文档库 最新最全的文档下载
当前位置:文档库 › 汽车侧翻稳定性与预警综述分解

汽车侧翻稳定性与预警综述分解

汽车侧翻稳定性与预警综述分解
汽车侧翻稳定性与预警综述分解

汽车侧翻稳定性与预警综述

摘要:近年来,汽车侧翻事故作为重要的安全问题,受到越来越多的关注。美国高

速公路交通安全管理局统计数据表明,在汽车事故中,侧翻的危害程度仅次于碰

撞事故居第二位。然而,我国目前针对高速急转弯时汽车侧翻动态稳定性及预警方面

的研究还很少。因此,本文总结归纳了目前主流侧翻稳定性模型,侧翻预警的硬件系统与算法。通过仿真来计算侧倾角,来得测算汽车侧翻稳定性。以及时下最为新颖的通过DPS来获得汽车的侧倾角,横向加速度等数据来预警。本文比较了各种方案的利弊,对目前汽车的侧翻稳定性分析及预警研究做了一定程度的综述。

关键字:侧翻模型,侧翻控制器,预警算法,侧翻仿真,GPS侧翻控制系统

Abstract: in recent years, the most important safety problems as vehicle rollover accident, has attracted more and more attention. High U.S.Highway traffic safety administration statistics show that, in a car accident, harm degree rollover after touchHit the house second. However, China's current high speed sharp turning vehicle dynamic rollover stability and rollover warningThe study is also very little. Therefore, this paper summarizes the current mainstream rollover stability model, hardware system and rollover warning algorithm. Through the simulation to calculate the roll angle measurement, more automobile side tumbling stability. And nowadays the most novel through the DPS to get the car's side angle, lateral acceleration and other data to alert. In this paper, based on the comparison of the advantages and disadvantages of the various schemes on the current car rollover stability analysis and early warning research made a certain degree of review.

Keywords:rollover model, rollover warning algorithm, controller, rollover simulation, GPS rollover control system

1.汽车侧翻模型及动态稳定性分析

1.1简明汽车模型

建立模型为研究汽车侧翻提供了很大的便利。合适的模型可以直观反应汽车的运动状态。成光华在分析国内外有关汽车侧翻预警的研究基础上,建立了由“自行车模型”或侧倾平面模型组成的线性三自由度汽车侧翻模型。该模型不仅包含了汽车静态因数,也包含轮胎、悬架等造成的动态因数,是汽车侧翻预警算法和硬件在环仿真的基础。汽车侧翻预警算法中选用汽车的横向载荷转移率作为汽车是否发生侧翻的判断标准,根据汽车左右车轮的载荷LTR(Lateral-load Transfer Rate)的变化,计算汽车模型当前状态距离侧翻的时间值TTR (Time-To-Rollover),对汽车侧翻状态及时地预警。

而对于客车这类形状较为单一的运载工具。覃祯员建立了立柱模型,揭示了侧面结构。依据侧翻试验要求,客车应从水平位置缓慢翻转到不稳定角,在这个翻转过程中车辆不应出现摆动和受翻转速度的影响。在侧翻仿真模拟过程中,可以模拟车辆及翻转平台从水平位置翻转到不稳定角后车辆靠自身重力自由翻转撞击到刚性地面,但为了节省仿真计算时间,笔者将客车翻转过程中与地面接触时刻作为初始仿真时刻,并赋予车辆绕着旋转平台转轴作旋转,其初始翻转角速度ω计算方式如下:式中: m 为车辆整备质量,mm; IXX为转动惯量,kgmm2; ΔH 为车辆从不稳定角翻转到接触地面过程中其质心高度的变化量,mm; r 为车辆在不稳定角位置其质心到翻转平台旋转轴的旋转半径,mm。通过刚性单元模拟生存空间,生存空间与车身地板骨架刚性连接,生存空间与车辆结构件、地面之间无需定义接触,目的是为了观察侧翻过程中侧面结构请入情况。笔者建立了某12 m 客车侧翻有限元仿真模型,如图4 所示。

1.2三自由度汽车模型

金智林等人以运动型多功能汽车为研究对象,在车辆坐标系下建立了其线性三自由度侧翻模型。该模型包括横向、横摆以及侧倾方向的响应及其耦合影响,能反映影响运动型多功能汽车高速急转弯时侧翻的主要因素。此外,考虑汽车侧翻过程中引起的轮胎及悬架变形

因素对车轮侧偏角的影响,建立了线性的轮胎动力学模型。1.3.1 汽车侧翻动力学模型汽车侧翻动力学模型是研究汽车侧翻问题的基础,其形式和复杂程度因不同的研究目的而异。为了研究汽车侧翻动力学基础的一般规律,可以抓住汽车侧翻的主要特征,而对其它影响因素进行简化,建立简单的侧翻动力学模型。

三自由度汽车侧倾模型[59-97],是研究汽车侧倾运动的最为基础的模型。如图1.5 所示,该模型由“自行车”模型和侧倾平面模型组成,包括汽车横向运动、横摆运动以及侧倾运动。运用理论力学可以得到这三个自由度方向反映汽车侧翻运动特性的数学模型,根据数学模型可以分析汽车侧翻指标以及汽车结构参数和随机因素对侧倾运动的影响。祝军等人分析汽车在侧翻和滚翻过程中的受力状态和轮胎或车身与路面的相互作用方式,建立汽车侧翻和滚

翻的运动学和动力学模型,揭示汽车临界侧翻碰撞力与持续作用时间等参数的关系,推导侧翻车辆侧向速度的范围,确定滚筒模型中关键参数的选取方法。

杨利勇利用具有可变形悬架和轮胎的汽车侧翻模型,分析了悬架及轮胎等因素对汽车侧翻的影响,推导出包括轮距变化、举升效应、轮胎转动惯性力矩等因素在内的汽车侧翻阈值公式,突出影响汽车侧翻的悬架因素,为评估悬架对汽车侧翻稳定性影响提供了理论依据。果忽略

了悬架和轮胎侧偏的影响,汽车就视为刚性汽车。刚性汽车做稳态转向时,受力如图1所示。对弯道外侧轮胎的接地点取矩,则有:

∑T= mgB/2- mayhg- FziB= 0

式中,m为汽车质量,g为重力加速度,B为汽车轮距,ay为侧向加速度,hg为质心高度,Fzi为转弯内侧的垂直载荷。当汽车转向时的侧向加速度达到侧翻阈值时,转弯内侧的轮胎载荷Fzi 为零。因此侧翻阈值为:ayg=B/2hg忽略了悬架的影响和轮胎的侧偏,会使计算值比实际值大很多。因此,上式的计算结果通常用来比较汽车的侧翻稳定性。

1.2具有可变形悬架的汽车侧翻模型

具有可变形悬架的汽车侧翻模型的建立稳态转向中,车身会绕侧倾轴线转过角,即: =T K =mayhK (3)式中,T 为作用在车身上的侧倾力矩;m为汽车的质量;h为质心到侧倾中心的距离;K 为汽车悬架组合侧倾角刚度。其中,mhK 表示汽车的侧倾率,即单位加速度的侧倾角。它表明,包括轮胎刚度在内的组合侧倾角刚度,会直接影响汽车的侧倾率。在轮胎发生变形(垂直方向)时,侧倾角会增大,如图2所示。图中,hr为侧倾中心高度,点C为汽车的侧倾中心。同时,车身的侧倾导致了汽车质心的侧向偏移,将使汽车轮距发生一定的变化。车身的侧倾使重心有了沿加速度方向的分力,这个分力反过来又加剧了车身的侧倾。

余强等人针对被动悬架系统侧翻稳定性比较差的问题,提出采用主动悬架系统的方法进行改善。通过汽车侧倾运动状态分析,建立了被动悬架系统、主动悬架系统和控制系统模型。模拟分析得到主动悬架系统使得汽车在弯道行驶时的侧倾角有效值下降了92.8%,侧倾角加速度有效值下降了78.2%,侧翻因子有效值下降了92.6%。结果表明:利用主动悬架系统可以有效地降低汽车非直线行驶时的侧倾角以及侧倾角加速度,提高汽车的侧翻稳定性,是提高汽车非直线行驶状态下安全性的一个合理的解决方案。

2.侧翻控制器

2.1 防侧翻控制器设计

汤敏等人通过对侧向加速度信号反馈控制的方式,计算确定汽车所需的补偿横摆力矩ΔM ,控制器算法采用经典的PID 控制,输入为反馈信号的参考值和实际值的差值e,侧向加速度的参考值设置为0,即控制器的目标是减小扰动输入的作用,控制器的输出

为补偿横摆力矩ΔM ,该防侧翻控制流程图结构如图3.4所示。图3.4 防侧翻控制流程图控制器的触发条件如3.1部分所讲的,当0.8thLTR ≥LTR = 时进行侧翻预警和触发

