文档库 最新最全的文档下载
当前位置:文档库 › 模式识别作业--两类贝叶斯分类

模式识别作业--两类贝叶斯分类

模式识别作业--两类贝叶斯分类
模式识别作业--两类贝叶斯分类

深圳大学研究生课程:模式识别理论与方法

课程作业实验报告

实验名称:Bayes Classifier

实验编号:proj02-01

姓名:汪长泉

学号:2100130303

规定提交日期:2010年10月20日

实际提交日期:2010年10月20日

摘要:在深入掌握多维高斯分布性质,贝叶斯分类的基础上,用计算机编程实现一个分类两类模式样本的贝叶斯分类器。用matlab编程,并分析了实验结果,得出贝叶斯分类的一般结论。

1. 贝叶斯分类器

贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。 1.1 两类情况

两类情况是多类情况的基础,多类情况往往是用多个两类情况解决的。

① 用i ω,i =1, 2表示样本x (一般用列向量表示)所属的类别。

② 假设先验概率()P ω1,()P ω2已知。(这个假设是合理的,因为如果先验概率未知,可以从训

练特征向量中估算出来,即如果N 是训练样本总数,其中有,N N 12个样本分别属于

2,1ωω,则相应的先验概率:

()/P N N ω≈11,2

()/P N N ω≈2)

③ 假设(类)条件概率密度函数

(|),i p ωx i =1,2

已知,用来描述每一类中特征向量的分

布情况。如果类条件概率密度函数未知,则可以从可用的训练数据中估计出来。

1.2贝叶斯判别方法

贝叶斯分类规则描述为:

如果2(|)(|)P ωP ω>1x x ,则x ∈1ω

如果2(|)(|)P ωP ω<1x x ,则x ∈2ω (2-1-1) 贝叶斯分类规则就是看x ∈ω1的可能性大,还是x ∈2ω的可能性大。(|)i P ωx ,

i =1,2解释为当样本x 出现时,后验概率(|)P ω1x 和(|)P ω2x 的大小从而判别为属于

1ω或属于2ω类。

1.3三种概率的关系――――贝叶斯公式

()()

(|)=

()

i i i p |P P p ωωωx x x (2-1-3)

其中,()p x 是x 的概率密度函数(全概率密度),它等于所有可能的类概率密度函数乘以相应的先验概率之和。

()(|)()i i i p p P ωω==∑2

1

x x

因为()p x 对于所有的类都是一样的,可视为常数因子,它并不影响结果,不考虑。故可采用下面的写法比较后验概率的大小:

1122(|)()(|)()p P p P ωωωω>

<

x x

则有 1

2

x ωω?∈?? (2-1-4)

1.4多类的情况

① ,,...,12m ωωω表示样本x 所属的m 个类别。 ② 先验概率()i P ω, i =1,2,…, m ③ 假设类条件概率密度函数

(|)i p ωx ,i =1,2,…,m 已知,计算后验概率后,若:

(|)i P ωx >(|)j P ωx ?j ≠i

则x ∈i ω类。这样的决策可使分类错误率最小。因此叫做基于最小错误率的贝叶斯决策。 R 1和R 3的分界点是11(/)()p P ωωx =33(/)()p P ωωx 的交点。 R 2和R 3的分界点是22(/)()p P ωωx =33(/)()p P ωωx 的交点。

