技术改造的关键环节。众所周知,烧结厂配料系统是整个烧结生产的源头,它担负着所有烧结机的混合料供应任务,如果配料系统遇到问题,那么整个烧结生产都要被迫停止,而且配料系统的计算也要准确无误,以为烧结原料的种类多,配料成分随其供货渠道的变化而变化,各单配料的配合比例也会根据生产的要求随时变化,而且在生产过程中,物料的黏度、比重、粒度及环境的温度、湿度的变化,也会严重影响下斜的精度,因此,配料系统对于提高烧结矿的质量至关重要。 自上个世纪60 年代冶金自动化装备问世以来,取得了极其迅猛的发展。特别是上世纪80 年代种类繁多的PLC和DCS 的出现,冶金自动化装备的可靠性和实时性、可操作性和可维护性都得到极大地改善。方便的软件编制和友好的人机界面,不断提高的性能价格比,使冶金自动化装备技术得到极快的推广和使用。“十五”期间,我国重点发展冶金生产过程自动化、工艺智能化和管理信息化技术,其中重点推广和研发技术中就有烧结过程自动化系统。 烧结是把粉状物料转变为致密体,是一个传统的工艺过程。人们很早就利用这个工艺来生产陶瓷、粉末冶金、耐火材料、超高温材料等。一般来说,粉体经过成型后,通过烧结得到的致密体是一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。烧结过程直接影响显微结构中的晶粒尺寸、气孔尺寸及晶界形状和分布。无机材料的性能不仅与材料组成(化学组成与矿物组成)有关,还与材料的显微结构有密切的关系。 烧结配料自动控制系统在现在应用十分广泛,是在自动控制仪表方面尤其突出。在此方面根据烧结工艺需求能将各种矿按照所需量自动投入,由皮带运到混合机中进行下一步工艺的生产。而近年来,我国的钢铁冶炼行业发展十分迅速,烧结矿是炼铁的主原料,而配料这一工艺是影响烧结质量的重要环节,各称量设备只有达到一定精度才能保证矿的质量。因此烧结配料自动控制系统是各大型钢铁厂必不可少的,也可大大提高生产效率。 烧结生产的工艺流程一般包括:原燃料接受,贮存及熔剂,燃料的准备,配料,混合,布料,点火烧结,热矿破碎,热矿筛分及冷却,冷矿筛分及冷矿破碎,铺底料,成品烧结矿的贮存及输出,返矿贮存等工艺环节。 烧结生产的主要目的是为高炉提供质量优良,强度高,粉末少,还原性好和

烧结配料知识

烧结配料知识 一、烧结基础知识 1、烧结的含义 将含铁粉状料或细粒料进行高温加热,在不完全熔化的条件下烧结成块的过程。铁矿粉烧结是一种人造富矿的过程。 2、烧结的方法 (1)鼓风烧结:烧结锅,,平地吹;以及带式烧结机。 (2)抽风烧结: a:连续式:带式烧结机和环式烧结机等; b:间歇式:固定式烧结机,如盘式烧结机和箱式烧结机;移动式烧结机,如步进式烧结机; (3)在烟气中烧结:回转窑烧结和悬浮烧结。 3、烧结生产的工艺流程 一般包括:原燃料的接受、贮存,溶剂、燃料的准备,配料,混合,制粒,布料,点火烧结,热矿破碎,热矿筛分,热矿冷却,冷矿筛分,铺底料、成品烧结矿及返矿的贮存、运输等工艺环节(见下图)。 机上冷却工艺不包括热矿破碎和热矿筛分。 现代烧结工艺流程不再使用热矿工艺,应使用冷矿工艺。在冷矿工艺中,宜推广具有铺底料系统的流程。 4、烧结厂主要技术经济指标 烧结厂的主要技术经济指标包括利用系数、作业率、质量合格率、原材料消耗定额等。 1>、利用系数 每台烧结机每平方米有效抽风面积(m2)每小时(h)的生产量(t)称烧结机利用系数,单位为t/(m2.h)。它用台时产量与烧结机有效抽风面积的比值表示: 利用系数=台时产量(t/h)/有效抽风面积(m2) =总产量(t)/[总生产台时(t)×总有效面积(m2)] 台时产量是一台烧结机一小时的生产量,通常以总产量与运转的总台时之比值表示。这个指标体现烧结机生产能力的大小,它与烧结机有效面积的大小无关。 利用系数是衡量烧结机生产效率的指标,它与烧结机有效面积的大小无关。 2>、烧结机作业率 作业率是设备工作状况的一种表示方法,以运转时间占设备日历时间的百分数表示: 设备作业率=运转台时/日历台时× 100% 日历台时是个常数,每台烧结机一天的日历台时即为24台时。它与台数、时间有关。 日历台时=台数× 24×天数 事故率是指内部事故时间与运转时间的比值,以百分数表示: 事故率=事故台时/运转台时× 100% 设备完好率是衡量设备良好状况的指标。按照完好设备的标准,进行定期检查。设备完好率是全厂完好设备的台数与设备总台数的比值,用百分数表示: 设备完好率=完好设备台数/设备总台数× 100% 3>、质量合格率 烧结矿的化学成分和物理性能符合原冶金部YB/T421-92标准要求的叫烧结矿合格品,不符合的烧结矿叫出格品(见附件表1-1)。 根据部颁标准的规定,实际生产检验过程及工艺试验中出现的一部分未检验品和试验品,不参加质量合格率的计算。因此: 质量合格率=(总产量-未验品量-试验品量-出格品量)/(总产量-未验品量-试验品量)× 100% 质量合格率是衡量烧结矿质量好坏的综合指标。 烧结矿合格品、一级品或出格品的判定根据其物理化学性能的检验结果而定,主要包括烧结矿全铁(TFe)、氧化亚铁(FeO)、硫(S)含量、碱度(CaO/SiO2)、转鼓指数(≥6.3mm)、粉末(< 5mm)等,有的厂还