控制器;施加制动的方式为外前轮制动的差动制动方式。

翁建生等人为了减少汽车侧翻事故,提出了一种基于模型的汽车侧翻预警算法以及在预警基础上的防侧翻控制算法岑达希提出了主动转向技术可以主动改变转向角的大小来调整汽车的运动姿态。本文通过深入分析转向角大小对汽车侧翻的影响,采用主动转向来进行防侧翻控制,并进行了数值仿真分析,分析结果说明主动转向能够通过改变汽车的横摆角速度和侧向

加速度来降低汽车的横向载荷转移率,从而提高了汽车的防侧翻能力。同时该分析结果为主动转向防侧翻控制设计提供依据。差动制动能够通过改变汽车的动力学特性来改变汽车的行驶姿态。本文通过分析单轮差动制动对汽车动力学特性的影响以及差动制动防侧翻控制的基本原理,建立了基于横向载荷转移率的汽车差动制动防侧翻动力学模型,并在此基础上进行数值仿真研究。通过比较了差动制动与普通制动的防侧翻效果来说明差动制动的优越性,然后研究分析了差动制动时制动力大小对汽车运动姿态的影响,为防侧翻控制设计提供依据。

械式主动转向系统的主要工作原理为汽车行驶的运动状态参数由传感器测得,主要参数包括车速,横摆角速度。,方向盘转角占、等,按照预先编制好的控制逻辑,设定附加转角占。的目标值,并通过执行机构将氏叠加到方向盘转角上,实现总的前轮转角今。这样,可以使得转向盘转角和前轮转角的传动比根据汽车的实际行驶状态而发生连续的变化,从而提高汽车的操纵稳定性。那么主动前轮转角应为双行星齿轮机构产生的前轮转角与伺服电机通过转向机构产生的前轮转角之和,

表达式为

刘汪洋等人根据PID控制主动转向技术能够主动改变驾驶员给定的转向轮转角,使得汽车的响应尽可能地与理想响应特性一致,从而提高汽车的操级稳定性。通过深入分析转向角对汽车侧翻特性的影响,釆用主动转向技术进行防侧翻控制,并通过仿真分析说明主动转向能够通过改变汽车的侧向加速度和横摆角速度来降低汽车的横向载荷转移率,因而可以提高汽

车的防侧翻性能。本文采用自适应模糊控制器来对驾驶员模型进行控制。系统的输入为误差和误差变化率,参数可以使用模糊控制规则进行在线修正。该控制系统的原理框图如图所示。

该控制的传递函数可以表达为

其中,分别表示为比例增益,积分增益和微分增益。其中,比例增益尺可以加快系统的崎应速度,从而提高系统的调节精度;积分增益火可以消除系统的稳态误差;微分增益:的主要作用则是在控制过程中抑制误差的变化,从而改善系统的动态特性。

李占旗设计了基于差动制动的横摆稳定性控制算法。算法以汽车的横摆角速度偏

差以及质心侧偏角导数作为控制变量,利用门限值和PID控制方法进行横摆力矩决策,

然后选择效率车轮进行差动制动并通过液压调节实现需求的制动压力,从而实现汽车

的横摆稳定性。通过GM 公司的ESP 评价方法设定的低附着路面工况以及NHTSA 的FMVSS126 法规关于ESP 评价设定的高附着路面工况的仿真验证,表明本文的横摆稳

I 定性控制算法可以有效地提高汽车的横摆稳定性。

综合以上,我们对YSC 与RSC 进行集成的基本思路是:在汽车仅有横摆危险时

把横摆稳定性作为唯一控制目标;仅有侧翻危险时把侧翻稳定性作为唯一控制目标;而兼有横摆与侧翻危险时把横摆与侧翻稳定性作为联合控制目标,并根据横摆与侧翻的危险程度充分协调地实现汽车的横摆与侧翻稳定性。

3.侧翻预警算法

3.1侧翻预警

侧翻预警时间(Time-To-Rollover)定

义为固定当前时刻输入,以当前时刻状态为初始条件,汽车运行到产生侧翻(即一侧轮胎离开地面)的时间.TTR能实现超实时地对汽车进行侧倾平面内的动力学预警.预警算法流程如图2所示.在该算法中,先要建立一个简单且能准确反映汽车侧翻规律性的模型。

在预警算法中,

假设从当前时刻运行到产生侧翻这段时间内汽车外部输入条件不发生变化,而汽车实际行驶时,汽车外部输入可能时刻变化的.由于预警算法计算时间非常短,在完成一次预警的时间内,汽车外部输入变化可以忽略.吴新烨汽车侧翻是道路交通事故的主要形态之一.虽然对汽车横向稳定性,我国有一定的研究,但对于汽车侧翻稳定性的研究还不够深入.汽车侧翻研究根据汽车侧翻理论,建立起汽车侧翻模型,利用Matalab等模拟软件,对汽车的侧翻行模拟,

3.2计算机模拟分析

计算机模拟时,给定φs一个初始值0,在循环计算中每次增加0.01 rad.不断计算式(11)~(13)的值,当Fi= 0时停止.此时可以得到汽车的侧翻阈值ay,簧载质量的最大侧偏角φs,非簧载质量的最大侧偏角φu.由于计算是连续的,所得的参数的变化也是连续的,它们代表了每一个状态的参量值的变化.因此,这个模型就模拟了汽车从开始到即将侧翻时的状态变化,达到对汽车侧翻真实模拟的目的.计算机模拟按要求输入不同的参数,通过计算机编程运算,得到此模型的侧翻阈值;也可以通过该模型不同参数的变化,得到参数变化对汽车侧翻阐值的影响.具体模拟的参数如表1.由表1得ay= 0.270 g,φu= 0.235 rad,φs= 0.238 rad.

3.3侧翻控制器系统硬件原理

张先奎等人设计了基于TMS320LF2407 DSP和XC866 单片机的汽车侧翻预警

器和侧翻控制器软硬件,并将TTR 侧翻预警方法和双飞轮侧翻控制方法应用

到侧翻预警器和侧翻控制器之中。

2407 是具有特殊结构的DSP 微处理器,有多达41 个通道、双向的数字I/O(GPIO)引脚,其中大多数都是基本功能和通用复用引脚[20]。本系统用IOPA3-IOPA5、IOPB0-IOPB3 和IOPE1-IOPE4 作为和外部D/A 模块的接口;2407地址和数据总线用来控制LED显示驱动[22]。选择8位D/A转换芯片DAC0832,片内具有两个输入数据寄存器,电流稳定时间1us,可单缓冲、双缓冲或直接数字输入,单一电源供电(+5V~+15V),低功耗。D/A 模块电路如图 3.6所示。A4-A6 分别对应IOPA3-IOPA5 用于0832 功能控制,D0-D7 对应IOPB0-IOPB3和IOPE1-IOPE4作为2407与0832间的数据线。D/A转换后的模拟信号从VOUT输出[23]。王坤等人在Matlab/Simulink 环境下搭建了半挂汽车二十一自由度非线性车辆动力学仿真模型和控制器模型,分别在阶跃转向工况、鱼钩转向工况和双移线工况下进行了防侧翻控制算法的开环和闭环仿真验证,并对控制效果进行了评价,仿真结果表明控制算法在一定程度上可以有效地防止半挂汽车侧翻。

图 3.1 为防侧翻控制算法总流程图。算法包括四个方面的内容:转弯和转弯类型识别、防侧翻控制阈值的设定、防侧翻控制开始和结束的判定以及防侧翻控制策略。根据图3.1,当防侧翻控制系统开始工作时,系统首先判断半挂汽车是否正在转弯以及转弯类型,然后系统根据相应的转弯类型设定防侧翻控制开始和结束的阈值。当半挂车侧向加速度大于控制开始阈值时,开始防侧翻控制,控制系统向相应的牵引车外侧车轮施加制动压力;当半挂车侧向加速度小于控制结束阈值时,结束防侧翻控制。

4.侧翻仿真

王艳等人采用滤波进行汽车侧翻状态参数的状态估计,然后再采用最为流行也最为普遍的预警算法推算预警值及作为主动控制的参数值。本文利用对状态估计器进行了车辆状态参数的仿真;在防侧翻主动控制中,提出采用参数模糊自整定算法,并仿真验证了参数模糊自

整定控制算法在主动侧翻控制的适用性。

根据以上四种工况下仿真结果图分析可得:在系统未进行主动控制时的绝对值均存在大于的情况,表明汽车均会发生侧翻现象;增加主动控制后,绝对值不会超过,表明汽车均没有发生侧翻。也就是说施加主动控制可以有效的防止汽车侧翻的发生;在前轮转角模拟输入为工况时,由于其转角变化较为缓慢,施加常规的和参数自整定模糊主动控制后,绝对值均可以在时间内稳定在值附近,两种方案控制速度都比较快,并无很大差别;在工况下,施加两种主动控制后与工况相似,对的控制率差别不大;在较为恶劣的工况工况、工况下,由于其前轮转角变化速度很快,通过分析两种主动控制方案的控制结果可知常规控制效果不及参数自整定模糊理想,后者使得系统响应速度更快、更稳。王波等人采用动力学软件ADAMS 对整车的侧翻进行模拟分析,其理论可靠,结果准确可信,且降低试验成本。

