文档库 最新最全的文档下载
当前位置:文档库 › DEAE离子交换层析分离血清蛋白质

DEAE离子交换层析分离血清蛋白质

DEAE离子交换层析分离血清蛋白质
DEAE离子交换层析分离血清蛋白质

DEAE离子交换层析分离血清蛋白质

【教学对象与学时】

教学对象:临床医学五年制、七年制学生

学时:8学时

【预习要求】

蛋白质的基本理化性质

血清蛋白的组成及其理化性质

【目的要求】

教学目的:熟悉层析的基本原理与分类、掌握离子交换层析的原理及操作教学要求:利用离子交换层析对血清蛋白进行分离并对分离所得各组分性质进行比较、实验前预习,实验后写出实验报告。

【重点和难点】

重点:离子交换层析分离蛋白质的实验原理。

难点:DEAE纤维素处理的原理与操作。

【教学过程设计】

一、布置预习内容。

1、复习蛋白质的基本理化性质,重点是蛋白质的两性电解性质及由此引申出来的蛋白质表面电量与溶液PH值之间的关系。

2、蛋白质的紫外吸收性质。

3、血清蛋白的组成与分类。

二、课堂教学过程

1.复习层析概念

2.交待离子交换层析概念,并提出引导性问题。

3.进行实验操作第一个环节——DEAE纤维素的处理,在处理间歇期穿插实验理论的讲述。

3.1 膨润阶段讲述内容:

3.1.1 离子交换层析的本质—化学反应平衡,引申出离子交换层析的分类与应用范围;

3.1.2 复习蛋白质表面电量与溶液PH之间的关系,引申出PH值梯度洗脱的意义;

3.1.3 讲解双电层理论,引申出离子强度梯度洗脱的意义;

3.1.4 离子交换介质处理的理想状态,初步理解交换层析介质处理的要求;

3.1.5 待分离蛋白质与交换剂的结合,引申出离子交换层析的分离范围概念。

3.2 转型阶段讲述内容:

3.2.1 离子交换层析的分离理论,以及PH值梯度洗脱与离子强度梯度洗脱的不同意义;

3.2.2 离子交换剂处理的原理及其对实验结果的影响

3.2.3 仪器的连接与使用方法

4.平衡阶段进行仪器的调试等上样前的准备

5.上样

6.梯度洗脱

7.中午轮流休息

8.实验结果与结果分析

【实验报告要点】

1.离子交换层析的原理

2.实验操作步骤

3.实验结果与结果分析

【思考题】

1.阴阳离子交换剂如何选择?

2.离子强度梯度洗脱的意义?

3.本实验中,判断依次被洗脱的蛋白质性质差异?

【专业英语选读】

The molecular details of a biochemical process cannot be fully elucidated until the reacting molecules have been isolated and characterized. Therefore, our understanding of biochemical principles has increased at about the same pace as the development of techniques for the separation and identification of biomolecules. Chromatography has been and will continue to be the most effective technique for isolating and purifying all types of biomolecules. In addition, it is widely used as an analytical tool to measure quantitative properties.

A. INTRODUCTION TO CHROMATOGRAPHY

All types of chromatography are based on a very simple principle. The Sample to be examined (called the solute) is allowed to interact with two physically distinct entities-a mobile phase and a stationary phase. The mobile phase, which may be a gas or liquid, moves the sample through a region containing the solid or liquid stationary phase called the sorbent. The stationary phase will not be described in detail at this time, since it varies from one chromatographic method to another. However, it may be considered as having the ability to "bind" some types of solutes. The sample, which may contain one or many molecular components, comes into contact with the stationary phase. The components distribute themselves between the mobile and stationary phases. If some of the sample components are preferentially bound by the stationary phase, they spend more time in the stationary phase and, hence, are retarded in their movement through the chromatography system. Molecules that show weak affinity for the stationary phase spend more time with the mobile phase and are more rapidly removed or eluted from the system. The many interactions that occur between solute molecules and the stationary phase bring about a separation of molecules because of different affinities for the stationary phase. The general process of moving a solute mixture through a chromatographic system is called development.

The mobile phase can be collected as a function of time at the end of the chromatographic system. The mobile phase, now called the effluent, contains the solute molecules. If the chromatographic process has been effective, fractions or “cuts” that are collected at different times will contain the different components of the original sample. In summary, molecules are separated because they differ in the extent to which they are distributed between the mobile phase and the stationary phase.

Throughout this chapter and others, biochemical techniques will be designated as preparative or analytical, or both. A preparative procedure is one that can be applied to the purification of a relatively large amount of a biological material. The purpose of such an experiment would be to obtain purified material for further characterization and study. Analytical procedures are used most often to determine the purity of a biological sample; however, they may be used to evaluate any physical, chemical, or biological characteristic of a biomolecule or biological system.

Partition versus Adsorption Chromatography

Chromatographic methods are divided into two types according to how solute molecules bind to or interact with the stationary phase. Partition chromatography is the distribution of a solute between two liquid phases. This may involve direct extraction using two liquids, or it may use a liquid immobilized on a solid support as in the case of paper, thin-layer, and gas-liquid chromatography. For partition chromatography, the stationary phase in Figure consists of inert solid particles coated with liquid adsorbent. The distribution of solutes between the two phases is based primarily on solubility differences. The distribution may be quantified by using the partition coefficient, KD.

Adsorption chromatography refers to the use of a stationary phase or support, such as an ion-exchange resin, that has a finite number of relatively specific binding sites for solute molecules. There is not a clear distinction between the processes of partition and adsorption. All chromatographic separations rely, to some extent, on adsorptive processes. However, in some methods (paper, thin-layer, and gas chromatography) these specific adsorptive effects are minimal and the separation is based primarily on nonspecific solubility factors. Adsorption chromatography relies on relatively specific interactions between the solute molecules and binding sites on the surface of the stationary phase. The attractive forces between solute and support may be ionic, hydrogen bonding, or hydrophobic interactions. Binding of solute is, of course, reversible.

