文档库 最新最全的文档下载
当前位置:文档库 › 方差计算公式的变形及应用

方差计算公式的变形及应用

方差计算公式的变形及应用
方差计算公式的变形及应用

方差计算公式的变形及应用

江苏 庄亿农

我们知道,对于一组数据x 1、x 2、…x n ,若其平均数为x ,则其方差可用公式

S 2=21)[(1

x x n

-+22)(x x -+…+2)(x x n -]计算出来.我们可以对其作如下变形: 2s =n 1[( x 21+2x -2 x 1x )+( x 22+2x -2 x 2x )+…+( x 2n +2x -2 x n x )]=n

1[ (x 21+x 22+…+ x 2n )+n 2x -2x ( x 1+ x 2+…+ x n )]= n 1[ (x 21+x 22+…+ x 2n )+ n 2x -2n 2x ]=n

1[ (x 21+x 22+…+ x 2n )-n 2x ]=n 1[ (x 21+x 22+…+ x 2n )-n 1(x 1+x 2+…+ x n )2],即2s =n

1[ (x 21+x 22+…+ x 2n )-n

1(x 1+x 2+…+ x n )2].显然当x 1=x 2=…=x n 时,2s =0. 这个变形公式很有用处,在解决有些问题中,巧妙地利用这个变形公式,可化繁为简,具有事半功倍之效.

一、判断三角形形状

例1 若△ABC 的三边a 、b 、c ,满足b+c=8,bc=a 2-12a+52,试判断△ABC 的形状. 解析:因为b+c=8,所以(b+c)2=64,所以b 2+c 2=64-2bc .因为bc=a 2-12a+52,所以b 2+c 2=64-2(a 2-12a+52)=-2a 2+24a -40.由方差变形公式知,b 、c 的方差为2s =

21[(b 2+c 2)-21(b+c)2]= 21[(-2a 2+24a -40)-2

1×64]=-a 2+12a -36=-(a -6)2.因为2s ≥0,则-(a -6)2≥0,即 (a -6)2≤0,而(a -6)2≥0,所以(a -6)2=0,所以a -6=0,所以a=6.所以2s =0,

所以b=c .又b+c=8,所以b=c=4.所以△ABC 是等腰三角形.

二、解方程组

例2 解方程组??

???+==+22493z xy y x . 解析:两个方程,三个未知数,一般情况下是求不出具体的未知数的值的.若考虑利用方差变形公式,则能解决问题.

因为x+y=3,所以(x+y)2=9,所以x 2+y 2=9-2xy .因为xy=

4

9+2z 2,所以x 2+y 2=9-2(49+2z 2)=29-4z 2.由方差变形公式知,x 、y 的方差为2s =21[ (x 2+y 2)-21(x+y)2]=21[2

9-4z 2-21×9]=-2z 2.因为2s ≥0,-2z 2≥0,则2z 2≤0,而z 2≥0,所以z=0.所以2s =0,所以

x=y .又x+y=3,所以x=23,y=23.所以原方程组的解为????

?????===0

2323z y x .

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

样本平均数的方差的推导

样本平均数的方差的推导: 假定从任意分布的总体中抽选出一个相互独立的样本 1,,n x x ,则有 22 (),i i x X E x X σσ== 即每一个样本单位都是与总体同分布的。 在此基础上, 证明样本平均数以总体平均数为期望值。 []121212()() 1 ()1 ()()()1 ()n n n x x x E x E n E x x x n E x E x E x n X X X X n +++==+++=+++=+++= 接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为: 22(())X E X E X σ=- 以下需要反复使用这一定义:

22 2 122 122 2122222 122222 122(())()1(())1 ()()()1()()()()()1()()()()()1x n n n n i j i j n i j i j E x E x x x x E X n E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++ +=-= +++-??=-+-++-? ???=-+-++-+--???? ??=-+-++-+--????=∑∑∑∑222n n n σσ?= 在证明中,一个关键的步骤是()()0i j i j E x X x X ≠--=∑,其原 因在于这一项事实上是i x 与j x 的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。 如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为221 X x N n n N σσ-= ? - 样本方差的期望: 证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。 先构造一个统计量为2 1 () n i i x x S n =-'= ∑,我们来求它的期望。 根据方差的简捷计算公式:()2 2 2X X X n σ = -∑,可得