5.基于GPS的侧翻控制

张金柱针对汽车稳定性控制关键参数估算的需要,以实时性和准确性为目标,提出了基于

双天线GPS 系统的汽车行驶状态参数与路面附着系数测量与估计方法。提出基于GPS

技术的汽车侧偏角、质心侧倾角、车速等的测量与估计算法;设计了基于双级卡尔曼滤

波的GPS与INS信息融合方法,解决了GPS信号丢失与更新率低的难题;提出基于GPS 的路面附着系数估算算法。实验研究结果表明,GPS测量与估计效果良好,可以满足汽

车稳定性控制器的设计要求。

. GPS 信号接收程序

图3.12为GPS信号接收与处理程序,信号通过串口送入sbRIO-9612 嵌入式系统。

图3.13为GPS信号接收界面。获取汽车稳定性控制所需的汽车行驶状态参数是实现稳定性控制的前提和关键技术之一。针对汽车稳定性控制关键状态参数估算的需要,以实时性和准确性为目标,本章提出了基于GPS 的汽车状态参数测量与估算方法。基于GPS 测姿和测速技术,提出测量与估计汽车质心侧偏角、质心侧倾角和车速等汽车状态参数的方法。采用以双级卡尔曼滤波为基础的GPS与INS信息融合方法,解决GPS信号丢失与更新率低的难题。提出利用GPS与INS 估算路面附着系数和轮胎侧偏刚度的方法。利用LabVIEW测

试平台编写GPS 与INS 测试程序,并利用双轴向光学速度仪检测了在典型汽车行驶工况下汽车状态参数测量与估计的效果。

6.总结与展望

随着交通运输的迅猛发展,汽车交通事故在不断增加,汽车侧翻等重大交通事故尤为突出。现今已成为人们十分关注的课题。在国内外学者以往的侧翻研究中,多注重于侧翻检测和侧翻控制方面的研究,在侧翻预警方面的研究还比较少。而侧翻预警能有效减少人为导致的侧翻事故,具有比较大的研究价值。本文的研究旨在为汽车稳定性,侧翻预警和控制系统的设计和试验提供一种参考方案。主要的工作简述如下:

1.研究了汽车侧翻,建立了三自由度汽车侧翻模型,以这个模型为基础对侧翻预警及控制进行了研究。根据汽车防撞预警系统的工作原理,提出了一种类似TTC 的TTR侧翻预警方法,建立了TTR侧翻预警模型。以卫星姿态控制方法为基础,提出了用于汽车的双飞轮侧翻控制方法,建立了双飞轮模型。并在Simulink中对这些算法和模型进行了仿真分析。结果表明,基于姿态监测的TTR 侧翻预警方法能精确可靠的对汽车的侧翻进行预警,得到的侧翻预警值能用于指导驾驶员的操作和侧翻控制系统的动作。同时结果表明,双飞轮侧翻控制方法能在侧翻危机时刻对汽车侧翻进行控制,为驾驶员提供足够反应和动作时间来采取正确措施以防止侧翻。

2.设计了汽车侧翻预警器和侧翻控制器软硬件。利用SZ-DSPII 开发平台和CCS DSP 开发环境开发了基于TMS320LF2407 的汽车侧翻预警器,并在其中实现了TTR侧翻预警算法。利用Multi Infineon开发平台和Wave 866开发环境开发了基于XC866 的侧翻控制器,并在其中实现了对双飞轮电机的力矩控制驱动和PID侧翻控制算法。

3.设计了硬件在环仿真试验平台。利用PC 机、NI PCI-6024E 多功能数据采集卡、SC-2075端子板和其它外围硬件作为平台硬件,使用VC++和Simulink中的Real-Time Workshop完成了平台软件和数学模型程序,从而实现了HIL仿真平台。在平台上进行了侧翻预警及控制硬件在环仿真试验。结果表明:侧翻预警器能可靠稳定的提供基于汽车姿态监测的侧翻预警信息,侧翻控制器模型也能在紧急时刻对汽车侧翻进行有效控制。本文从理论研究入手,研究了基于姿态监测的侧翻预警及控制方法,将这些方法应用到侧翻预警器及控制器的设计中,设计了硬件在环仿真试验平台,最后在平台上进行了试验验证,基本上完成了任务要求。汽车侧翻预警及控制方案能有效的预测汽车的侧翻并对侧翻进行控制,提高汽车的侧向稳定性,减少侧翻事故的发生。利用侧翻预警和侧翻控制相结合来提高汽车安全性的方法必然会受到越来越多人的重视。

参考文献

[1]主动悬架系统对汽车侧翻稳定性改善分析_余强

[2] 重型汽车的侧翻稳定性分析方法的研究_王波

[3] 运动型多功能汽车防侧翻控制与评价方法研究_汤敏

[4] 运动型多功能汽车侧翻稳定性及防侧翻控制_金智林

[5] 影响汽车侧翻的悬架因素分析_杨利勇

[6] 一种改进的汽车侧翻模型及其应用研究_宋小文

[7]汽车侧翻预警系统的研究_王庆一

[8] 汽车侧翻预警及防侧翻控制_金智林

[9] 汽车侧翻稳定性研究_吴新烨

[10] 汽车侧翻和滚翻事故建模研究_祝军

[11] 客车侧翻试验上部结构强度分析及改进措施_覃祯员

[12] 基于姿态监测的汽车侧翻预警及控制研究_张先奎

[13] 基于主动转向与差动制动的汽车防侧翻控制研究_岑达希

[14] 基于驾驶员模型的汽车防侧翻控制研究_刘汪洋

[15] 基于动态稳定性的汽车侧翻预警_金智林

[16] 基于差动制动的汽车横摆与侧翻稳定性集成控制研究_李占旗

[17] 基于差动制动的汽车横摆与侧翻稳定性集成控制研究_李占旗(1)

[18] 基于TTR的汽车侧翻预警器设计_成光华

[19] 基于GPS的载重汽车侧翻控制与仿真_喻云龙

[20] 基于GPS的汽车稳定性控制系统研究_张金柱

[21] 基于DSP的汽车防侧翻控制系统的研究_王艳

[22] 飞行汽车陆地行驶的侧翻稳定性研究_杨林

[23] 大型露天矿山电动轮汽车侧翻典型事故分析及控制_张伟旗

[24] 半挂汽车防侧翻控制算法研究_王坤

汽车侧翻分析

汽车侧翻分析在汽车行驶中中,侧翻是其中一种最为严重并且威胁成员安全的事故。侧翻可以定义为能够使车辆绕其纵轴旋转90度或更多以至于车身同地面接触的任何一种操纵。侧翻可以由一个或一系列综合因素产生。它可以发生在平直的水平地面上,并且车辆的侧向加速度达到一定的数值,该数值要超过车辆侧面重量转移到车轮上所抵消的加速度值。 通过有坡度的路面(或无路情况)时由于不平路面的冲击,地面松软或其他障碍物会促使侧向压力提高从而使车辆“失足”。 侧翻过程是一个包括作用在车辆上和车辆里的力的相互作用的复杂过程。侧翻受操纵和高速公路的影响。人们已经通过理论分析以及包括一系列复杂设备的模型实验研究侧翻过程。这个过程很容易通过静态基本结构实验来理解(忽略惯性和滚动平面上的加速度),并且促进发展更加复杂的模型。 1、刚性汽车的准静态侧翻 汽车侧翻的最基本的机械特性可以通过考查转弯过程中稳定车身的受 力均衡性来了解。稳定的车辆是 指悬架和轮胎的偏置在分析中被 忽略掉。在转弯操纵中,侧向力 作用在地面上来平衡作用在汽车 重心上的侧向加速度,如图9-2 所示。侧向力作用在车辆上的位 置的不同产生一个力矩,该力矩

使车辆向如图所示的外侧侧翻. 为了分析转动情况,假定汽车在稳定状态以使汽车没有滚动加速度,并且使轮胎如图所示受力(前轮和后轮)。在很多公路环境中,它也适合考虑横向坡度。如大家所知的坡度和道路转弯处汽车外侧比内侧高出的程度。在分析中,将角度表示为”?”,想左下的 坡度表示正角。这个方向的坡度有助于 平衡侧向加速度。斜坡角度通常情况下很小,而且角度很小时约有()1cos ,sin ==???。以汽车接地点为中心的力矩关系为: 02=-+-t zi y Mg t F Mh h Ma ? (9-1) 从式(9-1)我们可以得出a y : h t Mg F h t g a zi y -+=?2 (9-2) 在水平路面上(0=?),没有侧向加速度,方程也成立。此时,内侧车轮载重,F zi ,是车总重的一半。另外通过正确选择坡面角度,可以使F zi 保持在具有侧向加速度的汽车重量的一半.,即通过公式: g a y =? (9-3) 在公路设计中,坡面被准确用在曲率设计中。在给定半径和预定行驶速度的情况下,恰当的选择坡面以产生一个侧向加速度,这个加速度在0~0.1的范围内。在道路外侧比内侧高的曲度下汽车具有加速度为零时的速度称为中间速度。 重新回到方程(9-2),随着侧向加速度的增大,内侧车轮上的负载必定减少。正是通过这个过程,汽车在转弯过程中能够去抵抗或抵消侧翻运动力矩。当内侧车轮负载为零时极限转弯情况就会发生(所有的负载转移到外侧车轮上)。在此极限位置侧翻将会开始发生,这是因为汽车不能继续维持在滚动平面上的平衡。侧翻开始时的侧向加速度是临界加速度,并由公式给出: h h g a t y ?+=2 (9-4) 没有坡度时,使侧翻发生的侧向加速度的临界值仅仅是??。这种简单的侧翻临界点的估算过去常常用在汽车抵抗侧翻运动的性能的估算中。该公式非常简便,应为它只需要两个汽车参数—轮距和重心高度。然而,这种估算却很保守(预测的侧翻临界值比精确值大很多),该公式主要用来比较汽车性能而不是预测绝对的性能水平(一些动力学专家利用这种侧翻临界点逆形式t h 2作为汽车侧翻