Because of the different interactions involved in partition and adsorption processes, they may be applied to different separation problems. Partition processes are the most effective for the separation of small molecules, especially those in

homologous series. Partition chromatography has been widely used for the separation and identification of amino acids, carbohydrates, and fatty acids. Adsorption techniques, represented by ion-exchange chromatography, are most effective when applied to the separation of macromolecules including proteins and nucleic acids.

In the rest of the chapter, various chromatographic methods will be discussed. You should recognize that no single chromatographic technique relies solely on adsorption or partition effects. Therefore, little emphasis will be placed on a classification of the techniques; instead, theoretical and practical aspects will be discussed.

-生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

-生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

————————————————————————————————作者:————————————————————————————————日期:

聚丙烯酰胺凝胶电泳法分离血清蛋白质 【目的】 1 .掌握圆盘电泳分离血清蛋白的操作技术。 2 .熟悉聚丙烯酰胺凝胶电泳的原理。 【原理】 带电粒子在电场中向着与其自身电荷方向相反的电极移动,称为电泳。聚丙烯酰胺凝胶电泳( PAGE )就是以聚丙烯酰胺凝胶作为电泳介质的电泳。在电泳时,蛋白质在介质中的移动速率与其分子的大小,形状和所带的电荷量有关。 聚丙烯酰胺凝胶是一种人工合成的凝胶,是由丙烯酰胺( Acr )单体和少量交联剂 N,N- 亚甲基双丙烯酰胺( Bis )在催化剂过硫酸铵( Ap )和加速剂四甲基乙二胺( TEMED )的作用下发生聚合反应而制得的(其化学结构式见第 2 篇第 1 章)。 聚丙烯酰胺凝胶具有网状结构,其网眼的孔径大小可用改变凝胶液中单体的浓度或单体与交联剂的比例来加以控制。根据血清蛋白分子量的大小,学生实验一般选用 7 %聚丙烯酰胺凝胶分离血清蛋白质。 不连续聚丙烯酰胺凝胶电泳利用浓缩效应、分子筛效应和电荷效应的三重作用分离物质(见第 2 篇第 1 章),使样品分离效果好,分辨率较高。一般醋酸纤维薄膜电泳只能把血清蛋白质分离出 5 ~ 7 条带,而聚丙烯酰胺凝胶电泳却能分离出十几条到几十条来(图 3-4 ),是目前较好的支持介质,应用十分广泛。

图 3-4 血清蛋白聚丙烯酰胺凝胶电泳图谱 根据凝胶支持物的形状不同,分为垂直板电泳和盘状电泳两种,二者原理相同。本实验采用的盘状电泳是在直立的玻璃管中,以孔径大小不同的聚丙烯酰胺凝胶作为支持物,采用电泳基质的不连续体系,使样品在不连续的两相间积聚浓缩(浓缩效应)成厚度为 10 -2 cm 的起始区带,然后再利用分子筛效应和电荷效应的双重作用在分离胶中进行电泳分离。 【器材】 1 .电泳仪 直流稳压电源,电压 400 ~ 500V ,电流 50mA 。 2 .垂直管型圆盘电泳装置 目前这类装置的种类很多,可根据不同的实验要求选择其中的一种。这类装置均由两个基本的部分组成,一部分为载胶玻璃管,须选用内径均匀( 5 ~ 6mm ) , 外径 7 ~ 8mm ,长 80 ~ 100mm 的玻璃管作为材料,也可以使用更细的玻璃管。另一部分为电泳液槽,可分为上下两槽。电泳时,上下两槽通过凝胶柱沟通电流(图 3-5 )。 图 3-5 聚丙烯酰胺凝胶圆盘电泳示意图 (A 为正面, B 为剖面 ) 3 .大号试管和中号试管 4 .微量移液器 5 . 5ml 注射器和 9 号注射针头 6 .洗耳球、滤纸条、封口膜等

蛋白纯化离子交换层析

蛋白纯化离子交换层析 离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静电荷为0,当溶液pH值大于蛋白质等电点时,羧基电离,蛋白质带负电荷,蛋白质能够被阴离子交换剂所吸附,相反,当溶液的pH值小于蛋白质等电点时,则氨基电离,蛋白质带正电荷,被阳离子交换剂所吸附,溶液的pH值距蛋白质等电点越远,蛋白质带电荷越多,与交换剂的结合程度也越强,反之则越弱。 当溶液的pH值发生改变时,蛋白质与交换剂的吸附作用也发生变化,因此可以通过改变洗脱液的pH值来改变蛋白对交换剂的吸附能力,从而把不同的蛋白质逐个分离,当pH值增高时,抑制蛋白质阳离子化,随之对阳离子交换剂的吸附力减弱,当pH值降低时,抑制蛋白质阴离子化,随之降低蛋白质对阴离子交换剂的吸附。 另外,无机盐离子(如NaCl)对交换剂也具有交换吸附的能力,当洗脱液中的离子强度增加时,无机盐离子和蛋白质竞争吸附交换剂。当Cl-的浓度大时,蛋白质不容易被吸附,吸附后也易于被洗脱,当Cl-浓度小时,蛋白质易被吸附,吸附后也不容易被洗脱。 因此,洗脱阴离子交换剂结合的蛋白时,则降低pH值,增加盐离子浓度;洗脱阳离子交换剂结合蛋白时,则升高溶液pH值,增加盐离子浓度,能够洗脱交换剂上的结合蛋白。