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

t检验计算公式

t 检验计算公式: 当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。 t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。t 检验分为单总体t 检验和双总体t 检验。 1.单总体t 检验 单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。检验统计量为: X t μ σ-=。 如果样本是属于大样本(n >30)也可写成: X t μ σ-=。 在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差; n 为样本容量。 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显著性进步? 检验步骤如下: 第一步 建立原假设0H ∶μ=73 第二步 计算t 值 79.273 1.63X t μ σ--=== 第三步 判断 因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值0.05(19) 2.093t =,而样本离差的t =1.63小与临界值2.093。所以,接受原假设,即进步不显著。

2.双总体t 检验 双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过0r =。 相关样本的t 检验公式为: t = 在这里,1X ,2X 分别为两样本平均数; 12X σ,2 2X σ分别为两样本方差; γ为相关样本的相关系数。 例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异? 检验步骤为: 第一步 建立原假设0H ∶1μ=2μ 第二步 计算t 值 t = =3.459。 第三步 判断 根据自由度19df n =-=,查t 值表0.05(9) 2.262t =,0.01(9) 3.250t =。由于实际计算出来的t =3.495>3.250=0.01(9)t ,则0.01P <,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 检验。

完全平方公式变形公式专题

半期复习(3)—- 完全平方公式变形公式及常见题型 一、公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二。常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A = (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a +b)2=m,(a—b)2=n,则a b等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x﹣y=1,x2+y 2=25,求xy 得值. 2。若x+y=3,且(x +2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x +y=3,xy=﹣8,求: (1)x2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值、 (四)整体代入 例1:,,求代数式得值、 例2:已知a = x +20,b=x +19,c=x+21,求a 2+b2+c 2-ab-bc-ac 得值 ⑴若,则= ⑵若,则= 若,则= ⑶已知a 2+b 2=6ab 且a 〉b >0,求 得值为

⑷已知,,,则代数式得值就是、 (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6= . (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=。 2、阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值。 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值。 (七)数形结合 1、如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形。 (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系不? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2。 (八)规律探求 15.有一系列等式:

方差分析公式

方差分析公式 (20PP-06-2611:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analPsisofvarianee ,简写为ANOV或ANOV A可用于两个或两个以 上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态 分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完 全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的卩1,卩2,……卩k是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6完全随机设计的多个样本均数比较的方差分析公式 GC=(艺G) 2/N=艺ni , k为处理组数 方差分析计算的统计量为F,按表19-7所示关系作判断。 例19.9某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有 无差别? 表19-8某湖水不同季节氯化物含量(mg/L)

SS 加刖=丄 和 ' 10619.265^ 170 HO:湖水四个季节氯化物含量的总体均数相等,即 卩仁卩2=卩3=卩4 H1:四个总体均数不等或不全相等 a =0.05 先作表19-8下半部分的基础计算。 C=(艺 G ) 2/N= (588.4) 2/32=10819.205 SS 总=艺 G2-C=11100.84-10819.205=281.635 V 总=N-仁31 (工吋 “ 1 广_ (】6二口尸斗/」期.匸尸千 K .IT N "一 - ? r . —I b K V 组间=k-1=4-1=3 SS 组内=SS 总-SS 组间=281.635-141.107=140.465 V 组内=N-k=32-4=28 MS 组间二SS 组间 /v 组间=141.107/3=47.057

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

样本方差的抽样分布

样本方差的抽样分布 样本方差 先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。 在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。[ 从一个样本取n个值y1,...,y n,其中n

估计值可以简单地称为样本方差。同样的证明也适用于从连续概率分布中抽取的样本。 样本方差分布 作为随机变量的函数,样本方差本身就是一个随机变量,研究其分布是很自然的。在yi是来自正态分布的独立观察的情况下,s2服从卡方分布: 所以可求;和 如果y i独立同分布,但不一定是正态分布,那么 如果大数定律的条件对于平方观测值同样适用,则s2是σ2的一致估计量。 抽样分布 抽样分布也称统计量分布、随机变量函数分布,是指样本估计量的分布。样本估计量是样本的一个函数,在统计学中称作统计量,因此抽样分布也是指统计量的分布。以样本平均数为例,它是总体平均数的一个估计量,如果按照相同的样本容量,相同的抽样方式,反复地抽取样本,每次可以计算一个平均数,所有可能