汽车电子标准

汽车电子标准 GB/T 17349.1—1998 道路车辆汽车诊断系统词汇 GB/T 17349.2—1998 道路车辆汽车诊断系统图形符号 GB/T 19951—2005 道路车辆静电放电产生的电骚扰试验方法 GB/T 21436—2008 汽车泊车测距警示装置 GB/T 21437.1—2008 道路车辆由传导和耦合引起的电骚扰第1部分: 定义和一般描述 GB/T 21437.2—2008 道路车辆由传导和耦合引起的电骚扰第2部分: 沿电源线的电瞬态传导 GB/T 21437.3—2012道路车辆由传导和耦合引起的电骚扰第3部分: 除电源线外的导线通过容性和感性耦合的电瞬态 发射 GB/T 22630—2008 车载音视频设备电磁兼容性要求和测量方法 GB/T 26149—2010 基于胎压监测模块的汽车轮胎气压监测系统 GB/T 26775—2011 车载音视频系统通用技术条件 GB/T 26776—2011 道路车辆3.5 t以上的商用车报警系统 GB/T 28045—2011 道路车辆42V供电电压的电气和电子设备电气 负荷 GB/T 28046.1—2011 道路车辆电气及电子设备的环境条件和试验第 1部分:一般规定 GB/T 28046.2—2011 道路车辆电气及电子设备的环境条件和试验第 2部分:电气负荷 GB/T 28046.3—2011 道路车辆电气及电子设备的环境条件和试验第 3部分:机械负荷 GB/T 28046.4—2011 道路车辆电气及电子设备的环境条件和试验第 4部分:气候负荷 GB/T 28046.5—2013 道路车辆电气及电子设备的环境条件和试验第5 部分:化学负荷 GB/T 29259—2012 道路车辆电磁兼容术语 GB/T 30038—2013 道路车辆电气电子设备防护等级(IP代码) QC/T 949—2013 车载音频播放器技术条件 ********* GB 14023—2006 GB 14023—2011 车辆、船和内燃机无线电骚扰特性用于保护车外 接收机的限值和测量方法 GB 20816—2006 车辆防盗报警系统乘用车 GB/T 4365—2003 电工术语电磁兼容GB/T 4365—1995 GB/T 17619—1998 机动车电子电器组件的电磁辐射抗扰性限值和测 量方法 GB 18655—2002 GB/T 18655—2010 车辆、船和内燃机无线电骚扰特性用于保护车载 接收机的限值和测量方法 GB/T 19391—2003 全球定位系统(GPS)术语及定义 GB/T 19392—2013 汽车GPS导航系统通用规范GB/T 19392—2003 GB/T 26773—2011 智能运输系统车道偏离报警系统性能要求与检 测方法

关于汽车尾气研究报告

关于汽车尾气研究报告 关于汽车尾气排放的调查报告 XXX实验小学四.五王XX 【调查背景】在人民生活水平日新月异的今天,汽车数量正在飞速地增长,再给人类生活带来方便的同时,汽车尾气对环境的污染越来越严重,导致空气质量下降、危害气体快速增长,对人民的身体健康造成了极大危害,甚至关系到人类的生存。 【调查时间】XX年8月15日。 【调查地点】东营市东营区西二路与济南路交叉路口(银座一店路口)。 【调查目的】调查汽车尾气的排放情况,调查汽车尾气对环境和人类的影响。 1、汽车排放的有害气体及危害: 汽车排放的尾气中,含有一种氧化碳、碳氢化合物、氮氧化物、铅化合物等,据调查统计,汽车发动机每燃烧1千克汽油,要消耗15千克的新鲜空气,同时排出150——200克的一氧化碳、4—8克的碳氢化合物这三种气体,这样算来,1辆轿车1年排出的有害废气可达自身重量的4倍。 对整个地球来讲,这些汽车排放的废气,造成了臭氧层的破坏,使地球温度升高,同时也使云层中酸性增高,形成酸雨;

对植物来讲,这些汽车排放的废气,当污染物浓度很高时,会对植物产生急性危害,使植物叶表面产生伤斑,或者直接使叶枯萎脱落,造成植物产量下降,品质变坏; 对人类来讲,汽车排放的有害气体和颗粒,刺激人体呼吸道,使呼吸系统的免疫力下降,导致暴露人群慢性气管炎、支气管炎及呼吸道困难的发病率升高、肺功能下降等一系列症状,由于汽车尾气多排放在米以下,因此,儿童吸入的汽车尾气量为成人的2倍,居住在商业区、交通干线附近的儿童,他们血液中铅的含量比远离干线的儿童高得多。汽车尾气对儿童的危害是不可低估的,长期吸入这些气体,可发生贫血、眼病、肾炎等,有人称上述病为"城市儿童交通病"。当血液中铅的浓度100毫升超过36微克时,约有二分之一的儿童智力会发生障碍。 2、东营的汽车废气排放情况:经分时段统计,交通繁忙时段(上下班高峰期)东营区西二路与济南路交叉路口过往车辆为每十分钟180-260辆,每天大约为6小时;非拥堵时间为每十分钟100辆左右,每天大约12小时。照此推算,仅该路口每天过往车辆16000余量。截至去年底,东营有汽车376358量,按每辆车一年排放废气6吨计算,这些车辆一年可排放废气230余万吨,对地球及人类造成的危害是非常巨大的。 1、尽量少开汽车。一是多步行或骑自行车,二是少开

汽车电子可靠性测试及相关标准

电子设备可靠性 测试标准 1、ISO 国际标准化组织中,ISO/TC22/SC3 负责汽车电气和电子技术领域的标准化工作。汽车电子产品的应用环境包括电磁环境、电气环境、气候环境、机械环境、化学环境等。目前ISO 制订的汽车电子标准环境条件和试验标准主要包含如下方面: ISO16750-1:道路车辆-电子电气产品的环境条件和试验:总则 ISO16750-2:道路车辆-电子电气产品的环境条件和试验:供电环境ISO16750-3:道路车辆-电子电气产品的环境条件和试验:机械环境ISO16750-4:道路车辆-电子电气产品的环境条件和试验:气候环境ISO16750-5:道路车辆-电子电气产品的环境条件和试验:化学环境ISO20653 汽车电子设备防护外物、水、接触的等级 ISO21848 道路车辆-供电电压42V 的电气和电子装备电源环境

国内目前汽车电子产品的环境试验标准主要还是按照产品的技术条件来规定。全国汽车标准化技术委员会(SAC/TC114)正在参照ISO 标准制订相应的国家和行业标准。 ISO 的标准在欧美车系的车厂中得到了广泛采用,而日系车厂的要求相对ISO 标准来说偏离较大。为了确保达到标准的限值,各汽车车厂的内控的环境条件标准一般比ISO 的要求要苛刻。 2、AEC 系列标准 上个世纪九十年代,克莱斯勒、福特和通用汽车为建立一套通用的零件资质及质量系统标准而设立了汽车电子委员会(AEC),AEC 建立了质量控制的标准。AEC-Q-100 芯片应力测试的认证规范是AEC 的第一个标准。AEC-Q-100 于1994 年首次发表,由于符合AEC 规范的零部件均可被上述三家车厂同时采用,促进了零部件制造商交换其产品特性数据的意愿,并推动了汽车零件通用性的实施,使得AEC 标准逐渐成为汽车电子零部件的通用测试规范。 经过10 多年的发展,AEC-Q-100 已经成为汽车电子系统的通用标准。在AEC-Q-100 之后又陆续制定了针对离散组件的 AEC-Q-101 和针对被动组件的AEC-Q-200 等规范,以及 AEC-Q001/Q002/Q003/Q004 等指导性原则。

基于Matlab的客车转向侧翻稳定性分析(精)