基本差分进化算法

基本差分进化算法 基本模拟退火算法概述 DE 算法是一种基于群体进化的算法,其本质是一种基于实数编码的具有保优思想的贪婪遗传算法。由于DE 算法操作简单,寻优能力强,自提出以来引起了国内外学者的高度关注,目前已在电力系统优化调度、配网重构等领域得到了应用。 1、算法原理 DE 算法首先在N 维可行解空间随机生成初始种群P 0001[,,]N =X x x L ,其中000T 1[,,]i i iN x x =x L ,p N 为DE 种群规模。DE 算法的核心思想在于采取变异和交叉操 作生成试验种群,然后对试验种群进行适应度评估,再通过贪婪思想的选择机制,将原种群和试验种群进行一对一比较,择优进入下一代。 基本DE 算法主要包括变异、交叉和选择三个操作。首先,在种群中随机选取三个个体,进行变异操作: 1123()t t t t i r r r F +=+-v x x x 其中1t i +v 表示变异后得到的种群,t 表示种群代数,F 为缩放因子,一般取(0,2],它的大小可以决定种群分布情况,使种群在全局范围内进行搜索;1t r x 、2t r x 、3t r x 为从种群中随机抽取的三个不同的个体。 然后,将变异种群和原种群进行交叉操作: 1,R 1 ,,R () or () () and ()t i j t i j t i j v rand j C j randn i u x rand j C j randn i ++?≤=?=?>≠?? 其中t 1,i j u +表示交叉后得到的种群,()rand j 为[0,1]之间的随机数,j 表示个体的第j 个分量,R C 为交叉概率,()randn i 为[1,,]N L 之间的随机量,用于保证新个体至少有一维分量由变异个体贡献。 最后,DE 算法通过贪婪选择模式,从原种群和试验种群中选择适应度更高的个体进入下一代: 11t 11 ()() ()()t t t i i i i t t t i i i f f f f ++++?<=?≥?u u x x x u x 1()t i f +u 、()t i f x 分别为1t i +u 和t i x 的适应度。当试验个体1t i +u 的适应度优于t i x 时,

基于TSP的改进差分进化算法

龙源期刊网 https://www.wendangku.net/doc/6112581662.html, 基于TSP的改进差分进化算法 作者:朱宇航伏楠 来源:《硅谷》2012年第17期 摘要: 针对TSP问题,提出一种改进的差分进化算法:利用贪心算法产生初始种群,定义特有的编码匹配函数进行变异操作,排序法修复变异个体,并采用顺序交叉,在变异操作之后,加入新的选择机制,防止交叉操作破坏变异出的优良个体,实验结果表明改进后的差分进化算法能够高效地解决TSP问题,体现良好的优化性能。 关键词: 差分进化算法;TSP;进化算法 0 引言 差分进化算法(DE:Differential Evolution)是一种模拟自然进化法则的仿生智能计算方法,在解决复杂的全局优化问题方面,DE的性能更加优秀,过程也更为简单,受控参数少[1],但由于DE 特有的差分操作的限制,DE被成功应用的领域多集中在连续优化领域,在离散优化领域的应用还相对较少[2]。 TSP(旅行商问题)作为典型的离散优化问题,是解决很多实际问题的最终转化形式,同时也是著名的NP难题,在短时间内求出其最优解非常困难,现有解法[3-4]在求解中都各有缺点.因此,研究将DE经过必要的改进后应用于TSP的求解具有重要意义。 1 改进DE算法 1.1 编码及匹配函数 适应度定义为:负的路径长度,使得路径长度越短,适应度值越大。 1.2 贪婪初始化 为提高初始种群的质量,采用贪婪的初始化方法.对于初始种群的每个个体,产生方法如下: step1:初始化待走城市列表List为包含所有城市的列表; step2:随机选择一个城市A作为起点,并将此点作为当前城市T,从List中移除; step3:从List中选择距离城市T最近的城市作为新的当前城市T,并将T从List中移除; step4:判断List是否为空,若是,则结束;若否,则转step3。