图2-1-1

图2-1-2

2.实验过程

(a)每个模式类各生成50个随机样本,并在二维图上画出这些样本。m1 =

Columns 1 through 5

0.5426 -0.0190 1.3513 -1.2277 -0.9266

2.9840

3.4340 1.9042 3.9946 3.1342

……

Columns 46 through 50

1.6222 1.1615 1.3431 -0.2037 -0.1563

1.1755 3.3840 0.5198 3.6479 3.4207

m2 =

Columns 1 through 9

2.9272 2.0057 2.2526 2.9692

3.9884

2.4034 1.1650 4.2931 0.7725 2.0623

……

Columns 46 through 50

4.4548 2.4898 2.9933 2.4745 3.7177

2.2946 2.4581 0.7505 0.9102 0.4889

-3

-2-10

12345

-3-2-1012

345

6x

y

2个模式的样本分布

图1 两个模式的样本二维分布图

(b )用模式的第一个特征分量作为分类特征,对(a )中的100个样本进行分类,统计正确分类的百分比,并在2维图上用不同的颜色画出正确分类和错误的样本。

图2 用模式的第一个特征分量作为分类特征

-3

-2-10

12345

x

y

黑色代表正确分类,红色代表错误分类

统计得正确分类j=79,正确分类百分比为79%。

(c )用模式的第二个特征分量作为分类特征,对(a )中的100个样本进行分类,统计正确分类的百分比,并在2维图上用不同的颜色画出正确分类和错误的样本。

-3

-2-10

12345

-3-2-1012

3456x

y

黑色代表正确分类,红色代表错误分

图3 用模式的第二个特征分量作为分类特征

统计得正确分类j=75,正确分类百分比为75%。

(d )用模式的两个特征分量作为分类特征,对(a )中的100个样本进行分类,统计正确分类的百分比,并在2维图上用不同的颜色画出正确分类和错误的样本。

-3

-2-10

12345

-3-2-1012

3456x

y

黑色代表正确分类,红色代表错误分

图3 用模式的两个特征分量作为分类特征

统计得正确分类j=88,正确分类百分比为88% (e )对上述实验结果进行分析说明

由上述实验看见,选用两个特征分量作为分类特征,得到的正确率比用一个特征分量作为分类特征的正确率要高。因此在运用贝叶斯分类器进行分类时,尽可能的选用多个分类特征进行同时判别。

2. 附录

(a )m1=mvnrnd([1 3],[1.5 0;0 1.5],50),m2=mvnrnd([3 1],[1 0.5;0.5 2],50);%产生样本 m1=m1',m2=m2';

plot(m1([1],:),m1([2],:),'.y',m2([1],:),m2([2],:),'.m'); xlabel('x'),ylabel('y'); title('2个模式的样本分布');

(b)j=0,k=0;

for i=1:1:50

p1=((3*pi)^(-1/2))*exp((-1/2)*(((m1(1,i)-1)^(2))/1.5));%模式类1的第一维特征分量概率分布

p2=((2*pi)^(-1/2))*exp((-1/2)*(((m1(1,i)-3)^(2))/1));%模式类2的第一维特征分量概率分布

if p1>p2

plot(m1(1,i),m1(2,i),'.k'),hold on;

j=j+1;

else

plot(m1(1,i),m1(2,i),'.r'),hold on;

k=k+1;

end

end

for i=1:1:50

p1=((3*pi)^(-1/2))*exp((-1/2)*(((m2(1,i)-1)^(2))/1.5));%模式类1的第一维特征分量概率分布

p2=((2*pi)^(-1/2))*exp((-1/2)*(((m2(1,i)-3)^(2))/1));%模式类2的第一维特征分量概率分布

if p1

plot(m2(1,i),m2(2,i),'.k'),hold on;

j=j+1;

else

plot(m2(1,i),m2(2,i),'.r'),hold on;

k=k+1;

end

end

xlabel('x'),ylabel('y');

title('黑色代表正确分类,红色代表错误分类');

disp(j/100);

(c)j=0,k=0;

for i=1:1:50

p1=((2*pi)^(-1/2))*exp((-1/2)*(((m1(2,i)-3)^(2))/1));%模式类1的第二维特征分量概率分布

p2=((4*pi)^(-1/2))*exp((-1/2)*(((m1(2,i)-1)^(2))/2));%模式类2的第二维特征分量概率分布

if p1>p2

plot(m1(1,i),m1(2,i),'.k'),hold on;

j=j+1; %计算正确的分类样本总数

else

plot(m1(1,i),m1(2,i),'.r'),hold on;

k=k+1; %计算错误的分类样本总数

end

end

for i=1:1:50

p1=((2*pi)^(-1/2))*exp((-1/2)*(((m2(2,i)-3)^(2))/1));%模式类1的第二维特征分量概率分布

p2=((4*pi)^(-1/2))*exp((-1/2)*(((m2(2,i)-1)^(2))/2));%模式类2的第二维特征分量概率分布

if p1

plot(m2(1,i),m2(2,i),'.k'),hold on;

j=j+1;

else

plot(m2(1,i),m2(2,i),'.r'),hold on;

k=k+1;

end

end

xlabel('x'),ylabel('y');

title('黑色代表正确分类,红色代表错误分类');