基于Matlab 的客车转向侧翻稳定性分析 摘要:本文主要对客车转向行驶时的侧翻情况进行了研究,建立了客车在行驶过程中转向时的数学模型,推导出了稳态转向时客车侧翻临界车速的计算公式,并结合某客车结构参数和路面附着条件进行了仿真,得出了通过提高客车的抗侧翻性能来提高客车的行驶稳定性的方法。 关键词:客车;转向侧翻;稳定性分析;Matlab 0 引言 侧翻是指汽车在行驶过程中绕其纵轴转动900 或更大的角度,以至车身与地面相接触的一种极其危险的侧向运动。汽车侧翻可分为两类:一是曲线运动引起的侧翻,二是绊倒侧翻。 曲线运动引起的侧翻是指汽车在道路(包括侧向坡道)上行驶时,由于汽车的侧向加速度超过一定限值,使得汽车内侧车轮的垂直反力为零而引起的侧翻[1]。 客车车身和质量比轿车等小型车大得多,而且其地板一般都比较高,在转向侧翻事故中,车体将向某一侧倾倒,与地面接触的侧围会产生变形,结构的变形可能侵入车厢内部,对乘客造成伤害[2]。而侧翻试验是较难实施的且成本较大,本文通过建立客车侧翻的数学模型,在Matlab 中进行仿真来分析影响客车转向行驶稳定性的因素,从而为提高客车的操纵稳定性,在设计阶段保证客车结构参数的合理性,避免车辆行驶发生翻车事故奠定理论基础。 1 车辆转向侧翻模型 客车的前后桥一般采用非独立悬架,在行驶过程中遇到弯道或避开障碍物时需要紧急转向。转向时车辆的质心绕转向瞬心C 作圆周运动。Rr 为转向瞬心C 到后内侧车轮的转向半径;Rf 为转向瞬心C 到前内侧车轮的转向半径;θ 为汽车转向轮转过的角度;L 为汽车的轴距;汽车质心到前桥距离为a;汽车质心到到后桥距离为b。 2 车辆转向时的受力分析 车辆在转向时,会使车身向外侧倾斜,Gs 为客车车身的悬挂质量受的重力;Gu1 为客车前桥的非悬挂质量受的重力;Gu2为客车后桥的非悬挂质量受的重力;Fyi1,Fyi2 分别为地面给转向内侧车轮的侧向附着力;Fyo1,Fyo2 分别为地面给转向外侧车轮的侧向附着力;Fzi1,Fzi2 分别为地面给转向内侧车轮的支撑反力;Fzo1,Fzo2 分别为地面给转向外侧车轮的支撑反力;Fsy 为客车车身的悬挂质量转向时产生的侧向力;Fuy1,Fuy2 为前后车桥非悬挂质量产生的侧向力。

汽车侧翻预警系统(精)

汽车侧翻预警系统 本课题考虑到汽车侧翻事故的频发和其对生命财产损害巨大的现状,尤其针对长途货运车辆由于驾驶员疲劳以及稳定性受载荷量影响所导致的侧翻事故,设计了一款经济实用的汽车侧翻报警系统。该汽车侧翻报警系统不断检测汽车的水平和竖直方向的加速度,实时与由汽车参数确定的汽车侧翻阈值比较。当检测到潜在的侧翻危险时,依据危险程度发出相应的声光报警信号。本文建立了汽车的刚体模型作为分析汽车侧翻阈值的物理模型,该模型结构简单并且由其得出的阈值表达式易于处理。针对货车每次载重量和所载货物装配高度各异的特点,该模型包含了利用货物质量和高度确定质心位置的公式。该模型计算的侧翻阈值与实际侧翻阈值比较,阈值误差小于0.07,完全可以满足汽车侧翻预警的要求。本课题的硬件设计包括:微处理器模块、传感器模块、显示模块、信息录入模块、电源模块和报警模块。用以实现参数录入和显示、加速度信息的采集和 远距离传输、侧翻危险的判断和依据危险程度发出相应声光报警信号的功能。 为保证汽车侧翻预警系统的实时性,程序基于μC/OS-Ⅱ编写。本设计建立键值 输入显示任务,实现相应汽车参数的赋值和该值在显示模块上的显示。建立读取传感器任务,实现加速度值的读取。建立了报警任务,该任务将录入参数带入模 型公式,计算出阈值,并根据加速度值和阈值的比较结果判断报警方式并报警。 同主题文章 [1]. 李晓娟,王敏. 智能汽车行驶记录仪的研究与实现' [J]. 科技信息. 2009.(29) [2]. 陈勇,黄席樾,杨尚罡. 汽车防撞预警系统的研究与发展' [J]. 计算机仿真. 2006.(12) [3]. 项雷军,郑力新. 基于ARM的万能材料试验机控制器' [J]. 机械与电子. 2007.(02) [4]. 北京研成汽车行驶记录仪' [J]. 中国科技产业. 1996.(06) [5]. 王兴亮,任雅祥,陈岁生. 光纤溶解氧在线测量仪表的设计' [J]. 机电工程. 2009.(01) [6]. 吉国光. 汽车行驶途中渗漏故障应急经验' [J]. 世界汽车. 2003.(01) [7]. 沈阳工业大学专家、学者简介──李荣德教授' [J]. 沈阳工业大学学报. 1998.(02)

翻车事故分析

HEBEI UNITED UNIVERSITY 安全系统工程论文 论文题目:翻车事故分析 学号: 学生姓名: 专业班级: 学院: 指导教师: 2012年05月20日

目录 一翻车事故树的构造 (2) 二事故树的定性分析 (4) 1.求最小径集 (5) 2.结构重要度分析 (5) 3.结论 (6) 4.建议 (6) 三翻车事故安全检查表 (6) 附:翻车事故图 (8)

翻车事故分析 摘要据统计,在道路交通事故中,因汽车翻车造成的事故占整个事故的42%以上。汽车翻车后不但造成经济损失,而且造成人员伤亡,结果是很难让人接受的。研究、探讨汽车发生翻车事故的愿因,采取预防措施,是十分必要的,也是非常有意义的。对其采用事故树分析的方法进行分析,寻找出可能导致该事故发生的中间事件和基本事件,计算出事故树的三个最小径集,并计算出各基本事件的结构重要度。车速过快的结构重要度最大,因此,限制车速是减少翻车事故最有效和最关键的手段。在此基础上,制作出安全检查表,为事故的预防和评价提供依据。 关键词翻车事故事故树安全检查表车辆失稳 一翻车事故树的构造 翻车是指部分或全部车轮悬空、车身着地的现象,通常指车辆没有发生其他事态而造成的翻车。翻车是一种复杂的事故,很大程度上受司机、道路状况以及车辆的设计的影响。”专家表示,在道路交通事故中,汽车翻车事故不仅会造成巨大经济损失,而且极易造成人员伤亡。那么,造成翻车的原因都有哪些?作为驾驶员又该如何尽量避免此类事故的发生呢? 车速过快导致翻车: 因车速过快,驾驶员在道路交叉口见到前方转盘时,猛打方向,容易导致车辆侧翻。车速过快,当对面过来车辆,两车会车时方向盘转动过多,容易导致了惨剧的发生。车辆飞速行驶,容易导致车辆失控导致翻车。有效控制车速,避免驾驶员对车辆控制的失控情况,对于防止翻车发生最为重要。 已知危险状态的翻车因素: 冰雪道路翻车:在冰雪道路上行驶时,由于轮胎与路面之间的附着力小,容易使车辆侧滑、摆头。如果车速较快,极易导致翻车 雨后路滑造成翻车:下雨后,由于路面不平造成积水,车辆与地面之间的摩擦系数变小,使得车辆在快速行驶和刹车过程中容易因侧滑而翻车。 山路高低不平导致翻车:山路行车是非常危险的。山路绕山而行,大多高低不平且较窄,易发生翻车事故。 标志标线不全导致翻车:在行车过程中看懂交通语言是至关重要的,比如什么是单行道、