烧结配料工(高)计算

1、(高级工,计算题,较难,无,辅助要素,标准库) 堆料皮带速度2m/s ,堆料机大车行走沿堆料皮带运行方向速度30m/min ,求堆料机大车行走逆向速度。 解: 01111V V V += 30120301200101+?=+=V V V V V =25m/min 答:堆料机大车行走逆向速度为25m/min. 2、(高级工,计算题,难,无,辅助要素,标准库) 根据下列原料成分性质,计算烧结矿成分:求烧结矿的TFe%? 解:①精矿带入烧结矿中铁的含量: 70×(1-8%)×68%=43.792 精矿烧成量=64.4 ②石灰石烧成量: 14×(1-2%)×(1-45%)=7.546 ③白云石烧成量: 2×(1-4%)×(1-45%)=1.056 ④生石灰烧成量: 3×(1-20%)=2.4 ⑤焦粉的烧成量: 5×(1-7%)×(1-8%)=0.930 ⑥高炉灰的烧成量: 6×(1-7%)×(1-10%)=5.022 高炉灰带入烧结矿中含铁量 6×(1-7%)×45%=2.511 带入烧结矿中总铁量 43.792+2.511=46.303 总的烧成量: 64.4+7.546+1.056+2.4+0.93+5.022 =81.354 烧结矿TFe%=%92.56%100354.81303.46=?

答:烧结矿TFe%为56.92%。 3、(高级工,计算题,较难,无,辅助要素,标准库) 含铁原料在原料场进行混匀,精矿占50%,配料室混匀矿配比为85%,内循环返矿为25%在配料室配加。求混合料中精矿比例。 解:(1-25%)×85%×50%=31.875% 答:混合料中精矿比例为31.875%。 4、(高级工,计算题,中等,无,辅助要素,标准库) 混合料中磁铁矿占30%,出矿率为85%,问烧结矿中磁铁矿含量为多少? 答:在烧结过程中发生复杂的物理化学反反应,无法计算出烧结矿中磁铁矿的含量。 5、(高级工,计算题,较易,无,辅助要素,标准库) 某厂4月份生产烧结矿20万吨,品位合格18万吨,碱度合格16万吨,全部合格15万吨,一级品8万吨,求该月烧结矿品位合格率,碱度合格率,综合合格率,一级品率。 解:品位合格率=%90%1002018=? R 合格率=%80%1002016=? 综合合格率=%75%1002015=? 一级品率=%33.53%100158=? 答:烧结矿品位合格率,碱度合格率,综合合格率,一级品率分别为90%,80%,75%,53.33%。 6、(高级工,计算题,中等,无,辅助要素,标准库) 某厂一台烧结机生产时,每小时卸入热矿筛烧结矿162吨,测得每米皮带上的热返矿为6.5公斤,皮带速度为1.64米/秒。求该台机热返矿率为多少? 解:公式: 热返矿率=(每米皮带热返矿量×胶带机每秒速度×3600秒/每小烧结机产量)×100% 热返矿率=(6.5×1/1000×1.64×3600/162)×100%=23.69% 答:该台烧结机的热返矿率为23.69%。 7、(高级工,计算题,较难,无,辅助要素,标准库) 某厂有105㎡烧结机一台,利用系数为1.4h m t ?2/,出矿率为85%,计算每班混合

烧结配料

2.配料 2.1概述 烧结配料是按烧结矿的质量指标要求和原料成分,将各种原料(含铁料、溶剂、燃料等)按一定的比例配合在一起的工艺过程,适宜的原料配比可以生产出数量足够的性能良好的液相,适宜的燃料用量可以获得强度高还原性好的烧结矿。 对配料的基本要求是准确。即按照计算所确定的配比,连续稳定配料,把实际下料量的波动值控制在允许的范围内,不发生大的偏差。实践表明,当配料发生偏差,会影响烧结过程的进行和烧结矿的质量。 生产中,当烧结机所需的上料量发生变化时,须按配比准确计算各种料在每米皮带或单位时间内的下料量;当料种或原料成分发生变化时,则应按规定要求,重新计算配比,并准确预计烧结矿的化学成分。 2.2配料方法——质量配料法 此法是按原料的质量进行配料的一种方法。其主要装置是皮带电子称——自动控制调节系统——调速圆盘给料机,配料时,每个料仓配料圆盘下的皮带电子称发出瞬时送料量信号,此信号输入调速圆盘自动调节系统,调节部分即根据给定值信号与电子皮带秤测量值信号的偏差,自动调节圆盘转速,达到所要求的给料量,质量配料系统如图1所示 质量配料法可实现配料的自动化,便于电子计算机集中控制与管理,配料的动态精度可高达0.5%-1%,为稳定烧结作业和产品成分创造了良好条件,也是劳动条件得到改善。 2.3配料室(本厂) 配料室采用单列布置,15个矿槽,混匀矿槽上采用移动B=1000卸料车向各配料槽给料;无烟煤、焦粉、冷返矿矿槽上采用B=650固定可逆胶带机向各配料槽给料。生石灰用外设压缩空气将汽车罐车送来的生石灰送至配料槽。混匀矿采用¢2500圆盘给料机排料,配料电子称称重;燃料和溶剂及冷返矿直接用配料电子称拖出;生石灰的排料、称量及消化通过叶轮给料机、电子称及消化器完成。以上几种原料按设定比例经称量后给到混合料的B=800胶带机上。料槽侧壁安装振动电机,防止料槽闭塞。 调速圆盘自 动调节系统 给定值 控制量 偏差 调节部分 调节量 操作部分 (圆盘) 操作量 控制部分 (圆盘给料机) 检出部分 (电子皮带秤) 图1 质量配料系统