(d)j=0,k=0;

m1=(m1)';

m2=(m2)';

for i=1:1:50

p1=generating2(m1([i],:),[1 3],[1.5 0;0 1]);%模式类1的第二维特征分量概率分布

p2=generating2(m1([i],:),[3 1],[1 0.5;0.5 2]);%模式类2的第二维特征分量概率分布

if p1>p2

plot(m1(i,1),m1(i,2),'.k'),hold on;

j=j+1; %计算正确的分类样本总数

else

plot(m1(i,1),m1(i,2),'.r'),hold on;

k=k+1; %计算错误的分类样本总数

end

end

for i=1:1:50

p1=generating2(m2([i],:),[1 3],[1.5 0;0 1]);%模式类1的第二维特征分量概率分布, generating2的定义参见实验一

p2=generating2(m2([i],:),[3 1],[1 0.5;0.5 2]);%模式类2的第二维特征分量概率分布

if p1

plot(m2(i,1),m2(i,2),'.k'),hold on;

j=j+1;

else

plot(m2(i,1),m2(i,2),'.r'),hold on;

k=k+1;

end

end

xlabel('x'),ylabel('y');

title('黑色代表正确分类,红色代表错误分类');

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.wendangku.net/doc/6212549715.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

大数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

贝叶斯分类作业题

作业:在下列条件下,求待定样本x=(2,0)T的类别,画出分界线,编程上机。 1、二类协方差不等 Matlab程序如下: >> x1=[mean([1,1,2]),mean([1,0,-1])]',x2=[mean([-1,-1,-2]),mean([1,0,-1])]' x1 = 1.3333 x2 = -1.3333 >> m=cov([1,1;1,0;2,-1]),n=cov([-1,1;-1,0;-2,-1]) m = 0.3333 -0.5000 -0.5000 1.0000 n = 0.3333 0.5000 0.5000 1.0000 >> m1=inv(m),n1=inv(n) m1 = 12.0000 6.0000 6.0000 4.0000

n1 = 12.0000 -6.0000 -6.0000 4.0000 >> p=log((det(m))/(det(n))) p = >> q=log(1) q = >> x=[2,0]' x = 2 >> g=0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q g = -64 (说明:g<0,则判定x=[2,0]T属于ω1类) (化简矩阵多项式0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q,其中x1,x2已知,x 设为x=[ x1,x2]T,化简到(12x1-16+6x2)(x1-4/3)+(6x1-8+4x2) -(12x1+16-6x2)(x1+4/3)-(-6x1-8+4x2)x2, 下面用matlab化简,程序如下) >> syms x2; >> syms x1; >> w=(12*x1-16+6*x2)*(x1-4/3)+(6*x1-8+4*x2)*x2-(12*x1+16-6*x2)*(x1+4/3)-(-6*x1-8+4*x2)*x 2,simplify(w) w =

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

Bayes分类器原理

贝叶斯分类器 一、朴素贝叶斯分类器原理 目标: 计算(|)j P C t 。注:t 是一个多维的文本向量 分析: 由于数据t 是一个新的数据,(|)j P C t 无法在训练数据集中统计出来。因此需要转换。根据概率论中的贝叶斯定理 (|)()(|)() P B A P A P A B P B = 将(|)j P C t 的计算转换为: (|)() (|)()j j j P t C P C P C t P t = (1) 其中,()j P C 表示类C j 在整个数据空间中的出现概率,可以在训练集中统计出来(即用C j 在训练数据集中出现的频率()j F C 来作为概率()j P C 。但(|)j P t C 和()P t 仍然不能统计出来。 首先,对于(|)j P t C ,它表示在类j C 中出现数据t 的概率。根据“属性独立性假设”,即对于属于类j C 的所有数据,它们个各属性出现某个值的概率是相互独立的。如,判断一个干部是否是“好干部”(分类)时,其属性“生活作风=好”的概率(P(生活作风=好|好干部))与“工作态度=好”的概率(P(工作态度=好|好干部))是独立的,没有潜在的相互关联。换句话说,一个好干部,其生活作风的好坏与其工作态度的好坏完全无关。我们知道这并不能反映真实的情况,因而说是一种“假设”。使用该假设来分类的方法称为“朴素贝叶斯分类”。 根据上述假设,类j C 中出现数据t 的概率等于其中出现t 中各属性值的概率的乘积。即: (|)(|)j k j k P t C P t C =∏ (2) 其中,k t 是数据t 的第k 个属性值。