血清清蛋白、γ-球蛋白的分离、纯化与鉴定实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

格式要求:正文请统一用:小四号,宋体,1.5倍行距;数字、英文用Times New Roman;标题用:四号,黑体,加粗。需强调的地方请用蓝颜色标出。不得出现多行、多页空白现象。 一、实验目的 1、掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法。 2、掌握醋酸纤维素薄膜电泳法的原理和基本方法。 3、了解柱层析技术。 二、实验原理 1、粗提(盐析法): 蛋白质分子能稳定存在于水溶液中是因为有两个稳定因素:表面的电荷和水化膜。当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出。盐在水溶液中电离所形成的正负离子可吸引水分子,从而夺取蛋白质分子上的水化膜,还可中和部分电荷使蛋白质分子聚集而沉淀,从而达到盐析沉淀蛋白质的目的。由于血清中各种蛋白质颗粒大小、所带电荷多少及亲水程度不同,因此,利用不同浓度的硫酸铵溶液分段盐析,便可将血清中清蛋白和球蛋白从溶液中沉淀出来,达到初步分离清蛋白、球蛋白的目的。 2、脱盐(凝胶层析法) 凝胶层析法利用蛋白质与无机盐类之间分子量的差异。当溶液通过凝胶柱时,溶液中分子量较大的蛋白质因为不能通过网孔进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,

所以流程较短,向前移动速度较快,最先流出层析柱。而盐的分子量较小,可通过网孔进入凝胶颗粒,所以流程长,向前移动速度较慢,较晚流出层析柱。从而可达到去盐的目的。 3、纯化(离子交换层析法) 离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。带正电荷的交换剂称为阴离子交换剂;带负电荷的交换剂称为阳离子交换剂。本实验采用的DEAE纤维素是一种阴离子交换剂,溶液中带负电荷的离子可与其进行交换结合,带正电荷的离子则不能,这样便可达到分离纯化的目的。 脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们的等电点的不同可进行分离。血清中各种蛋白质的pI各不相同,因此,在同一醋酸铵缓冲液中,各蛋白质所带的电荷不同,可以通过DEAE离子交换层析将血清清蛋白和γ-球蛋白分离出来。 4、纯度鉴定(电泳) 采用醋酸纤维素薄膜电泳对分离得到的清蛋白和γ-球蛋白进行纯度鉴定,以正常血清样品作对照。比较两者电泳图谱可定性判断纯化的清蛋白和γ-球蛋白的纯度。 三、材料与方法:以流程图示意 材料: 1、样品:健康人血清(新鲜、无溶血、无沉淀物或细菌滋生) 2、试剂:0.3mol/L的PH6.5醋酸铵缓冲液、0.06mol/L的PH6.5醋酸铵缓冲液、0.02mol/L 的PH6.5醋酸铵缓冲液、1.5mol/L的NaCl-0.3mol/NH4Ac溶液、饱和硫酸铵溶液、0.92mol/L(20%)磺基水杨酸、0.05mol/L(1%)BaCl2溶液、氨基黑染色液、巴比妥缓冲液、漂洗液。 3、仪器及器材:层析柱、烧杯、移液枪、加样枪、试管、滤纸、醋酸纤维素薄膜、黑色反应板、铁固定架、螺旋夹、离心管和离心机、培养皿、载玻片、滤纸、平头镊子、电泳槽、直流稳压电泳仪。

血清蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯于鉴定 一、实验目的: 1、掌握盐析法分离蛋白质的原理和基本方法 2、掌握凝胶层析法分离蛋白质的原理和基本方法 3、掌握离子交换层析法分离蛋白质的原理和基本方法 4、掌握醋酸纤维素薄膜电泳法的原理和基本方法 5、了解柱层析技术 二、实验原理: 蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。对于不同的蛋白质,其分子量、溶解度及等电点等都有所不同。利用不同蛋白质在这些性质上的差别,利用相应的物理方法可分离纯化不同蛋白质。 A.盐析法:在蛋白质溶液中加入大量中性无机盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。同时,加盐后由于离子强度发生改变,蛋白质表面的电荷大量被中和,从而破坏了蛋白质的胶体性质,导致蛋白质溶解度降低,蛋白质分子之间易于聚集沉淀,进而使蛋白质从水溶液中沉淀析出。 B.凝胶层析:利用蛋白质与无机盐类之间分子量的差异。当溶液通过SephadeG-25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒网孔,而分子量小的无机盐能进入凝胶颗粒的网孔中,因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而达到去盐的目的。 C.离子交换层析:离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离。 D.纯度鉴定(醋酸纤维素薄膜电泳):血清中各种蛋白质的等电点不同,一般都低

于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。因此电泳时可将它们分离为清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 三、材料与方法 A材料 样品:人混合血清 试剂:葡聚糖凝胶(G-25)层析柱、DEAE纤维离子交换层析柱、饱和硫酸铵溶液、醋酸铵缓冲溶液、20%磺基水杨酸、1%BaCl 溶液、氨基黑染色液、漂洗液、pH8.6巴比妥缓 2 冲溶液、电泳仪、电泳槽 B实验步骤 盐析(粗分离)→葡聚糖凝胶层析(脱盐)→DEAE纤维素离子交换层析(纯化)→醋酸纤维素薄膜电泳(纯度鉴定) 具体操作流程示意:

离子交换柱层析原理

离子交换层析介质的应用 离子交换层析分离纯化生物大分子的过程,主要是利用各种分子的可离解性、离子的净电荷、表面电荷分布的电性差异而进行选择分离的。现已成为分离纯化生化制品、蛋白质、多肽等物质中使用最频繁的纯化技术之一。 子交换层析(Ion Exchange Chromatography 简称为IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析是目前生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。 1.离子交换层析的基本原理: 离子交换层析是通过带电的溶质分子与离子交换层析介质中可交换离子进行交换而达到分离纯化的方法,也可以认为是蛋白质分子中带电的氨基酸与带相反电荷的介质的骨架相互作用而达到分离纯化的方法。 离子交换层析法主要依赖电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离,具有较高的分离容量。几乎所有的生物大分子都是极性的,都可使其带电,所以离子交换层析法已广泛用于生物大分子的分离、中等纯化及精制的各个步骤中。 由于离子交换层析法分辨率高,工作容量大,并容易操作,因此它不但在医药、化工、食品等领域成为独立的操作单元,也已成为蛋白质、多肽、核酸及大部分发酵产物分离纯化的一种重要的方法。目前,在生化分离中约有75%的工艺采用离子交换层析法。 2.离子交换层析介质: 离子交换层析的固定相是离子交换剂,它是由一类不溶于水的惰性高分子聚合物基质通过一定的化学反应共价结合上某种电荷基团形成的。离子交换剂可以分为三部分:高分子聚合物基质、电荷基团和平衡离子。电荷基团与高分子聚合物共价结合,形成一个带电的可进行离子交换的基团。平衡离子是结合于电荷基团上的相反离子,它能与溶液中其它的离子基团发生可逆的交换反应。平衡离子带正电的离子交换剂能与带正电的离子基团发生交换作用,称为阳离子交换剂;平衡离子带负电的离子交换剂与带负电的离子基团发生交换作用,称为阴离子交换剂。在一定条件下,溶液中的某种离子基团可以把平衡离子置换出来,并通过电荷基团结合到固定相上,而平衡离子则进入流动相,这就是离子交换层析的基本置换反应。通过在不同条件下的多次置换反应,就可以对溶液中不同的离子基团进行分离。下面以阴离子交换剂为例简单介绍离子交换层析的基本分离过程。 阴离子交换剂的电荷基团带正电,装柱平衡后,与缓冲溶液中的带负电的平衡离子结合。待分离溶液中可能有正电基团、负电基团和中性基团。加样后,负电基团可以与平衡离子进行可逆的置换反应,而结合到离子交换剂上。而正电基团和中性基团则不能与离子交换剂结合,随流动相流出而被去除。通过选择合适的洗脱方式和洗脱液,如增加离子强度的梯度洗脱。随着洗脱液离子强度的增加,洗脱液中的离子可

乳清蛋白中α-乳白蛋白分离工艺的探讨

分离乳清蛋白中α-乳白蛋白工艺的探讨α-la是人乳和牛乳中都具有的一种乳清白蛋白,该蛋白在人体中具有许多重 要的生理功能。α-la在体内可以与半乳糖转移酶结合,催化葡萄糖合成乳糖。α-la 含有大量的色氨酸,色氨酸在大脑中是5-羟色胺的前体物质,5-羟色胺具有帮助人体减轻压力的能力,临床研究表明,α-la可以改善营养失调人群的睡眠。α-la 可以引起胃腔内pH值的升高、胃液的增加、从而增加饱腹感。另外,有动物实验表明,α-la还可以抑制由乙醇或者压力引起的胃部损伤。 α-la是人乳中含量最高的乳清蛋白质,而牛乳乳清蛋白中除含有α-la,还含有一种含量更高的β-lg,这就需要将α-la和β-lg进行分离,提高乳清中α-la的含量,将这种富含α-la的乳清粉加入到婴幼儿配方粉中,可以使配方粉中的蛋白质含量与组成与母乳更加接近,从而有利于婴幼儿的消化吸收和生长发育。本文主要对从乳清蛋白中分离α-la的工艺进行了探讨,分析比较每种工艺的优缺点,寻找适合工业化生产的工艺技术。 1、膜分离工艺: 膜分离工艺技术主要是利用α-la和β-lg两种蛋白质分子量的差异进行纯化分离。 乳清蛋白质中α-乳白蛋白分子量为14000,β-乳球蛋白分子量为18000,两种蛋白质分子量大小非常接近,利用现有的膜设备很难达到分离的目的,一般需要控制一定温度,并调节pH值,使β-lg发生附聚作用,附聚的β-lg分子量一般都大于36000,因此理论上讲,3万截留分子量的超滤膜最适合于α-la和β-lg的分离,但是3万的超滤膜对α-la的透过率和通量较低,膜也较易污染,因此实际生产中,多应用5万和10万的超滤膜进行分离纯化。 膜分离工艺存在运行成本高的弊端,α-la的得率较低,纯度不高,而且目前该方法只应用于中试规模生产,并没有实际应用于工业化大生产。 图1 膜滤工艺流程图

从低温乙醇法FIV组份中分离人血白蛋白的研究

从低温乙醇法F I V组份中分离人血白蛋白的研究Ξ 刘鹏翰 (广西血液中心,柳州545005) 摘 要 以低温乙醇法分离血浆蛋白过程中的F I V组份为原料,经D EA E和C M两步离子交换层析法,可制备出高纯度的人血白蛋白,该制品不含多聚体。 关键词 F I V组份;离子交换层析;人血白蛋白 自从Cohn及其同事们报道低温乙醇法分离人血白蛋白的工艺后,血浆蛋白的分离应用取得了飞速发展;目前,低温乙醇法分离血浆蛋白工艺主要有两种:Cohn6+9法及K istler变法,两种工艺均可制备出符合临床要求的人血白蛋白制品,但收率不高,有相当一部分白蛋白被沉淀到F I V组份(低温法中pH5.80、40%乙醇浓度的沉淀部分)而被废弃掉,本文利用K istler工艺中的F I V组份为原料,通过D EA E和C M离子交换层析法进行人血白蛋白的制备研究。 1 材料和方法 111 材料 11111 F I V组份 为本中心用K istler工艺分离血浆蛋白过程中的废弃组份。 11112 人白蛋白抗血清 上海生物制品研究所提供。 11113 离子交换剂 D EA E2Sephadex FF, C M2Sephadex FF,Sephacryl S2200(phar m a2 cia). 11114 其他试剂 符合《中国生物制品原材料试行标准》中的规定或分析纯试剂。 112 设备 1)215c m×30c m带转换接头层析柱,1c m×100c m层析柱(上海浮华层析设备厂)。2)FH8802UV D eteeto r(温州浮华分析仪器厂)。 3)3507记录仪(四川仪表四厂)。 4)HL22型恒流泵(上海沪西仪器厂)。 5)PH S225型酸度计(上海雷磁仪器厂)。 6)DD S211型电导率仪(上海雷磁仪器厂)。 7)D Y W2A型电泳仪(武汉大学科教仪器厂)。 113 方法 11311 制备工艺 如图1。 11312 鉴别试验 双向免疫扩散法,琼脂粉浓度1%,室温扩散24h,考马氏亮兰R250染色,照相。 11313 纯度测定 按《中国生物制品规程》进行。 11314 多聚体测定 凝胶过滤层析法,填料Sephacryl S2200,柱1×90c m,流速1m l m in, PBS缓冲液洗脱,紫外监测仪检测、记录仪记录。 2 结果 211 D EA E2Sephadex FF层析结果 将K istler工艺中的F I V组份溶解,调整pH至512±0105以后,过D EA E2Sephadex FF层析柱,层析图谱见图2,A为穿透峰,主要为IgG等,B为富含白蛋白峰,供下步层析 411 药 物 生 物 技 术 Phar m aceuticalB i o techno l ogy 1997,4(2):114~117 Ξ19960520