基于改进差分进化算法的烧结矿配料优化

基于改进差分进化算法的烧结矿配料优化 李凯斌, 卢建刚, 吴燕玲, 孙优贤 浙江大学工业控制技术国家重点实验室,杭州(310027) E-mail :kbli@https://www.wendangku.net/doc/6112581662.html, 摘 要:本文针对差分进化算法(differential evolution algorithm)存在的早熟问题和停滞现象作了改进并把改进的算法应用于烧结矿配料优化,用matlab 编程,仿真结果表明符合实际生产工艺要求,证明了改进的差分进化算法对烧结矿配料优化的有效性,从而指出了改进的差分进化算法在配料优化中的应用价值。 关键词:差分进化,停滞,烧结矿,配料优化 中图分类号:TF541 1.前言 钢铁企业中炼铁系统能耗占整个钢铁生产能耗的60% ~70% ,生产成本也占54% ~58%,所占比重都较大[1]。而烧结又是生产高炉炼铁精料的关键工序,烧结生产中,可以将不同原料,熔剂进行精确配料,以调整烧结矿化学成分,满足高炉对炉料成分的要求。烧结矿的优化配料是一项极其重要的工作,配料的目的在于:根据不同种类的铁矿石的化学成分,将原料矿进行合理的搭配,使混匀矿的化学成分符合烧结生产的要求。烧结矿配料优化从上个世纪80年代就开始研究,最初运用的是线性规划方法,优化对象也仅限于烧结矿的化学成分[2]。近几十年来,进化算法发展十分迅速,其应用也越来越广泛。其中由Rainer Storn 和Kenneth Price 提出的差分进化算法[3] (differential evolution ,简称DE)作为一种较新的全局优化算法,以其收敛性好,模型简单,容易实现,控制参数比较少得到广泛应用。在日本召开的第一届国际禁化优化计算竞赛(ICEO)中[6],DE 表现突出,已经成为进化算法(EA)的一个重要分支。近几年来,DE 在约束优化计算,模糊控制器优化设计,神经网络优化,滤波器设计等方面得到了广泛应用。本文运用改进的差分进化算法对烧结矿配料进行优化。 2.差分进化算法 DE 作为一种较新的全局搜索算法与遗传算法,进化规划,进化策略不同,它是由父代个体差分矢量构成变异算子,然后按一定交叉概率,父代个体与变异个体进行交叉,生成试验体,最后在父代与试验体之间根据适应度选择个体。 2.1 差分进化原理 (1)选定种群规模N ,加权因子F ∈[0,2]最大进化代数MAX G ,杂交率CR ∈[0,1] (2)生成初始种群0W :{w 0 i (i=1,2,…N)},令进化代数G=0 (3)对G i w 执行(4)~(6)步,生成G+1代 (4)变异:1G i w +?=G i w +F(G j w -G k w )其中1≤j ,k ≤N ,且i ,j ,k 互异 (5)杂交:1G ij w +=1()() G ij G ij w random CR w random CR +?>??≤??? 其中G ij w 为第G 代第i 个个体的第j 个基因,CR 为 杂交率,random ∈[0,1] (6)选择:

烧结自动配料总方案

同煤钢铁烧结自动配料总方案 一、工程概述 同煤钢铁烧结厂机烧车间现有一台52m2烧结机和两台24m2烧结机,共用一个配料间,内设17个圆锥料仓,17台Φ1500圆盘给料机,两条配料主皮带机(B=650㎜)。其中52m2烧结机系统占用1#—— 9#九个料仓,一条配料主皮带机;两台24m2烧结机系统占用其余8个料仓(10#--17#),一条配料主皮带机,物料种类有:印矿粉、精矿粉、机返、高返、焦粉、白云石粉、干红泥等,生石灰采用旋转卸料器+白灰配消器的方式进行配加;竖炉车间现有八座竖炉,其配料间有7个圆锥料仓,7台Φ1500圆盘给料机,一条配料主皮带机(B=650㎜),以上两个配料系统均为手动。随着冶金企业炼铁工艺的发展,对烧结矿产量和品味要求越来越高,烧结配料作为烧结生产的重要环节,各种原料成分配比和精度的准确性对烧结矿产量和品味有着重要影响,而提高整个配料系统设备运行稳定性,保障配料配比和精度,自动控制系统的稳定运行和控制效果起着关键作用。为了改变这种落后的配料方式,公司决定对配料系统进行自动化改造,以便对各种配加物料进行连续监测,自动调整与控制,同时可为公司的成本控制提供科学、准确、快速的计量数据。 二、工程技术要求 根据我公司烧结厂现有配料设备的实际情况,需将现圆盘给料方式改为圆盘+电子皮带秤或直拉式电子皮带秤给料,共需增加24台电子皮带秤。白灰配加方式需在现基础上增设两台单螺旋秤。具体工程内容包括加装24台电子皮带秤、2台单螺旋秤、现场操作箱、主控台、PLC、工控机,增设上位机管理系统软件,其中包括系统设计、配料软件编程及调试等,PLC、CPU与工控机之间通过以太网通讯。具体控制要求有: 1、控制内容: ⑴由人工直接输入各种物料的配比或下料量,由计算机分配到各下料单元,

烧结配料优化熔剂结构的攻关实践

优化烧结熔剂配料结构 提高烧结产质量攻关实践 1 前言 我厂原15.4m2的烧结机经过三次扩容改造,现烧结机有效面积为25.34m2。2004年9月30日,作为2#高炉扩容改造最大配套改造项目——烧结系统改造完成,点火生产。此次改造,烧结机设计台时产量49t,年烧结矿生产能力将达到40万t。但在实际生产过程中烧结机台时产量从未达到设计能力,平均仅为44.08t/台时,烧结矿合格率为76.76%(2004年10月至2006年6月统计指标,见附表)。三座高炉因烧结矿比例结构很低,仅维持生产了七个月时间,被迫组织两座高炉生产,而烧结矿配比也在55%以下,高炉炉料结构不合理,严重制约了高炉生产的稳定顺行和经济指标的提高。因此,如何提高烧结台时产量,提高烧结矿合格率,使烧结矿产质量稳定提高,已成为我厂的迫切要求。为此,我们从影响烧结矿产质量指标的各个方面(如原料、设备、生产组织)入手,进行了分析和技术攻关,使烧结台时产量大幅度提高,平均为51.02t,超攻关目标3.02t,烧结矿合格率有了进一步稳定和提高,平均达88.92%,比攻关目标提高8.92%。 2 原因分析 2.1烧结铁料粒度:烧结料中烧结矿粉、球团矿粉、原矿粉粒度较粗,﹥8mm平均占36%,最高时﹥8mm占到70%,且粒级差大,

原矿粉粒度波动尤为突出。 2.2 熔剂成份:烧结配料熔剂有石灰石、生石灰、消石灰三种,品种多,CaO含量低,成分波动大。尤其是消石灰粉由多个厂家提供,CaO在5 3.24-66.67%之间,平均仅为59.53%,SiO2在2.54-12.9%之间,平均约为 6.89%,H2O在10%-20%,平均约为16.11%,水分、化学成分波动极大,且生烧严重,同时多家消石灰不能均衡进货,中和混匀工作难以作为。 2.3 熔剂粒度:石灰石粉﹤3mm达85%以上,生石灰粉﹤3mm 达95%以上,二者相对稳定,能够基本满足生产需要。消石灰粉﹤3mm在70-75%之间,主要问题有二:一是未完全焙烧的大粒度石灰石,在烧结过程中生成生石灰,进入成品烧结矿,影响烧结产质量指标;二是经过碾压板结的消石灰,在烧结过程中未能发生矿化反应,而以游离CaO的形态存在于烧结矿中(俗称“白点”),在吸收水分时(外喷水和大气湿分中的水)消化,导致烧结矿体积膨胀,引起烧结矿粉化。 2.4操作方面:主要是烧结预配、烧结矿粉、球团矿粉、原矿粉的打水润湿、配料、混合、看火等岗位操作人员的操作水平参差不齐,工作责任性有待加强,尤其是混合加水和看火等岗位。 2.5部分工艺设备的原因:主要表现在大料仓场地狭小、天车能力不够,预配料中和混匀不好。热返矿不能稳定参与配料。一二次混合效果差,生球粒度不理想。烧结布料偏析。头尾密封板、台车、滑道漏风严重。烧结矿冷却效果差,成品皮带打水等。