浅析项目管理方法在汽车电子研发项目中的应用

96 项目管理技术 PROJECT MANAGEMENT TECHNOLOGY 2014年5月第12卷第5期 浅析项目管理方法在汽车电子研发项目中的应用 * 刘跃 1 唐臣玉 1 戴超 2 (1.重庆邮电大学经济管理学院,重庆400065;2.工信部电信研究院西部分院,重庆400065) 摘要:汽车在国内的快速普及带动了汽车电子产业的繁荣,而在汽车电子研发项目中如何应用项目管理的思想进行研发项目过程管理,一直是影响汽车电子研发项目顺利推进的主要问题。以汽车电子研发项目为主体,结合项目管理理论,从项目管理的主要要素出发,探讨其在汽车电子研发项目过程中的实际应用。*基金项目:重庆市2013年度决策咨询与管理创新重点项目支持“车联网产业发展战略研究与决策咨询(cstc2013jccxB40001)”。 关键词:项目管理;汽车电子;研发项目 0引言 随着汽车行业的高速发展,车载的各种电子 设备,已不止是为了满足机动控制和安全的需要,更是融入了娱乐、时尚、便利、出行等方面的各种资讯和应用,车载终端及车联网等应时而生。这一趋势的发展,带动了汽车电子的繁荣,也吸引了大量厂商加入到汽车电子这一领域。但是,汽车电子属于高新技术产业,汽车电子研发项目,一方面,需要掌握关键技术的专业人才;另一方面,在研发过程中更加需要懂项目管理的复合人才。为了提高汽车电子研发项目过程的可控性及结果的可靠性,有必要在汽车电子研发项目中引入项目管理的思想,本文从项目管理各要素出发,重点论述项目研发过程中所应着力的控制点及相关问题。 1中国汽车电子研发项目现状 目前,中国汽车电子研发项目在国内汽车产 业飞速发展的带动下,呈现出一片繁荣景象。但在这种繁荣背后所隐藏的,是国内汽车电子研发项目核心技术和管理技术的缺失。我国汽车电子研发项目远不能适应汽车工业的发展需要,当汽车市场繁荣时,旺盛的需求掩盖了汽车电子研发 项目的所有矛盾,当汽车市场遇冷时,依靠简单重复劳动的汽车电子研发项目不堪一击,无法推出适合市场的产品。此外,电子信息产业在规模、人才和产品等方面对汽车电子研发项目的支撑功不可没。简言之,汽车电子研发项目是电子信息与汽车工业相互交叉、社会分工不断细化而形成的新兴研发项目,汽车电子研发项目在很大程度上取决于电子信息技术与汽车工业的融合度。 1.1汽车电子研发项目的发展趋势 (1)汽车技术与信息技术的融合。汽车电子 是一个跨界的行业,汽车电子研发项目是信息技术在汽车行业的基础上进行的具体产品应用开发。随着信息及微电子技术的发展,智能汽车概念的提出,广大用户对汽车电子产品提出了更高的要求,这就需要对研发项目提出高要求,以市场需求引领技术开发,将信息技术与汽车进行深度融合,更加广泛地便利人们的日常生活。未来汽车电子研发项目的演进方向,必将是打破各种设备之间的隔阂,实现信息的无缝整合和自由交换,及用户和使用模式的无缝切换。 (2)人才与科技聚集。随着汽车电子产品及智能汽车的进一步发展,汽车电子研发项目对人才的需求将进一步提高。汽车电子注定了是人才和科技密集型,需要掌握汽车制造、电子技术、软件开发、电子科技的跨界人才。汽车电子研发

汽车尾气控制方法研究综述

汽车尾气控制方法研究综述 由于汽车运行严重的分散性和流动性, 因而也给净化处理技术带来一定的限制。除了开发在机内净化技术外, 还要大力开发机外净化处理技术。一是控制技术, 主要是提高燃油的燃烧率, 安装防污染处理设备和采取开发新型发动机; 二是行政管理手段, 采取报废更新, 淘汰旧车, 开发新型的汽车( 即无污染物排放的机动车) , 从控制燃料使用标准入手。 一、汽车燃油的改用 1、采用无铅汽油,以代替有铅汽油,可减少汽油尾气毒性物质的排放量。 首先应抓汽车油的改用。以无铅汽油代替四乙基铅汽油。这种汽油是用甲荃树丁醚作渗合剂,它不仅不铅,而且汽车尾气排出的一氧化碳、氮氧化合物、碳氢化合物均会减少。目前,我国为了减少汽车尾气排放量,改善城区大气环境质量,国家规定从1999年7月1日起在全国范围内根本上使用含铅汽油。2000年7月1日起,市场根本上出售有铅汽油。因有铅汽油中,它加入了一种抗爆剂――四乙基铅,它具有很高的挥发性,甚至在0摄氏度时就开始挥发,而挥发出的铅粉末,以蒸气及烟的动工存在空气中。但铅的污染程度与交通密度(每小时通过的车辆数)以及汽油中铅的含量有密切关系。 虽然我国城市的交通密度比发达国家的密度低,但有铅汽油燃烧带来的铅的污染程度不可忽视。因铅是一种蓄积毒物,它通过人的呼吸、饮水、食物等途径进入人体。对人体的毒性作用是侵蚀造血系统、神经系统以及贤脏等。诸如对血管系统、生殖系统以及癌症等毒性作用也可能发生。 2、掺入添加剂, 改变燃料成分。 汽油中掺入15%以下的甲醇燃料, 或者采用含10%水份的水- 汽油燃料, 都能在一定程度上减少或者消除CO、NOx、HC 和铅尘的污染效果。 3、选用恰当的润滑添加剂- 机械摩擦改进剂。 在机油中添加一定量( 比例为3%- 5%) 石墨、二硫化钼、聚四氟乙烯粉末等固体添加剂, 加入到引擎的机油箱中, 可节约发动机燃油5%左右。 4、采用绿色燃料同样可减少汽车尾气有毒气体排放量。 用“植物柴油”, 按照比例掺入到普通柴油中, 可供柴油汽车之用。它可大大减少发动机工作时排放的硫化物、碳氢化合物、一氧化碳和烟尘。据美国的俄亥俄州某研究所用豆油与甲醇、烧碱混合,然后去除其中的甘油,从而可获得“大豆些油”。用“大豆柴油”,以3∶7的比例掺入到普通柴油中,可供柴油汽车之用。它可大大减少发动机工作时排放的硫化物、碳氢化合物、一氧化碳和烟尘。故誉作绿色染料。

汽车侧翻分析分析解析

汽车侧翻分析 在汽车行驶中中,侧翻是其中一种最为严重并且威胁成员安全的事故。侧翻可以定义为能够使车辆绕其纵轴旋转90度或更多以至于车身同地面接触的任何一种操纵。侧翻可以由一个或一系列综合因素产生。它可以发生在平直的水平地面上,并且车辆的侧向加速度达到一定的数值,该数值要超过车辆侧面重量转移到车轮上所抵消的加速度值。 通过有坡度的路面(或无路情况)时由于不平路面的冲击,地面松软或其他障碍物会促使侧向压力提高从而使车辆“失足”。 侧翻过程是一个包括作用在车辆上和车辆里的力的相互作用的复杂过程。侧翻受操纵和高速公路的影响。人们已经通过理论分析以及包括一系列复杂设备的模型实验研究侧翻过程。这个过程很容易通过静态基本结构实验来理解(忽略惯性和滚动平面上的加速度),并且促进发展更加复杂的模型。 1、 刚性汽车的准静态侧翻 汽车侧翻的最基本的机械特性可以通过考查转弯过程中稳定车身的受力均衡性来了解。稳定的车辆是指悬架和轮胎的偏置在分 析中被忽略掉。在转弯操纵中,侧向力作用 在地面上来平衡作用在汽车重心上的侧向 加速度,如图9-2所示。侧向力作用在车 辆上的位置的不同产生一个力矩,该力矩使 车辆向如图所示的外侧侧翻. 为了分析转动情况,假定汽车在稳定状 态以使汽车没有滚动加速度,并且使轮胎如 图所示受力(前轮和后轮)。在很多公路环 境中,它也适合考虑横向坡度。如大家所知 的坡度和道路转弯处汽车外侧比内侧高出 的程度。在分析中,将角度表示为”?”,想 左下的坡度表示正角。这个方向的坡度有助 于平衡侧向加速度。斜坡角度通常情况下很 小,而且角度很小时约有()1cos ,sin ==???。以汽 车接地点为中心的力矩关系为: 02=-+-t zi y Mg t F Mh h Ma ? (9-1) 从式(9-1)我们可以得出a y : h t Mg F h t g a zi y -+=?2 (9-2) 在水平路面上(0=?),没有侧向加速度,方程也成立。此时,内侧车轮载重,F zi ,是车总重的一半。另外通过正确选择坡面角度,可以使F zi 保持在具有侧向加速度的汽车重量的一半.,即通过公式:

汽车侧翻稳定性与预警综述分解

汽车侧翻稳定性与预警综述 摘要:近年来,汽车侧翻事故作为重要的安全问题,受到越来越多的关注。美国高 速公路交通安全管理局统计数据表明,在汽车事故中,侧翻的危害程度仅次于碰 撞事故居第二位。然而,我国目前针对高速急转弯时汽车侧翻动态稳定性及预警方面 的研究还很少。因此,本文总结归纳了目前主流侧翻稳定性模型,侧翻预警的硬件系统与算法。通过仿真来计算侧倾角,来得测算汽车侧翻稳定性。以及时下最为新颖的通过DPS来获得汽车的侧倾角,横向加速度等数据来预警。本文比较了各种方案的利弊,对目前汽车的侧翻稳定性分析及预警研究做了一定程度的综述。 关键字:侧翻模型,侧翻控制器,预警算法,侧翻仿真,GPS侧翻控制系统 Abstract: in recent years, the most important safety problems as vehicle rollover accident, has attracted more and more attention. High U.S.Highway traffic safety administration statistics show that, in a car accident, harm degree rollover after touchHit the house second. However, China's current high speed sharp turning vehicle dynamic rollover stability and rollover warningThe study is also very little. Therefore, this paper summarizes the current mainstream rollover stability model, hardware system and rollover warning algorithm. Through the simulation to calculate the roll angle measurement, more automobile side tumbling stability. And nowadays the most novel through the DPS to get the car's side angle, lateral acceleration and other data to alert. In this paper, based on the comparison of the advantages and disadvantages of the various schemes on the current car rollover stability analysis and early warning research made a certain degree of review. Keywords:rollover model, rollover warning algorithm, controller, rollover simulation, GPS rollover control system 1.汽车侧翻模型及动态稳定性分析 1.1简明汽车模型 建立模型为研究汽车侧翻提供了很大的便利。合适的模型可以直观反应汽车的运动状态。成光华在分析国内外有关汽车侧翻预警的研究基础上,建立了由“自行车模型”或侧倾平面模型组成的线性三自由度汽车侧翻模型。该模型不仅包含了汽车静态因数,也包含轮胎、悬架等造成的动态因数,是汽车侧翻预警算法和硬件在环仿真的基础。汽车侧翻预警算法中选用汽车的横向载荷转移率作为汽车是否发生侧翻的判断标准,根据汽车左右车轮的载荷LTR(Lateral-load Transfer Rate)的变化,计算汽车模型当前状态距离侧翻的时间值TTR (Time-To-Rollover),对汽车侧翻状态及时地预警。