蛋白纯化离子交换层析法

蛋白纯化离子交换层析 研究生的生活,单调的科研,重复的脚印,匆匆的轨迹,踩着早上的时光一如往常的走进实验室,摊开实验记录本,写上日期,就像每天写日记一样开始计划今天的实验日记,用笔似乎要绘制一副有关实验的画面。 如果你处在这样的科研氛围里,慢慢的就会体味到科学本身就像窗外的大自然一样的美,绿色撩人,诗意陶醉…… 今天,我们写下的实验日记——蛋白纯化离子交换层析法,文章详细的总结了离子交换层析的定义、离子交换层析的原理、离子交换剂的种类,似乎要提醒一下脑子要保持清醒了,不然,看完之后,你能分清楚阴阳离子交换剂的概念,熟知它们的区别么? ————你会创造规律科研生活的美 我,生在春天里,刚发芽的地方是实验室 知了也睡了,而我刷夜实验室 因为我在等待秋天收获的季节 虽然有可能错过成功的喜悦,却收获心灵上的成长

离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静

【CN109810185A】一种重组人血清白蛋白的分离纯化方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910276004.5 (22)申请日 2019.04.08 (71)申请人 北京蛋白质组研究中心 地址 102206 北京市海淀区中关村生命科 学园生命园路38号 (72)发明人 钱小红 张养军 余谦 张普民  高方圆 焦丰龙 夏朝双 张汉卿  (74)专利代理机构 北京纪凯知识产权代理有限 公司 11245 代理人 关畅 (51)Int.Cl. C07K 14/765(2006.01) C07K 1/36(2006.01) C07K 1/18(2006.01) C07K 1/20(2006.01) C07K 1/30(2006.01) (54)发明名称 一种重组人血清白蛋白的分离纯化方法 (57)摘要 本发明公开了一种重组人血清白蛋白的分 离纯化方法。该方法首先采用热乙醇沉淀法从转 基因猪血浆中对重组人白蛋白进行粗提纯,再利 用两种色谱方法以串联方式进一步精纯化,即先 用阴离子交换色谱法进行第一步精纯化,再采用 反相色谱法或者凝胶色谱法进行二次精纯化。结 果表明,本发明能从转基因猪血浆中分离纯化出 高纯度的重组人血清白蛋白,并有望替代人血清 白蛋白用于临床用药和生化研究中。权利要求书2页 说明书5页 附图3页CN 109810185 A 2019.05.28 C N 109810185 A

权 利 要 求 书1/2页CN 109810185 A 1.一种对含有重组人血清白蛋白的血浆中的重组人血清白蛋白进行分离纯化方法,包括: 1)去除含有重组人血清白蛋白的血浆中的凝血因子和纤维蛋白原后,将所得血浆上清液用热乙醇沉淀法进行粗提纯,得到rHSA粗提取液; 2)将所述rHSA粗提取液脱盐浓缩后,用阴离子交换色谱柱洗脱,收集洗脱液即为第一步精纯化rHSA溶液; 3)将所述第一步精纯化rHSA溶液脱盐浓缩后,用反相色谱柱或凝胶色谱柱进行二次精纯化,即得到rHSA溶液,完成所述重组人血清白蛋白的分离纯化。 2.根据权利要求1所述的方法,其特征在于:所述含有重组人血清白蛋白的血浆按照如下步骤制得:对含有重组人血清白蛋白的血进行血浆抗凝处理后离心,收集上清液而得; 具体的,所述血浆抗凝处理步骤中,所用抗凝剂为柠檬酸钠水溶液;所述含有重组人血清白蛋白的血与抗凝剂的体积比为15:1~20:1;所述抗凝剂的浓度为70g/L~90g/L; 所述离心步骤中,离心力为1500-2500×g;具体为2000×g;时间为20-40min;具体为30min。 3.根据权利要求1或2所述的方法,其特征在于:所述步骤1)去除含有重组人血清白蛋白的血浆中的凝血因子和纤维蛋白原的方法包括:将所述含有重组人血清白蛋白的血浆冷冻沉淀,解冻后离心,收集上清液,即为所述血浆上清液; 具体的,所述冷冻沉淀步骤中,温度为-30--10℃;具体为-20℃; 所述解冻步骤中,温度为0-10℃;具体为4℃; 所述离心步骤中,离心力为4500-5500×g;具体为5000×g;时间为10-20min;具体为15min。 4.根据权利要求1-3中任一所述的方法,其特征在于:所述步骤1)热乙醇沉淀法包括:将所述血浆上清液与由蛋白保护剂、变性剂、氯化钠和水组成的混合液混匀后,调节pH至 5.0~7.0,在55℃~80℃,恒温保持20~60min,冷却至室温后调节pH至4.0~5.0,静置,一次离心,收集上清,淋洗所得沉淀,再进行二次离心,收集上清,合并两次上清,即为所述rHSA粗提取液。 5.根据权利要求4所述的方法,其特征在于:所述蛋白保护剂为辛酸钠;所述辛酸钠在由蛋白保护剂、变性剂、氯化钠和水组成的混合液中的浓度为5~10g/L; 所述变性剂为有机溶剂;具体为乙醇;所述氯化钠在由蛋白保护剂、变性剂、氯化钠和水组成的混合液中的浓度为5~9g/L;所述由蛋白保护剂、变性剂、氯化钠和水组成的混合液的体积用量与所述血浆上清液相同; 所述变性剂的用量为所述血浆上清液体积的8%~12%; 所述静置步骤中,温度为室温;时间为1-3h;具体为2h; 所述淋洗步骤中,所用淋洗液为pH值为4.8的蒸馏水; 所述一次离心和二次离心步骤中,离心力为4500-5000×g;具体为5000×g;时间为50-70min;具体为60min。 6.根据权利要求1-5中任一所述的方法,其特征在于:所述步骤2)中,所用流动相A为0.02mol/L Tris-HCl,流动相B为0.02mol/L Tris-HCl+0.3mol/L NaCl; 所用阴离子交换色谱柱为DEAE弱阴离子交换色谱柱;流速为1mL/min;柱温为室温;检 2