样本的平均数所形成的分布,就是样本平均数的抽样分布。 抽样分布定理 (1)从总体中随机抽取容量为n的一切可能个样本的平均数之平均数,等于总体的平均数,即(E为平均的符号,为样本的平均数,μ为总体的平均数)。 (2)从正态总体中,随机抽取的容量为n的一切可能样本平均数的分布也呈正态分布。 (3)虽然总体不是正态分布,如果样本容量较大,反映总体μ和σ的样本平均数的抽样分布,也接近于正态分布。 样本方差的抽样分布 样本方差的抽样分布是指在重复选取容量为n的样本时,样本方差的所有可能取值形成的概率分布。 χ2分布具有如下性质和特点: (1)χ2分布的变量值始终为正。 (2)χ2(n)分布的形状取决与其自由度n的大小,通常为不对称的正偏分布,但随着自由度的增大逐渐趋于对称,如图7-2所示。 (3)χ2分布的期望为E(χ2)=n,方差为D(χ2)=2n(n为自由度)。 (4)χ2分布具有可加性。若U和V为两个独立的χ2分布随机变量,U~χ2(n1),V~χ2(n2),则随机变量U+V服从自由度为n1+n2的χ2分布。

方差概念及计算公式

方差概念及计算公式 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。 平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中

分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX )=C2D(X ) (常数平方提取); 证: 特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布

2.二项分布 X ~ B( n, p ) 引入随机变量X i(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。 用matlab或c语言编写求导程序 已知电容电压uc,电容值 求电流i 公式为i=c(duc/dt) 怎样用matlab或c语言求解 函数的幂级数展开式

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

样本方差与总体方差的区别

样本方差与总体方差的区别 之前一直对于样本方差与总体方差的概念区分不清,对于前者不仅多了样本”两个字,而且公式中除数是N-1 ,而不是N。现在写下这么写东西,以能彻底把他们的区别搞清楚。 总体方差: 也叫做有偏估计,其实就是我们从初高中就学到的那个标准定义的方差,除数是N。女0果实现已知期望值,比如测水的沸点,那么测量 立的(期望值不依测量值而改变,随你怎么折腾,温度计坏了也好,看反了也好,总之,期望值应该是100度),那么E『(X-期望)人2』,就有10个自由度。事实上,它等于(X- 期望)的方差,减去(X-期望)的平方。”所以叫做有偏估计,测量结果偏于那个”已知的期望值“。样本方差: 无偏估计、无偏方差(unbiased varianee )。对于一组随机变量,从中随机抽取N个样本, 这组样本的方差就是Xi^2平方和除以N-1。这可以推导出来的。如果现在往水里撒把盐, 水的沸点未知了,那我该怎么办?我只能以样本的平均值,来代替原先那个期望100度。同 样的过程,但原先的(X-期望),被(X-均值)所代替。设想一下(Xi-均值)的方差,它 不在等于Xi的方差,而是有一个协方差,因为均值中,有一项Xi/n是和Xi相关的,这就 是那个”偏"的由来 刊屮)二 Ei a.—-£(A;-W) f=l 9 =rr 一 证明: 10次,测量值和期望值之间是独

DGH 兀) 担工加D (X ;)) g ? u 曰右力m-工P) 占E (m :-寸) __________ ■!■ A^(E :=iCV —2A ;T + X-)) 闵肯) ) + £:D) n(<7- + //-) E(X 力二丫) nE(X~) MD(X) + E2(X)) M 吟+ “?) 尙e + //-) - 角F + "') t7- 证毕?? D(X)二 --- ◎ E(f)= D(X) + Eh 工) E{S-)= £(E ; =1 A ;y )=

方差 — 标准差

方差(Variance) [编辑] 什么是方差 方差和标准差是测度数据变异程度的最重要、最常用的指标。 方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。 标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。 [编辑] 方差的计算公式 设总体方差为σ2,对于未经分组整理的原始数据,方差的计算公式为: 对于分组数据,方差的计算公式为: 方差的平方根即为标准差,其相应的计算公式为: 未分组数据: 分组数据: [编辑]

样本方差和标准差 样本方差与总体方差在计算上的区别是:总体方差是用数据个数或总频数去除离差平方和,而样本方差则是用样本数据个数或总频数减1去除离差平方和,其中样本数据个数减1即n-1 称为自由度。设样本方差为,根据未分组数据和分组数据计算样本方差的公式分别为: 未分组数据: 分组数据: 未分组数据: 分组数据: 例:考察一台机器的生产能力,利用抽样程序来检验生产出来的产品质量,假设搜集的数据如下: 根据该行业通用法则:如果一个样本中的14个数据项的方差大于0.005,则该机器必须关闭待修。问此时的机器是否必须关闭? 解:根据已知数据,计算