烧结配料知识

烧结配料知识 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、烧结基础知识 1、烧结的含义 将含铁粉状料或细粒料进行高温加热,在不完全熔化的条件下烧结成块的过程。铁矿粉烧结是一种人造富矿的过程。 2、烧结的方法 (1)鼓风烧结:烧结锅,,平地吹;以及带式烧结机。 (2)抽风烧结: a:连续式:带式烧结机和环式烧结机等; b:间歇式:固定式烧结机,如盘式烧结机和箱式烧结机;移动式烧结机,如步进式烧结机; (3)在烟气中烧结:回转窑烧结和悬浮烧结。 3、烧结生产的工艺流程 一般包括:原燃料的接受、贮存,溶剂、燃料的准备,配料,混合,制粒,布料,点火烧结,热矿破碎,热矿筛分,热矿冷却,冷矿筛分,铺底料、成品烧结矿及返矿的贮存、运输等工艺环节(见下图)。 机上冷却工艺不包括热矿破碎和热矿筛分。 现代烧结工艺流程不再使用热矿工艺,应使用冷矿工艺。在冷矿工艺中,宜推广具有铺底料系统的流程。

4、烧结厂主要技术经济指标 烧结厂的主要技术经济指标包括利用系数、作业率、质量合格率、原材料消耗定额等。 1>、利用系数 每台烧结机每平方米有效抽风面积(m2)每小时(h)的生产量(t)称烧结机利用系数,单位为t/()。它用台时产量与烧结机有效抽风面积的比值表示: 利用系数=台时产量(t/h)/有效抽风面积(m2) =总产量(t)/[总生产台时(t)×?总有效面积(m2)] 台时产量是一台烧结机一小时的生产量,通常以总产量与运转的总台时之比值表示。这个指标体现烧结机生产能力的大小,它与烧结机有效面积的大小无关。 利用系数是衡量烧结机生产效率的指标,它与烧结机有效面积的大小无关。 2>、烧结机作业率 作业率是设备工作状况的一种表示方法,以运转时间占设备日历时间的百分数表示:设备作业率=运转台时/日历台时×?100% 日历台时是个常数,每台烧结机一天的日历台时即为24台时。它与台数、时间有关。日历台时=台数×24×天数 事故率是指内部事故时间与运转时间的比值,以百分数表示: 事故率=事故台时/运转台时×?100% 设备完好率是衡量设备良好状况的指标。按照完好设备的标准,进行定期检查。设备完好率是全厂完好设备的台数与设备总台数的比值,用百分数表示: 设备完好率=完好设备台数/设备总台数×?100% 3>、质量合格率 烧结矿的化学成分和物理性能符合原冶金部YB/T421-92标准要求的叫烧结矿合格品,不符合的烧结矿叫出格品(见附件表1-1)。 根据部颁标准的规定,实际生产检验过程及工艺试验中出现的一部分未检验品和试验品,不参加质量合格率的计算。因此: 质量合格率=(总产量-未验品量-试验品量-出格品量)/(总产量-未验品量-试验品量)×?100% 质量合格率是衡量烧结矿质量好坏的综合指标。 烧结矿合格品、一级品或出格品的判定根据其物理化学性能的检验结果而定,主要包括烧结矿全铁(TFe)、氧化亚铁(FeO)、硫(S)含量、碱度(CaO/SiO2)、转鼓指数(≥)、粉末(<5mm)等,有的厂还包括氧化镁(MgO)、氟(F)、磷(P)等。 一级品率=一级品量/合格品量×?100% 转鼓指数=检测粒度(≥5mm)的重量/试样重量×100% 烧结矿筛分指数=筛分后粒度(≤5mm)的重量/试样重量×100% 4>、烧结矿的原料、燃料、材料消耗定额 生产一吨烧结矿所消耗的原料、燃料、动力、材料等的数量叫消耗定额,包括含铁原料、熔剂料、燃料、煤气、重油、水、电、炉蓖条、胶带、破碎机锤头、润滑油、蒸气等。 5>、生产成本与加工费 生产成本是指生产一吨烧结矿所需的费用,由原料费及加工费两部分构成。 加工费是指生产一吨烧结矿所需的加工费用(不包括原料费)。它包括辅助材料费(如燃料、润滑油、胶带、炉蓖条、水、动力费等),工人工资,车间经费(包括设备折旧费、维修费等)。 6>、劳动生产率