大客车侧翻原因分析

大客车侧翻原因分析 侧翻事故作为所有道路交通事故中致命率极高的恶性交通事故,对国民经济与人身安全具有很大的危害。汽车侧倾稳定性在行車安全中的问题越来越突出,交通事故中侧翻事故所占的比例逐年递增。目前国内在防侧翻控制方面的研究还处于理论研究阶段,防侧翻控制技术还不成熟,没有成熟可靠的防侧翻控制产品装配车辆。即使是高端的客车车型,采用的也是国外公司匹配的产品,大部分营运车辆并没有装备防侧翻系统。此外,国内公路交通运输普遍的超载现象,更进一步恶化了车辆的侧翻稳定性。本文对大客车侧翻事故进行研究,对55起交通事故进行了调查以及对导致侧翻的原因进行分析,包括对侧翻阈值的分析来评价大客车的侧翻稳定性,从而为主动控制技术、安全驾驶方面、疲劳监测方面等对其预防进行研究分析打下基础。 标签:侧翻原因;交通事故 一、道路交通事故原因分析 道路交通事故的影响因素体系包含四个子系统,第一为用路者因素,第二为道路因素,第三为交通流与车辆因素,第四为环境因素。 (一)用路者因素 驾驶员是道路交通事故的主要因素,引起事故的原因可以分为直接因素和间接因素,直接因素有:感知不准、反应不当、判断失误;间接因素有:生理状况异常、心理状况异常、违章驾驶、驾驶经验不足等。 (二)车辆因素 根据对某高速公路连续三年事故统计资料的分析,由于汽车机械故障所致交通事故占所有事故占所有事故的12.63%。汽车的新旧、性能优劣、维修好坏等都会影响事故的多少。车辆种类的多样化使行驶在路上的车辆尺寸不一、载重相差悬殊,性能差别很大,而驾驶员并不完全熟悉各种车辆的性能与特点,这些都给交通安全造成隐患。 (三)道路因素 道路上交通事故的形成,其表象与直接的诱因多为驾车者的违章或过失,而潜在与间接的因素涉及到道路的线形设计。线形设计通过对驾车者行为的客观干扰,据事故调查显示,事故在道路上会出现明显的集中分布,这与道路因素有关,而道路因素分为道路等级、平面线形、纵断面线形、道路横断面构成和交叉口五个方面。 (四)交通流和车辆因素

汽车尾气处理行业分析报告

内容目录 一、汽车尾气处理是环境污染治理的重要环节 (4) 汽车是机动车大气污染排放的主要贡献者 (4) 汽车污染物主要来自汽油车和柴油车,尾气成分有所不同 (5) 二、机后措施是汽车尾气处理的主流方式,催化器是机后措施的核心 (7) 机后措施是汽车尾气催化处理的主流方式 (7) 催化器是汽车机后尾气处理系统的主要部分 (8) 催化剂是催化器的核心 (9) 汽车催化剂组成之一:载体,主要为蜂窝陶瓷载体 (10) 催化剂组成之二:涂层 (12) 催化剂组成之三:助剂 (13) 催化剂组成之三:活性成分 (13) 三、国六标准推动汽车尾气催化剂配套材料用量大幅增加 (14) 国六是目前全球最严的汽车排放法规之一 (14) 国六的执行加速了机后尾气处理产业链的变革 (16) 汽车机后尾气处理产业链变革之一:催化器的加装 (16) 汽车机后尾气处理产业链变革之二:尾气催化材料用量的大幅提升 (17) (1)蜂窝陶瓷用量的大幅提升 (17) (2)氧化铝用量的大幅提升 (18) (3)沸石分子筛用量的大幅提升 (18) 四、投资建议 (19) 图表目录 图表1:2018 年64%城市环境空气质量未达标 (4) 图表2:2018 年PM2.5 为首要污染物天数占比59% (4) 图表3:移动源为PM2.5 的首要来源 (4) 图表4:机动车一氧化碳(CO)污染主要来自汽车 (5) 图表5:机动车碳氢化合物(CH)污染主要来自汽车 (5) 图表6:机动车氮氧化物(NO x)污染主要来自汽车 (5) 图表7:机动车颗粒物PM 污染主要来自汽车 (5) 图表8:汽车污染物排放有所下降,但仍位于较高位置(万吨) (5) 图表9:汽车污染物主要来自国三国四车型 (5) 图表10:汽车CO 污染物主要来自小型客车 (6) 图表11:汽车HC 污染物主要来自小型客车 (6) 图表12:汽车NOx 污染物主要来自大型货车 (6)

汽车电子电气架构设计与优化措施综述

汽车电子电气架构设计与优化措施综述 摘要现有的技术基础上,大多数汽车都采用大量的通信线路来满足人们对汽车操控性能,降低燃油的消耗率提高出行经济性,给予驾驶者安全舒适的驾驶体验,复杂的通信线路在汽车内部构成了一个系统的电子电气控制系统。本文将针对汽车电子电气架构设计和后期优化做出具体的解决措施,优化汽车电子电气架构设计系统。 关键词汽车电子电气架构;设计;优化措施 现代智能化的网络导航系统在目前的汽车应用范围中已经较为普及,越来越多的先进技术应用都让电子电器构架日益复杂化,在汽车设计流程初期,要更加重视电子电器构架的设计优化,优化好汽车电子电气架构设计措施,能够有效地减轻汽车的质量,降低汽车的生产投入成本,优化汽车各方面的使用性能,提高汽车装备过程中的便捷性[1]。优化汽车电子电气架构开发平台,能够进一步优化与新车型相匹配的电子电气系统,缩短汽车的研发周期从而降低汽车在开发过程中的成本。 1 汽车电子电器架构的未来发展趋势 设计工程师对于汽车电子电器构架都会有不同的设计观念,工程师的设计角度决定了电子电器构架的总体设计。从物理构架方面来说,电子电器构架主要是针对系统的实体形状处理。从逻辑构架方面来说,主要是针对在电子电器构架中没有实体形状的内容来处理。今天的设计角度来说。两种构架之间的设计构架是独立分开的,因此,电子电器构架的设计流程是具有一定复杂性的。 汽车电子电器构架的设计优化工作要在设计流程初期阶段进行,针对电子及电气系统进行重新定义。设计工程师在电子电器构架系统设计时就像在构筑一幢高楼,对电子电器构架的框架模型进行主要的设计以及实测的预算,针对设计思路进行系统优化与改进,满足用户对电子电器系统各方面的需求。 我国现阶段的汽车电子电器构架技术有了极大的进步,电子元件、连接器等主要构件都日益小型化。除此之外,汽车的使用功能越来越多,生产过程的复杂化丰富了汽车电子设计面的内容,并且有效地将电气化容量维持到原来的水平。 2 汽车电子电气架构设计优化所需遵循的规律 汽车电子电器构架进行设计和与优化可以说是一种不可阻挡的趋势,将电子电器的各项功能以及所有原件都集中整合到一个系统当中,结合电子以及电器现阶段的市场价格以及包装情况等各项因素,从而实现各个部件之间最佳性价比的构架优化。 3 汽车电子电气架构的标准系统