其次,对于公式(1)中的 ()P t ,即数据t 在整个数据空间中出现的概率,等于它在各分类中出现概率的总和,即: ()(|)j j P t P t C =∑ (3) 其中,各(|)j P t C 的计算就采用公式(2)。 这样,将(2)代入(1),并综合公式(3)后,我们得到: (|)()(|),(|)(|)(|) j j j j j j k j k P t C P C P C t P t C P t C P t C ?=????=??∑∏其中: (4) 公式(4)就是我们最终用于判断数据t 分类的方法。其依赖的条件是:从训练数据中统计出(|)k j P t C 和()j P C 。 当我们用这种方法判断一个数据的分类时,用公式(4)计算它属于各分类的概率,再取其中概率最大的作为分类的结果。 改进的P(t | C j )的计算方法: 摒弃t(t 1, t 2 , t 3,)中分量相互独立的假设, P(t 1, t 2 , t 3,| C j ) = P(t 1 | C j ) * P(t 2 | t 1, C j ) * P(t 3| t 1, t 2 ,C j ) 注意: P(t 3| t 1, t 2 ,C j )

贝叶斯分类实验报告doc

贝叶斯分类实验报告 篇一:贝叶斯分类实验报告 实验报告 实验课程名称数据挖掘 实验项目名称贝叶斯分类 年级 XX级 专业信息与计算科学 学生姓名 学号 1207010220 理学院 实验时间: XX 年 12 月 2 日 学生实验室守则 一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。 二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。 三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用

或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。 五、实验中要节约水、电、气及其它消耗材料。 六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。 七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。 八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。 九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。 十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。 十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。 学生所在学院:理学院专业:信息与计算科学班级:信计121

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈-CAL-FENGHAI.-(YICAI)-Company One1

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过.

Python实现贝叶斯分类器

关于朴素贝叶斯 朴素贝叶斯算法是一个直观的方法,使用每个属性归属于某个类的概率来做预测。你可以使用这种监督性学习方法,对一个预测性建模问题进行概率建模。 给定一个类,朴素贝叶斯假设每个属性归属于此类的概率独立于其余所有属性,从而简化了概率的计算。这种强假定产生了一个快速、有效的方法。 给定一个属性值,其属于某个类的概率叫做条件概率。对于一个给定的类值,将每个属性的条件概率相乘,便得到一个数据样本属于某个类的概率。 我们可以通过计算样本归属于每个类的概率,然后选择具有最高概率的类来做预测。 通常,我们使用分类数据来描述朴素贝叶斯,因为这样容易通过比率来描述、计算。一个符合我们目的、比较有用的算法需要支持数值属性,同时假设每一个数值属性服从正态分布(分布在一个钟形曲线上),这又是一个强假设,但是依然能够给出一个健壮的结果。 预测糖尿病的发生 本文使用的测试问题是“皮马印第安人糖尿病问题”。 这个问题包括768个对于皮马印第安患者的医疗观测细节,记录所描述的瞬时测量取自诸如患者的年纪,怀孕和血液检查的次数。所有患者都是21岁以上(含21岁)的女性,所有属性都是数值型,而且属性的单位各不相同。 每一个记录归属于一个类,这个类指明以测量时间为止,患者是否是在5年之内感染的糖尿病。如果是,则为1,否则为0。 机器学习文献中已经多次研究了这个标准数据集,好的预测精度为70%-76%。 下面是pima-indians.data.csv文件中的一个样本,了解一下我们将要使用的数据。 注意:下载文件,然后以.csv扩展名保存(如:pima-indians-diabetes.data.csv)。查看文件中所有属性的描述。 Python 1 2 3 4 5 6,148,72,35,0,33.6,0.627,50,1 1,85,66,29,0,26.6,0.351,31,0 8,183,64,0,0,23.3,0.672,32,1 1,89,66,23,94,28.1,0.167,21,0 0,137,40,35,168,43.1,2.288,33,1 朴素贝叶斯算法教程 教程分为如下几步: 1.处理数据:从CSV文件中载入数据,然后划分为训练集和测试集。 2.提取数据特征:提取训练数据集的属性特征,以便我们计算概率并做出预测。 3.单一预测:使用数据集的特征生成单个预测。 4.多重预测:基于给定测试数据集和一个已提取特征的训练数据集生成预测。 5.评估精度:评估对于测试数据集的预测精度作为预测正确率。 6.合并代码:使用所有代码呈现一个完整的、独立的朴素贝叶斯算法的实现。 1.处理数据