差分进化算法介绍

1.差分进化算法背景 差分进化(Differential Evolution,DE)是启发式优化算法的一种,它是基于群体差异的启发式随机搜索算法,该算法是Raincr Stom和Kenneth Price为求解切比雪夫多项式而提出的。差分进化算法具有原理简单、受控参数少、鲁棒性强等特点。近年来,DE在约束优化计算、聚类优化计算、非线性优化控制、神经网络优化、滤波器设计、阵列天线方向图综合及其它方面得到了广泛的应用。 差分算法的研究一直相当活跃,基于优胜劣汰自然选择的思想和简单的差分操作使差分算法在一定程度上具有自组织、自适应、自学习等特征。它的全局寻优能力和易于实施使其在诸多应用中取得成功。 2.差分进化算法简介 差分进化算法采用实数编码方式,其算法原理同遗传算法相似刚,主要包括变异、交叉和选择三个基本进化步骤。DE算法中的选择策略通常为锦标赛选择,而交叉操作方式与遗传算法也大体相同,但在变异操作方面使用了差分策略,即:利用种群中个体间的差分向量对个体进行扰动,实现个体的变异。与进化策略(Es)采用Gauss或Cauchy分布作为扰动向量的概率密度函数不同,DE使用的差分策略可根据种群内个体的分布自动调节差分向量(扰动向量)的大小,自适应好;DE 的变异方式,有效地利用了群体分布特性,提高了算法的搜索能力,避免了遗传算法中变异方式的不足。 3.差分进化算法适用情况 差分进化算法是一种随机的并行直接搜索算法,最初的设想是用于解决切比雪夫多项式问题,后来发现差分进化算法也是解决复杂优化问题的有效技术。它可以对非线性不可微连续空间的函数进行最小化。目前,差分进化算法的应用和研究主要集中于连续、单目标、无约束的确定性优化问题,但是,差分进化算法在多目标、有约束、离散和噪声等复杂环境下的优化也得到了一些进展。 4.基本DE算法 差分进化算法把种群中两个成员之间的加权差向量加到第三个成员上以产生新的参数向量,这一操作称为“变异”。然后,变异向量的参数与另外事先确

差分进化算法-入门

基本差分进化算法 1基本差分进化算法的基本思想 DE 算法是一种基于实数编码的用于优化函数最小值的进化算法,是在求解有关切比雪夫多项式的问题时提出来的,是基于群体差异的进化计算方法。它的整体结构类似于遗传算法,一样都存在变异、交叉和选择操作,但是它又不同于遗传算法。与基本遗传算法的主要区别在于变异操作上,如: 1、传统的遗传算法采用二进制编码,而差分进化算法采用实数编码。 2、在遗传算法过两个父代个体的交叉产生两个子个体,而在差分进化算法过第两个或几个个体的差分矢量做扰动来产生新个体。 3、在传统的遗传算法中,子代个体以一定概率取代其父代个体,而在差分进化中新产生的个体只有当它比种群中的个体优良时才替换种群中的个体。 变异是DE 算法的主要操作,它是基于群体的差异向量来修正各个体的值,其基本原理是通过把种群中两个个体的向量差加权后,按一定的规划与第三个个体求和来产生新个体,然后将新个体与当代种群中某个预先决定的个体相比较,如果新个体的目标值优于与之相比较的个体的目标值,则在下一代中就用新个体取代,否则,旧个体仍保存下来。 差分进化算法其基本思想是:首先由父代个体间的变异操作构成变异个体;接着按一定的概率,父代个体与变异个体之间进行交叉操作,生成一试验个体;然后在父代个体与试验个体之间根据适应度的大小进行贪婪选择操作,保留较优者,实现种群的进化。 2 差分进化算法的基本操作 设当前进化代数为t ,群体规模为NP ,空间维数为D ,当前种群为 {}12(),, ,t t t NP X t x x x =,()12,, ,T t t t t i i i iD x x x x =为种群中的第i 个个体。在进化过程 中,对于每个个体t i x 依次进行下面三种操作。 2.1 变异操作 对于每个个体t i x 按下式产生变异个体12(,, ,)t t t t T i i i iD v v v v =,则 123() 1,2, ,D t t t t ij r j r j r j v x F x x j =+-= (1) 其中111112(,,,)t t t t T r r r r D x x x x =,222212(,,,)t t t t T r r r r D x x x x =和333312(,, ,)t t t t T r r r r D x x x x =是群 体中随机选择的三个个体,并且123r r r i ≠≠≠;1t r j x ,2t r j x 和3t r j x 分别为个体1r ,2r 和3r 的第j 维分量;F 为变异因子,一般取值于[0,2]。这样就得到了变异个体t i v 。