(推荐)血清清蛋白、γ-球蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯与鉴定 一、实验目的 1.掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法; 2.掌握醋酸纤维素薄膜电泳法的原理和基本方法; 3.了解柱层析技术。 二、实验原理 血清蛋白主要由清蛋白和球蛋白组成,各行使其重要的功能。 本实验利用盐析方法将血清中的清蛋白和球蛋白分离,并用电泳技术观察蛋白质分离教果。 1.盐析 蛋白质分子能稳定存在于水溶液中是因为有两个稳定因素:表面的电荷和水化膜。当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出,蛋白质分子沉淀析出的方法很多,根据对蛋白质稳定因素破坏的不同有中性盐析法、有机溶溶剂法、重 金属盐法以及生物碱试剂法等。盐析法的原理是:中性盐如硫酸铵((NH 4) 2 SO 4 )等对蛋白 质作用破坏了蛋白质表面水化膜,并且中和了部分电荷,从而使蛋白质相互聚集而析出。由于血清中各种蛋白质分子的颗粒大小、所带电荷的多少和亲水程度不同,故盐析所需的盐浓度也不同,因此调节盐的浓度可使不同的蛋白质沉淀从而达到分离的目的。血清球蛋白在半饱和状态下发生沉淀,而血清清蛋白在完全饱和状态下沉淀,利用此特性可把蛋白质分段沉淀下来,即在半饱和的中,血清蛋白不沉淀,而血球蛋白沉淀,离心后清蛋白主要在上清液中,沉淀蛋白加少量蒸馏水即可溶解,由此达到分离清蛋白和白蛋白的目的。 2.脱盐

盐析得到的蛋白质含有高浓度中性盐,需要有脱盐过程去除蛋白质遗留的中性盐,常用方法有:透析法脱盐和凝胶层析法脱盐。本实验采用凝胶层析法脱盐,在葡聚糖凝胶柱中,蛋白质与盐的分子量不同,当样品通过层析柱时,分子量较大的蛋白质因为不能通过网孔而进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱;反之,盐的分子量较小,可通过网孔而进入凝胶颗粒,所以流程长,向前移动速度较慢,流出层析柱的时间较后。分段收集蛋白质洗脱液,即可得到脱盐的蛋白质。 3.纯化(离子交换层析) 离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。带正电荷的交换剂称为阴离子交换剂;带负电荷的交换剂称为阳离子交换剂。 本实验采用的DEAE纤维素是一种阴离子交换剂,溶液中带负电荷的离子可与其进行交换结合,带正电荷的点正电荷的离子则不能,这样便可达到分离纯化的目的。 脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们的等电点的不同可进行分离。血清中各种蛋白质的pI各不相同,因此,在同一醋酸铵缓冲液中,各蛋白质所带的电荷不同,可以通过DEAE离子交换层析将血清清蛋白和伽马球蛋白分离出来。 4.纯度鉴定(电泳) 血清中各种蛋白质的等电点不同,一般都低于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 三、材料与方法:以流程图示意 1.实验材料 人血清、葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)纤维素离子

蛋白质的离子交换层析技术模板

离子交换层析技术 层析( chromatography) 也称为色谱, 就是将混合物中各种组分分离的方法, 是分离、纯化及鉴定生物大分子时最常使用的技术之一。一个层析系统都包括两相, 即固定相和移动相。当移动相流过加有样品的定相时, 由于各组分在两相之间的分配比例不同, 它们( 各组分) 就会以不同的速度移动而相互分离开来。定相能够是固体, 也能够是被固体或凝胶所支持的液体。定相能够被装入柱中或涂成薄层、薄膜, 成为层析”床”。动相能够是气体, 也能够是液体, 前者称为气相层析, 或者成为液相层析。 离子交换层析技术是以离子交换纤维素、离子交换树脂或离子交换葡聚糖凝胶为固定相, 以待分离的样品为移动相, 分离和提纯蛋白质、核酸、酶、激素和多糖等的一项技术。 ( 一) 原理 在纤维素与葡聚糖分子上结合有一定的离子基团, 当结合阳离子基团时, 可换出阴离子, 则称为阴离子交换剂。如二乙氨乙基( Dicthylaminoethyl, DEAE) 纤维素。在纤维素上结合了DEAE, 含有带正电荷的阳离子纤维素—O—C6 H14N+H, 它的反离子为阴离子( 如Cl-等) , 可与带负电荷的蛋白质阴离子进行交换。当结合阴离子基团时, 可置换阳离子, 称为阳离子交换剂, 如羧甲基( Carboxymethy, CM) 纤维素。纤维素分子上带有负电荷的阴离子( 纤维素-O-CH2-COO一) , 其反离子为阳离子( 如Na+等) ,可与带正电荷蛋白质阳离子进行交换。 溶液的pH值与蛋白质等电点相同时, 静电荷为0, 当溶液pH值大于蛋白质等电点时, 则羧基游离, 蛋白质带负电荷。反之, 溶液的pH值小于蛋白质等电点时, 则氨基电离, 蛋白质带正电荷。溶液的pH值距蛋白质等电点越远,