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

模式识别大作业

作业1 用身高和/或体重数据进行性别分类(一) 基本要求: 用FAMALE.TXT和MALE.TXT的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。 具体做法: 1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。在分类器设计时可以考察采用不同先验概率(如0.5对0.5, 0.75对0.25, 0.9对0.1等)进行实验,考察对决策规则和错误率的影响。 图1-先验概率0.5:0.5分布曲线图2-先验概率0.75:0.25分布曲线 图3--先验概率0.9:0.1分布曲线图4不同先验概率的曲线 有图可以看出先验概率对决策规则和错误率有很大的影响。 程序:bayesflq1.m和bayeszcx.m

关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes 分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。比较相关假设和不相关假设下结果的差异。在分类器设计时可以考察采用不同先验概率(如0.5 vs. 0.5, 0.75 vs. 0.25, 0.9 vs. 0.1等)进行实验,考察对决策和错误率的影响。 训练样本female来测试 图1先验概率0.5 vs. 0.5 图2先验概率0.75 vs. 0.25 图3先验概率0.9 vs. 0.1 图4不同先验概率 对测试样本1进行试验得图

贝叶斯算法(文本分类算法)java源码

package com.vista; import java.io.IOException; import jeasy.analysis.MMAnalyzer; /** * 中文分词器 */ public class ChineseSpliter { /** * 对给定的文本进行中文分词 * @param text 给定的文本 * @param splitToken 用于分割的标记,如"|" * @return 分词完毕的文本 */ public static String split(String text,String splitToken) { String result = null; MMAnalyzer analyzer = new MMAnalyzer(); try { result = analyzer.segment(text, splitToken); } catch (IOException e) { e.printStackTrace(); } return result; } } 停用词处理 去掉文档中无意思的词语也是必须的一项工作,这里简单的定义了一些常见的停用词,并根据这些常用停用词在分词时进行判断。 package com.vista;

/** * 停用词处理器 * @author phinecos * */ public class StopWordsHandler { private static String stopWordsList[] ={"的", "我们","要","自己","之","将","“","”",",","(",")","后","应","到","某","后","个","是","位","新","一","两","在","中","或","有","更","好",""};//常用停用词public static boolean IsStopWord(String word) { for(int i=0;i

作业1-贝叶斯分类器

作业1、BAYES分类器 算法1. %绘图,从多个视角观察上述3维2类训练样本 clear all; close all; N1=440; x1(1,:)=-1.7+0.9*randn(1,N1); % 1 类440 个训练样本,3 维正态分布 x1(2,:)= 1.6+0.7*randn(1,N1); x1(3,:)=-1.5+0.8*randn(1,N1); N2=400; x2(1,:)= 1.3+1.2*randn(1,N2); % 2 类400 个训练样本,3 维正态分布 x2(2,:)=-1.5+1.3*randn(1,N2); x2(3,:)= 1.4+1.1*randn(1,N2); plot3(x1(1,:),x1(2,:),x1(3,:),'*',x2(1,:),x2(2,:),x2(3,:),'o'); grid on; axis equal; axis([-5 5 -5 5 -5 5]); xlabel('x ');ylabel('y ');zlabel('z '); %假定2类的类条件概率分布皆为正态分布,分别估计2类的先验概率、均值向量、协方差矩阵 p1=N1/(N1+N2); % 1 类的先验概率 p2=N2/(N1+N2); % 2 类的先验概率 u1=sum(x1')/N1; % 1 类均值估计 u1=u1' for i=1:N1 xu1(:,i)=x1(:,i)-u1;end; e1=(xu1*xu1')/(N1-1) % 1 类协方差矩阵估计 u2=sum(x2')/N2; % 2 类均值估计 u2=u2' for i=1:N2 xu2(:,i)=x2(:,i)-u2;end; e2=(xu2*xu2')/(N2-1) % 2 类协方差矩阵估计 %求解2类的BAYES分类器的决策(曲)面,并绘图、从多个视角观察决策面 %bayse 概率概率分布函数 w10=-(1/2)*u1'*(inv(e1))*u1-0.5*log(det(e1))+log(0.52); w20=-(1/2)*u2'*(inv(e2))*u2-0.5*log(det(e2))+log(0.48); W1=-(0.5)*inv(e1); W2=-(0.5)*inv(e2); w1=inv(e1)*u1; w2=inv(e2)*u2; temp=-5:0.1:5; [x1,y1,z1]=meshgrid(temp,temp,temp); val=zeros(size(x1)); for k=1:(size(x1,1)^3) X=[x1(k),y1(k),z1(k)]';

相关文档