汽车稳定性分析及对策研究

86 研究与探索Research and Exploration ·监测与诊断 中国设备工程 2018.02 (上) 近年来,随着社会经济的发展和科学技术的进步,汽车工业和道路建设质量都有了很大程度的改善,因此,汽车的运行速度和制动性能等动力学性能都有了很大的提升。从而使汽车逐渐成为了人们出行过程中使用的普通、快捷、方便的交通工具。但也应该认识到汽车对人类社会的生命财产所造成的伤害和损失。本文将重点研究汽车失稳的原因以及汽车稳定性应对策略。 1?汽车失稳原因分析 区分不同转向特性的车辆,如果某一汽车是转向过度特性的汽车,当车度过高,达到一定的限度时,即便其是处于线性区域内也非常可能会出现失去稳定的情况。而对于转向不足特性的车辆来说,相比转向过度的汽车,在较高的车速时其仍然具有较好的稳定性,从而确保车辆在线性区域内能够得到较好的操控稳定性。具体来说,在非线性区域内由于侧偏角的增大,轮胎的侧向力会逐渐地趋于饱和,从而导致在非线性区域内车辆失去稳定性的概率较大。车辆后轴的侧向力达到一定极限时,这时车辆的后轴会出现横向移动,引发车辆甩尾等其他十分严重事故;在车辆前轴侧向力达到一定极限时,前轴就会出现横向运动,从而导致汽车的驾驶方向出现偏差,方向失控。与此同时,导致车辆失稳的因素还有很多,比如不同路面u 值的摩擦系数,自然界的侧向风,不同的驾驶操纵等。下面列举了一些致使汽车失稳的一些主要因素。 (1)在驾驶员进行紧急刹车或者突然加速等紧急操纵而致使车辆进入非线性区内,这时质心侧偏角会增大,车辆会失去稳定性,驾驶员不能通过操纵方向盘来控制汽车的行驶方向。 (2)转向不足的汽车在不同的驾驶模式下运行时,车辆的轴荷会因为过度的速度变化而转移,在某些情况 下会导致车辆由转向不足转变为转向过度,车辆也会因此失稳。 (3)由于不同的路面其附着系数u 值是不同的,它对汽车行驶特性影响较大。另外,自然界等产生的横向力,道路的纵横曲线同样会对汽车的运行产生影响,进而引发质心侧偏角的增大使车辆失稳。 (4)当汽车突然要变更车道时,往往会产生较高的质心侧偏角。汽车实际的横摆角速度总是滞后于驾驶员对汽车的操作,汽车转向时这种滞后会导致汽车出现相对较高的横摆力矩,在横摆力矩的影响下车辆往往会失去稳定性。 上述主要分析了4条影响汽车稳定性的因素,从上述分析来看,影响车辆稳定性的变量主要包括车辆的横摆角速度和质心的侧偏,在目前国内外的研究中也主要用这两个参数作为理想变量来描述车辆的运行情况。 2?汽车稳定性控制策略分析 汽车稳定性控制技术包括汽车动力学建模、行驶状态观测、失稳控制策略和控制技术产业化。动力学建模则包括面向控制和面向仿真的建模。面向仿真的建模通常采用Carsim、ADAMS 等仿真软件建立仿真模型,面向控制的建模可采用两轮、四轮模型。状态观测通常是指对汽车运行过程中的状态参数的观测,包括对轮缸压力、摩擦系数、轮胎侧向力、纵横向车速等进行的实时观测。在产业化方面通过不断的探索和研究,在国内汽车的生产线中,稳定性控制技术的产业化在逐步实现。控制车辆稳定性的策略主要有以下几个方面。 (1)汽车制动防抱死系统(ABS)。由于车轮在边滚变化状态下与地面的附着力大于车轮处于抱死状态下的附着力,这样不仅可以防止车辆发生侧滑,还可以最大限度缩小制动距离,从而控制车轮的滑移率在20%,制动达到最安全的效果。 汽车稳定性分析及对策研究 杨昌伟,王志荣,冯迪 (长安大学工程机械学院,陕西?西安?710034) 摘要:汽车动力学稳定性是汽车驾驶过程中保持汽车安全的一项十分重要的性能,一直以来都是汽车安全行业研究的热点,其主要是指汽车在行驶过程中不发生侧滑、偏移和侧翻的性能。因此,深入分析汽车在实际运行工况中发生侧滑、偏移、侧翻等危险状况的内在机理,积极研究解决汽车在运行过程中尤其是极限工况下的稳定性的有效应对策略对汽车驾驶安全是十分重要的。 关键词:汽车动力学;稳定性;汽车安全;控制策略 中图分类号:U461.3 文献标识码:A 文章编号:1671-0711(2018)02(上)-0086-02

汽车尾气处理及其利用

汽车尾气的治理及再利用(研究性学习教案) ——排放现状、存在问题和应对措施目前城市机动车尾气污染逐渐为人们所重视,许多大城市已经采取了应对措施,本文针对小城市的特点,从法律、技术等方面提出了小城市机动车尾气排放现状,存在的问题和应对措施。 近几年来,我国汽车产业迅速发展,社会保有量急剧增加。汽车主要集中在城市,成为城市的大气污染物的主要来源。一些城市地区出现的光化学烟雾,重要原因就是汽车排放的碳氢化合物和氮氧化合物,通过阳光紫外线作用,形成有毒烟雾。其突出的危害是刺激人体眼睛和上呼吸道粘膜,引起发炎,严重的引起哮喘,头疼、肺气肿等疾病,甚至使视力和中枢神经等受到损害。汽车尾气中主要污染物:HC,CO,NO X,颗粒物,SO X,臭气等,我国已经开始了全国范围内对汽车尾气的治理,许多大城市已经拥有了完善的监测治理措施,最近几年来,随着经济的高速发展,许多经济发展较好的小城市也开始面临严峻的挑战。 一、我们现居住城市的特征: 1.道路狭窄,径直路段较短,行车速度慢,交通设施不完备,行人交通意识差,车辆行驶连惯性差,给尾气治理带来难度。 2.与农村结合紧密,受经济条件约束,上路车辆类型杂,档次低,车况复杂,路况复杂,机动车尾气排放情况也非常复杂。 3.居住相对分散,人群活动空间较大城市大,人们对机动车尾气的危害认识还停留在城区,面积更大,居民更多的广大农村对此认识不够,导致治理不力。 4.机动车尾气治理工作起步晚,宣传不够,管理者、治理单位、与被管理对象都还处于摸索阶段。 二、社会、环境面临的严峻形势: 1.汽车产量和保有量的迅速增加。 2.城市中大气污染由煤烟型---煤烟-尾气混合型污染转变。

汽车高等动力学分析

侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风、或者曲线行驶时的离心力等的作用,车轮中心沿Y轴方向将作用有侧向力F y,相应地在地面上产生地面侧向反作用力F Y,F Y即侧偏力。 侧偏现象:当车轮有侧向弹性时,即使F Y没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。 侧偏角:车轮与地面接触印迹的中心线与车轮平面错开一定距离,而且不再与车轮平面平行,车轮印迹中心线跟车轮平面的夹角即为侧偏角。 高宽比:以百分数表示的轮胎断面高H与轮胎断面宽B 之比 H/B×100% 叫高宽比. 附着椭圆:它确定了在一定附着条件下切向力与侧偏力合力的极限值。 转向灵敏度:汽车等速行驶时,在前轮角阶跃输入下进入的稳态响应就是等速圆周行驶。常用输出与输入的比值,如稳态的横摆角速度与前轮转角之比来评价稳态响应,这个比值称为稳态横摆角速度增益,也就是转向灵敏度。(即稳态的横摆角速度与前轮转角之比) 稳定性因数:稳定性因数单位为s2/m2,是表征汽车稳态响应的一个重要参数。 侧倾轴线:车厢相对于地面转动时的瞬时轴线称为车厢侧倾轴线。 侧倾中心:车厢侧倾轴线通过车厢在前,后轴处横断面上的瞬时转动中心,这两个瞬时中心称为侧倾中心。 悬架的侧倾角刚度:悬架的侧倾角刚度是指侧倾时(车轮保持在地面上),单位车厢转角下,悬架系统给车厢总的弹性恢复力偶矩。 转向盘力特性:转向盘力随汽车运动状况而变化的规律称为转向盘力特性。 切向反作用力控制的三种类型:总切向反作用力控制,前后轮间切向力分配比例的控制,内外侧车轮间切向力分配的控制。 侧翻阈值:汽车开始侧翻时所受的侧向加速度称为侧翻阈值。 汽车的平顺性:汽车的平顺性主要是保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,主要根据乘员的主观感觉的舒适性来评价。 1.汽车的操纵稳定性:是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。 2.汽车的操纵稳定性是汽车主动安全性的重要评价指标。 3.时域响应与频域响应表征汽车的操纵稳定性能。 4.转向盘输入有两种形式:角位移输入和力矩输入。 5.外界干扰输入主要指侧向风和路面不平产生的侧向力。 6.操纵稳定性包含的内容:1)转向盘角阶跃输入下的响应;2)横摆角速度频率响应特性;3)转向盘中间位置操纵稳定性;4)转向半径; 5)转向轻便性;6)直线行驶性能;7)典型行驶工况性能;8)极限行驶能力(安全行驶的极限性能) 7.转向半径:评价汽车机动灵活性的物理量。 8.转向轻便性:评价转动转向盘轻便程度的特性。 9.时域响应:路面不平敏感性和侧向风敏感性。 10.汽车是由若干部件组成的一个物理系统。它是具有惯性、弹性、阻尼的等多动力学的特点,所以它是一个多自由度动力学系统。 11.车辆坐标系:x轴平行于地面指向前方(前进速度),y轴指向驾驶员的左侧(俯仰角速度),z轴通过质心指向上方(横摆角速度) 12.汽车时域响应可分为不随时间变化的稳态响应和随时间变化的瞬态响应。 13.汽车转向特性的分为:不足转向、中性转向、过多转向。

相关文档