烧结配料计算

烧结配料计算的方法 烧结过程是一个非常复杂的氧化还原过程,氧的得失很难确定,原料成分的波动和水分的大小均会对最终结果产生影响,而要精确进行烧结配料的理论计算,在烧结生产中显得尤为麻烦,并且要占用大量的时间,所以,现场配料计算一般多采用简易计算方法,即:反推算法。 所谓反推算法是先假定一个配料比,并根据各种原料的水分、烧损、化学成分等原始数据,计算出烧结矿的化学成分,当计算结果符合生产要求,即可按此料比进行组织生产,如果不否,再重新进行调整计算,直至满足生产要求为止。如果在实际生产中,所计算的配比和实际有误差,可分析其产生误差的原因,并再次进行调整计算。生产中如何确定配料比,也是大家所关心的一个问题,实际上配料比的确定常常是根据炼铁生产对烧结矿的质量指标的要求和原料供应状况以及原料成分等,并结合生产成本进行合理的搭配,反复计算,得出最终使用的配料比。 一、在进行反推算法计算时,首先要了解有关配料方面需要掌握的一些术语。 1、烧损:物料的烧损是指(干料)在烧结状态的高温下(1200—1400摄氏度)灼烧后失去重量对于物料试样重量的百分比。 2、烧残:物料的残存量即物料经过烧结,排出水分和烧损后的残存物量。 3、水分:烧结原料的水分含量是指原料中物理水含量的百分数,即一定的原料(100g—200g)加热至150摄氏度,恒温1h,已蒸发的水分重量占试样重量的百分比。 4、化学成分:原料的化学成分是指某元素或化合物含量占该种干原料试样重量的百分比。 二、具体计算公式 1、烧残量=干料配比×(1—烧损) 2、进入配合料中的TFe=该种原料含TFe 量×该种原料配比 3、进入配合料中的SiO2=该种原料含SiO2量×该种原料配比 4、进入配合料中的CaO=该种原料含CaO量×该种原料配比 5、进入配合料中的MgO=该种原料含MgO量×该种原料配比 6、进入配合料中的Mn=该种原料含Mn量×该种原料配比 7、烧结矿的化学成分 烧结矿TFe=各种原料带入的TFe之和÷总的烧残量烧结矿SiO2=各种原料带入的SiO2之和÷总的烧残量烧结矿CaO=各种原料带入的CaO之和÷总的烧残量烧结矿MgO =各种原料带入的MgO之和÷总的烧残量烧结矿Mn=各种原料带入的Mn之和÷总的烧残量如果还有其他指标要求,其计算公式同上。 三、配料计算 配料计算是以干料来进行计算的,目前有两种方法,一种是使用干配比配料,一种是使用湿配比配料,但其目的都是一样的,现在各个单位大部分都是用湿配比进行配料,由于无法上传计算表,这里只好省略了,有机会再给大家上传哦如果还有其他成分需要计算,可参照上述计算公式进行计算,直至符合本公司对烧结生产的要求为止,以上配料计算的大致步骤,仅供参考。 烧结配料计算的主要公式 1. 干料配比=湿料配比*(100-水分)% 2. 残存量=干料配比*(100-烧损)% 3. 焦粉残存=焦粉干料配比*(100-烧损)%=焦粉干配比*灰分% 4. 烧结残存率=(总残存/总干料)*100%

烧结配料的计算调整

烧结配料的计算调整 一、现场简易计算调整 1、干料配比=湿料配比×(100-水分)% 2、残存量 =干料配比×(100-烧损)% 3、焦粉残存=焦粉干料配比×(100-烧损)% =焦粉干料配比×灰分 4、烧结矿残存率=(总残存量÷总干料量)×% 5、进入配合料中TFe=原料含铁量×干料配比 SiO2=原料SiO2含量×干料配比 CaO=原料CaO含量×干料配比 6、烧结矿碱度R的工业计算 R2=(CaO矿×矿石量+ CaO灰×灰石量) ÷(SiO2矿×矿石量+ SiO2灰×灰石量﹍+S(0.5-1.5)) 7、配合料及烧结矿的化学成分 TFe料=各种物料带入TFe之和÷各种干原料之和 TFe矿=各种物料带入TFe之和÷总残存量 SiO2料=各种物料带入SiO2之和÷各种干原料之和 SiO2矿=各种物料带入SiO2之和÷总残存量 CaO料=各种物料带入CaO之和÷各种干原料之和 CaO矿=各种物料带入CaO之和÷总残存量 二、配用石灰石的计算公式(阿尔希波夫公式) 100×(k×a-b)/【k×(a-c)+(d-b)】=加入量%

K----规定的碱度 a----料中SiO2+AI2O3的含量(石灰石中的除外)b----料中CaO+MgO的含量(石灰石中的除外) c----石灰石中SiO2+AI2O3的含量% d----石灰石中CaO+MgO的含量% 三、燃料配用量和配比的计算公式 Q燃=C混×(Q配+Q返)-C返×Q返/C煤kg B燃=Q燃÷Q配% 式中:Q燃、Q配、Q返分别为燃料配用量、配料室总流量、返矿流量 C混、C返、C煤----分别为混合料固定碳、返矿残碳、煤粉固定碳% B燃----为燃料配比% 四、白云石配加量(干)的简易计算公式 白云石配比=(MgO A- MgO A‵)%×A/(1-H2O白%) ×MgO白% 式中:MgO A----烧结矿要求的MgO A% MgO A‵--未加白云石烧结矿的MgO A% H2O白----白云石中含H2O% 五、已知高炉渣中MgO含量,求烧结矿MgO含量。计算公式 MgO矿=A*MgO渣*Fe矿/ Fe铁 式中:MgO矿---烧结矿的MgO% A---渣铁比一般为0.4--0.7

相关文档