蛋清蛋白怎么分离

蛋清蛋白怎么分离 鸡蛋是人们日常生活中很常见的一种食物,对于人们身体健康和一样补充的时候有着很好的效果,特别是对于一些老人和小孩子来说,对他们身体的营养补充的方面,有着很不错的功效。相信只做过鸡蛋相应菜肴的人都会知道,有的时候需要把鸡蛋清和蛋白分离出来,这个时候是非常考验人的功力的。那么有没有一些办法可以很容易的,就是蛋清和蛋白自动分离呢?下面就让我们一起来看一下吧。 怎样把蛋黄和蛋白分离 1、传统方法 鸡蛋分离最常用的方法是将鸡蛋磕破,然后劈成两半,让蛋清流到碗中,而蛋黄则留在蛋壳内。将蛋黄在两个蛋壳间来回折几下,方便余下的蛋清流出。 采用这种方法最好用三个碗,两个小碗分别用于盛放分离好的蛋清和蛋黄,另一个用来接正在处理的蛋清。传统的鸡蛋分离方法的缺点是,处理过程中手和蛋壳的细菌可能会污染蛋液 2、针孔法 用粗针在蛋壳两端各扎一个小孔,用针逐渐扩大针孔,蛋清会慢慢地流出,磕破蛋壳取出完整的蛋黄。虽然这种方法是很容易做到,蛋让蛋清完全流出还是需要些时间的。另外使用这种分离方法,也可能会导致蛋壳的细菌污染蛋液(这种可能性比较小) 3、漏斗法

这种方法是将小漏斗放置在一个容器上,然后将鸡蛋磕破倒在漏斗中。来回移动蛋黄远离漏斗的颈部,让蛋清滤进容器。将蛋黄倒入另一个小碗中。需要注意的是漏斗必须足够小,使蛋黄不能滑如容器中,这种方法是很卫生,因为蛋液很少接触外面的外壳。 4、凿口法 把鸡蛋竖起来,底部凿一个小口(不能太大,否则蛋黄也会流出来,别忘在鸡蛋下面放个碗之类的器具)。然后慢慢晃动鸡蛋,蛋清就都流到碗里了。这个方法比较简易可行,而且不借助其它工具,得心应手。

牛血清白蛋白分离提纯工艺

课程设计说明书 课程名称:生物分离工程 设计题目:牛血清白蛋白的分离提纯工艺 院系:环境与化学工程学院 学生姓名:孙盼盼 学号:41004020111 专业班级:10级生物工程01班 指导教师:王晓军 2013年6月20日

目录 1.设计任务书 (1) 2.设计背景 (1) 2.1 牛血清白蛋白分离提纯的简介 (1) 2.2 牛血清白蛋白分离提纯的意义 (1) 3.设计原理 (2) 4.设计工艺流程及设计方案说明 (2) 4.1对原材料的粗分级分离 (3) 4.2对粗分离成分进行细分级分离 (3) 4.3 蛋白的结晶与重结晶 (3) 4.4 对分离出的蛋白质进行纯度鉴定 (3) 4.5 牛血清白蛋白质分离提纯的整个工艺流程 (3) 5.操作过程 (4) 5.1蛋白质分离的准备阶段 (4) 5.2细分级分离设备的设计 (4) 5.3蛋白质的纯度鉴定 (8) 6.参考文献 (8) 7.课程设计心得 (9)

1.设计任务书 现有一混合物料液中含有酪蛋白(分子量:57000Da,pI 4.5)、β-乳球蛋白(分子量:35000Da,pI 5.1)、α-乳白蛋白(分子量:14000Da,pI 4.2)和牛血清白蛋白(分子量:66200Da,pI 4.7),设计一个分离纯化工艺纯化其中的牛血清白蛋白。 2.设计背景 2.1 牛血清白蛋白分离提纯的简介 蛋白质是(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。 蛋白质具有很多生物化学共性,运用相关性质进行蛋白质的分离制备多种不同的单一蛋白质,更好的为人们所有。蛋白质的分离提纯技术已经很成熟,相关的工艺流程包含各种不同的分离提纯设备,这些设备运用蛋白质的不同原理对其进行分离纯化,单一蛋白质的分离提纯在现实生活中具有重要意义! 2.2 牛血清白蛋白分离提纯的意义 牛血清中的简单蛋白,是血液的主要成分(38g/100ml),分子量68kD。等电点4.8。含氮量16%,含糖量0.08%。仅含已糖和已糖胺,含脂量只有0.2%。白蛋白由581个氨基酸残基组成,其中35个半胱氨酸组成17个二硫

离子交换层析

实验二离子交换层析纯化兔血清IgG 【原理】 DEAE-Sephadex A-50 (二乙氨基- 乙基- 葡萄糖凝胶A-50 )为弱碱性阴离子交换剂。用NaOH 将Cl - 型转变为OH - 型后,可吸附酸性蛋白。血清中的γ 球蛋白属于中性蛋白(等电点为pH6.85 ~7.5 ),其余均属酸性蛋白。pH7.2 ~7.4 的环境中。酸性蛋白均被DEAE-Sephadex A-50 吸附,只有γ 球蛋白便可在洗脱液中先流出,而其他蛋白则被吸附在柱上,从而便可分离获得纯化的IgG 。 【试剂与器材】 1. DEAE-Sephadex A-50 2.0.5mol/L HCl 和NaOH 3.0.1mol/L pH7.4 PBS 4.0.1mol/L Tris-HCl(pH7.4)