因此,该机器工作正常。 方差和标准差也是根据全部数据计算的,它反映了每个数据与其均值相比平均相差的数值,因此它能准确地反映出数据的离散程度。方差和标准差是实际中应用最广泛的离散程度测度值。 ?函数VAR假设其参数是样本总体中的一个样本。如果数据为整个样本总体,则应使用函数VARP来计算方差。 ?参数可以是数字或者是包含数字的名称、数组或引用。 ?逻辑值和直接键入到参数列表中代表数字的文本被计算在内。 ?如果参数是一个数组或引用,则只计算其中的数字。数组或引用中的空白单元格、逻辑值、文本或错误值将被忽略。 ?如果参数为错误值或为不能转换为数字的文本,将会导致错误。 ?如果要使计算包含引用中的逻辑值和代表数字的文本,请使用VARA 函数。 ?函数VAR 的计算公式如下: 其中x 为样本平均值AVERAGE(number1,number2,…),n 为样本大小。 示例 假设有10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行抗断强度检验。 如果将示例复制到一个空白工作表中,可能会更容易理解该示例。 STDEV(number1,number2,...) Number1,number2,...为对应于总体样本的 1 到255 个参数。也可以不使用这种用逗号分隔参数的形式,而用单个数组或对数组的引用。 注解 ?函数STDEV 假设其参数是总体中的样本。如果数据代表全部样本总体,则应该使用函数STDEVP来计算标准偏差。 ?此处标准偏差的计算使用“n-1”方法。

完全平方公式的变形与应用

完全平方公式的变形与应用 完全平方公式222222()2,()2a b a ab b a b a ab b +=++-=-+在使用时常作如下变形: (1) 222222()2,()2a b a b ab a b a b ab +=+-+=-+ (2) 2222()()4,()()4a b a b ab a b a b ab +=-+-=+- (3) 2222()()2()a b a b a b ++-=+ (4) 22221[()()]2 a b a b a b +=++- (5) 221[()()]2 ab a b a b =+-- (6) 2222221[()()()]2 a b c ab bc ca a b b c c a ++---=-+-+- 例1 已知长方形的周长为40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解 设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解 设长方形长为α,宽为b ,则α-b=4,αb=12. 由公式(2),有: (α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和,证明:这个整数的2倍也可以表示为两个整数的平方和. 证明 设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解 设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为S ,则由公式(4),有: S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2≥0, ∴当x=y 即(x-y)2=0时,S 最小,其最小值为64232 =128(cm 2). 例5 已知两数的和为10,平方和为52,求这两数的积. 解 设这两数分别为α、b ,则α+b=10,α2+b 2=52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb -bc-cα的值. 解 由公式(6)有: α2+b 2+c 2-αb -bc-αc =12 [(α-b)2+(b-c)2+(c-α)2] =12 [(-1)2+(-1)2+22] =12 ×(1+1+4)=3.

第三章附录:相关系数r 的计算公式的推导

相关系数r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ=11-n 2 )(∑-A A i 2B σ=11-n )(B B i -∑2 2P σ= 11-n 2 )1 (∑∑ - i i P n P =2 )](1 )[(11i B i A i B i A B A A A n B A A A n +- +-∑∑ =2 )]()[(11 B A A A B A A A n B A i B i A +-+-∑ =2 )]()([1 1 B B A A A A n i B i A -+--∑ = )])((2)()([1 1 2 222B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2A × 22 1 ) (B i A n A A +--∑× 1 )] )([(21 ) (2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22222---? ++∑n B B A A A A A i i B A B B A A σ σ 对照公式(1)得: = 1 )(2 --∑ n A A i × 1 )(2 --∑ n B B i × r AB ∴ r AB = ∑∑∑-? ---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ=---∑1 )])([(

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

为什么样本方差里面要除以(n-1)而不是n

为什么样本方差里面要除以(n-1)而不是n?(---by小马哥整理) 首先,我们来看一下样本方差的计算公式: (1) 刚开始接触这个公式的话可能会有一个疑问就是:为什么样本方差要除以(n-1)而不是除以n?为了解决这个疑惑,我们需要具备一点统计学的知识基础,关于总体、样本、期望(均值)、方差的定义以及统计估计量的评选标准。有了这些知识基础之后,我们会知道样本方差之所以要除以(n-1)是因为这样的方差估计量才是关于总体方差的无偏估计量。这个公式是通过修正下面的方差计算公式而来的。 公式(2)是我们按照正常的思维, 思考的应该有的方差的计算公式,也就是除以n的情况: (2) 公式(3)是我们经过修正得到的式子, 修正过程为: (3) 我们在课本上看到的其实是修正后的结果: (4) 下面详细(推导)讲, 为啥会要乘以前面那个(1/n-1), 来对公式(2)进行修正. 为了方便叙述,在这里说明好数学符号: (5) 前面说过样本方差之所以要除以(n-1)是因为这样的方差估计量才是关于总体方差的无偏估计量。在公式上来讲的话就是样本方差的估计量的期望要等于总体方差。如下: (6) 但是没有修正的方差公式,它的期望是不等于总体方差的(下面会讲解详细原因, 就是下面那个公式推导!) (7) 也就是说,样本方差估计量如果是用没有修正的方差公式来估计总计方差的话是有偏差的 下面给出比较好理解的公式推导过程:

(8) 也就是说,除非否则一定会有 (9) 需要注意的是不等式右边的才是的对方差的“正确”估计,但是我们是不知道真正的总体均值是多少的,只能通过样本的均值来代替总体的均值。所以样本方差估计量如果是用没有修正的方差公式来估计总计方差的话是会有偏差,是会低估了总体的样本方差的。为了能无偏差的估计总体方差,所以要对方差计算公式进行修正,修正公式如下: (10) 这种修正后的估计量将是总体方差的无偏估计量,下面将会给出这种修正的一个来源; 为了能搞懂这种修正是怎么来的,首先我们得有下面几个等式: 1.方差计算公式: (11) 2. 均值的均值、方差计算公式: (12) 对于没有修正的方差计算公式我们有: (13)

完全平方公式提升练习题

完全平方公式提升练习题 一、完全平方公式 1、(- 21ab 2-3 2c )2; 2、(x -3y -2)(x +3y -2); 3、(x -2y )(x 2-4y 2)(x +2y ); 4、若k x x ++22是完全平方式,则k =____________. 5、.若x 2-7xy +M 是一个完全平方式,那么M 是 6、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 7、如果224925y kxy x +-是一个完全平方式,那么k = 二、公式的逆用 8.(2x -______)2=____-4xy +y 2. 9.(3m 2+_______)2=_______+12m 2n +________. 10.x 2-xy +________=(x -______)2. 11.49a 2-________+81b 2=(________+9b )2. 12.代数式xy -x 2-4 1y 2等于( )2 三、配方思想 13、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 14、已知0136422=+-++y x y x ,求y x =_______. 15、已知222450x y x y +--+=,求21(1)2x xy --=_______.

16、已知x 、y 满足x 2十y 2十 45=2x 十y ,求代数式y x xy +=_______. 17.已知014642222=+-+-++z y x z y x ,则z y x ++= . 四、完全平方公式的变形技巧 18、已知 2 ()16,4,a b ab +==求22 3a b +与2()a b -的值。 19、已知2a -b =5,ab =2 3,求4a 2+b 2-1的值. 20、已知16x x -=,求221x x +,441x x + 21、0132=++x x ,求(1)221x x +(2)441x x +

标准差σ的4种计算公式

标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中 标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中的Pooled standard deviation(合并标准差) 做数据分析,经常会碰到提到标准差σ这个概念,关于标准差σ的计算方式,目前,本人知道有4种标准差σ的计算方法,如下: 一,简易标准差σ的计算方式 上面是计算整体的标准差,如果是计算样本的标准差,这里的N, 应该为N-1. 一般情况下,都是计算样本的标准差。关于这个标准的详细运算公式和案例分析,可以参考附件,里面有比较详细的解释。 标准差的简易计算公式和案例分析.rar(28.19 KB, 下载次数: 1262) 二,XBAR-R管制图分析( X-R Control Chart)图中的Rbar/d2 算法 XBAR-R管制图分析( X-R Control Chart):由平均数管制图与全距管制图组成。 ●品质数据可以合理分组时,可以使用X管制图分析或管制制程平均;使用R管制图分析制程变异。 ●工业界最常使用的计量值管制图。

关于上面公式中用到的A2、A3、D2、D3、D4等常数请参考https://www.wendangku.net/doc/6213277426.html,/thread-476-1-1.html帖子下面的表格 三,XBAR-s管制图分析( X-sControl Chart)中的Sbar/C4算法 XBAR-S 管制图分析( X-S Control Chart):由平均数管制图与标准差管制图组成。 ●与X-R管制图相同,惟s管制图检出力较R管制图大,但计算麻烦。 ●一般样本大小n小于等于8可以使用R管制图,n大于8则使用S管制图。 ●有电脑软件辅助时,使用S管制图当然较好。

完全平方公式变形的应用练习题_2

(一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=22713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++=

相关文档