5.0.02 %NaN 3 6.PEG 7. 无水乙醇 8. 紫外分光光度计 9.1cm×20cm 玻璃层析柱 10. 自动部分收集器 【操作步骤】 1 .DEAE-Sephadex A-50 预处理称DEAE-Sephadex A-50 (下称A-50 )5g ,悬于500ml 蒸馏水内,1h 后倾去上层细粒。按每克A-50 加0.5mol/L NaOH 15ml 的比例,将浸泡于0.5mol/L NaOH 液中,搅匀,静置30min ,装入布氏漏斗(垫有 2 层滤纸)中抽滤,并反复用蒸馏水抽洗至pH 呈中性;再以0.5mol/L HCl 同上操作过程处理,最后以0.5mol/L NaOH 再处理一次,处理完后,将A-50 浸泡于0.1mol/L pH7.4 PBS 中过夜。

2 .装柱 ( 1 )将层析柱垂直固定于滴定架上,柱底垫一圆形尼龙纱,出水口接一乳胶或塑料管并关闭开关。 (2 )将0.1mol/L Tris-HCl(pH7.4) 沿玻璃棒倒入柱中至1/4 高度,再倒入经预处理并以同上缓冲液调成稀糊状的A-50 。待A-50 凝胶沉降2 ~3cm 高时,开启出水口螺旋夹,控制流速1ml/min ,同时连续倒入糊状A-50 凝胶至所需高度。 ( 3 )关闭出水口,待A-50 凝胶完全沉降后,柱面放一圆形滤纸片,以橡皮塞塞紧柱上口,通过插入橡皮塞之针头及所连接的乳胶或塑料管与洗脱液瓶相连接。 3 .平衡启开出水口螺旋夹,控制流速 4 滴/min ,使约2 倍床体积的洗脱液流出。并以pH 计与电导仪分别测定洗脱液及流出液之PH 值与离子强度,两者达到一致时关闭出水口,停止平衡。 4 .加样及洗脱启开上口橡皮塞及下口螺旋夹,使柱中液体缓慢滴出,当柱面液体与柱面相切时,立即关闭出水口,以毛细滴管沿柱壁加入样品(0.5ml 血清,体积应小于床体积的2% ,蛋白浓度以<100mg 为宜)。松开出水口螺旋夹使面样品缓慢进入柱内,至与柱面

离子交换层析

离子交换层析 1、定义 2、发展 1848年,Thompson等人在研究土壤碱性物质交换过程中发现离子交换现象。本世纪40年代,出现了具有稳定交换特性的聚苯乙烯离子交换树脂。50年代,离子交换层析进入生物化学领域,应用于氨基酸的分析。目前离子交换层析仍是生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。常用的离子交换剂有:离子交换纤维素、离子交换葡聚糖和离子交换树脂。 3、基本信息 离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阳离子交换树脂;而带有负电荷的称之阴离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。 4、具体操作 预处理和装柱 对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。 洗涤好的纤维素使用前必须平衡至所需的pH和离子强度。已平衡的交换剂在装柱前还要减压除气泡。为了避免颗粒大小不等的交换剂在自然沉降时分层,要适当加压装柱,同时使柱床压紧,减少死体积,有利于分辨率的提高。

DEAE离子交换层析分离血清蛋白质

DEAE离子交换层析分离血清蛋白质 【教学对象与学时】 教学对象:临床医学五年制、七年制学生 学时:8学时 【预习要求】 蛋白质的基本理化性质 血清蛋白的组成及其理化性质 【目的要求】 教学目的:熟悉层析的基本原理与分类、掌握离子交换层析的原理及操作教学要求:利用离子交换层析对血清蛋白进行分离并对分离所得各组分性质进行比较、实验前预习,实验后写出实验报告。 【重点和难点】 重点:离子交换层析分离蛋白质的实验原理。 难点:DEAE纤维素处理的原理与操作。 【教学过程设计】 一、布置预习内容。 1、复习蛋白质的基本理化性质,重点是蛋白质的两性电解性质及由此引申出来的蛋白质表面电量与溶液PH值之间的关系。 2、蛋白质的紫外吸收性质。 3、血清蛋白的组成与分类。 二、课堂教学过程 1.复习层析概念 2.交待离子交换层析概念,并提出引导性问题。 3.进行实验操作第一个环节——DEAE纤维素的处理,在处理间歇期穿插实验理论的讲述。 3.1 膨润阶段讲述内容: 3.1.1 离子交换层析的本质—化学反应平衡,引申出离子交换层析的分类与应用范围;

3.1.2 复习蛋白质表面电量与溶液PH之间的关系,引申出PH值梯度洗脱的意义; 3.1.3 讲解双电层理论,引申出离子强度梯度洗脱的意义; 3.1.4 离子交换介质处理的理想状态,初步理解交换层析介质处理的要求; 3.1.5 待分离蛋白质与交换剂的结合,引申出离子交换层析的分离范围概念。 3.2 转型阶段讲述内容: 3.2.1 离子交换层析的分离理论,以及PH值梯度洗脱与离子强度梯度洗脱的不同意义; 3.2.2 离子交换剂处理的原理及其对实验结果的影响 3.2.3 仪器的连接与使用方法 4.平衡阶段进行仪器的调试等上样前的准备 5.上样 6.梯度洗脱 7.中午轮流休息 8.实验结果与结果分析 【实验报告要点】 1.离子交换层析的原理 2.实验操作步骤 3.实验结果与结果分析 【思考题】 1.阴阳离子交换剂如何选择? 2.离子强度梯度洗脱的意义? 3.本实验中,判断依次被洗脱的蛋白质性质差异? 【专业英语选读】 The molecular details of a biochemical process cannot be fully elucidated until the reacting molecules have been isolated and characterized. Therefore, our understanding of biochemical principles has increased at about the same pace as the development of techniques for the separation and identification of biomolecules. Chromatography has been and will continue to be the most effective technique for isolating and purifying all types of biomolecules. In addition, it is widely used as an analytical tool to measure quantitative properties.

相关文档
相关文档 最新文档