文档库 最新最全的文档下载
当前位置:文档库 › 高中数学三角形四心向量性质

高中数学三角形四心向量性质

高中数学三角形四心向量性质
高中数学三角形四心向量性质

☆平面向量的坐标运算:

(1) 若()()1122,,,a x y b x y ==r r ,则()1212,a b x x y y ±=±±r r ,1212a b x x y y ?=?+?r

r (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--u u u r

(3) 若a r =(x,y),则λa r

=(λx, λy)

(4) 若()()1122,,,a x y b x y ==r r ,则1221//0a b x y x y ?-=r

r (5) 若()()1122,,,a x y b x y ==r r

,则a b ⊥r r ,02121=?+?y y x x

☆两个向量的数量积:

已知两个非零向量a r 与b r ,它们的夹角为θ,则a r ·b r =︱a r

︱·︱b r ︱cos θ 叫做a r

与b r 的数量积(或内积) 规定0a ?=r r

☆向量的投影:︱b r ︱cos θ=||

a b

a ?r r r ∈R ,称为向量

b r 在a r 方向上的投影投影的绝

对值称为射影

☆数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r

方向上的投影的乘积

☆向量的模与平方的关系:2||a a a a ?==r r r r

☆乘法公式成立:

()()

2222a b a b

a b a b +?-=-=-r r r r r r r r ; (

)

2

222a b

a a

b b ±=±?+r

r r r r r 22

2a a b b =±?+r r r r

☆向量的夹角:已知两个非零向量a r

与b r ,作OA uu u r =a r , OB uuu r =b r ,则∠AOB=θ (0

1800≤≤θ)叫做向量a r

与b r 的夹角

cos θ=cos ,a b

a b a b ?<>=?r r r r r r 当且仅当两个非零向量a r 与b r 同方向时,θ=00

,当且仅当a r 与b r 反方向时θ=1800,

同时0r

与其它任何非零向量之间不谈夹角这一问题

补充:

☆ 线段的定比分点

()()()设,,,,分点,,设、是直线上两点,点在P x y P x y P x y P P P 11122212l

l 上且不同于、,若存在一实数,使,则叫做分有向线段P P P P PP P 1212λλλ→=→

P P P P P P P P 12121200→

><所成的比(,在线段内,,在外),且λλ

x x x y y y P P P x x x y y y =++=++?????

??=+=+??

?????1212121212

1122λλλλ,为中点时, ()()()如:,,,,,,?ABC A x y B x y C x y 112233

则重心的坐标是,?ABC G x x x y y y 123

12333

++++?? ???

一、四心的概念介绍

(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;

(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;

(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合

(1)?=++O 是ABC ?的重心.

(2)??=?=?O 为ABC ?的垂心.

(3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心

O c b a ?=++为ABC ?的内心.

(4)==?O 为ABC ?的外心。

典型例题

例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)(++=λ,[)+∞∈,0λ ,

则点P 的轨迹一定通过ABC ?的( ) A .外心 B .内心 C .重心 D .垂心

例2:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P

满足

OA OP +

+=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ?的( )

A .外心

B .内心

C .重心

D .垂心

例3:1)O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满

足OA OP +

+=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过

ABC ?的( )

A .外心

B .内心

C .重心

D .垂心

2)已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,

动点P 满足()||sin ||sin AB AC

OP OA AB B AC C λ=++u u u r u u u r

u u u r u u u r u u u r u u u r ,[0,)λ∈+∞, 则动点P 的轨迹一

定通过△ABC 的( )

A. 重心

B. 垂心

C. 外心

D. 内心

3)已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,

动点P 满足()2||cos ||cos OB OC AB AC

OP AB B AC C λ+=

++u u u r u u u r u u u r u u u r u u u r u u u r u u u r , [0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的( )

A. 重心

B. 垂心

C. 外心

D. 内心 例

4、已知向量123,,OP OP OP u u u r u u u r u u u r 满足条件1230OP OP OP ++=u u u r u u u r u u u r r

123||||||1OP OP OP ===u u u r u u u r u u u r

,求证:

123PP P △是正三角形.

例5、ABC ?的外接圆的圆心为O ,两条边上的高的交点为H ,

()OH m OA OB OC =++u u u r u u u r u u u r u u u r

,则实数m = .

例6、点O 是三角形ABC 所在平面内的一点,满足OA OB OB OC OC OA ==u u u r u u u r u u u r u u u r u u u r u u u r

g

g g ,则点O 是ABC ?的( ).

A .三个内角的角平分线的交点

B .三条边的垂直平分线的

交点

C .三条中线的交点

D .三条高的交点

例7 在△ABC 内求一点P ,使222AP BP CP ++最小.

8已知O 为△ABC 所在平面内一点,满足

222222

||||||||||||OA BC OB CA OC AB +=+=+u u u r u u u r u u u r u u u r u u u r u u u r ,则O 为△ABC 的 心.

例9..已知O 是△ABC 所在平面上的一点,若OA OB OB OC OC OA ?=?=?u u u r u u u r u u u r u u u r u u u r u u u r

,则O 点是△ABC 的( )

A. 外心

B. 内心

C. 重心

D. 垂心

例10 已知O 为△ABC 所在平面内一点,满足2222||||||||OA BC OB CA +=+u u u r u u u r u u u r u u u r

=

22

||||OC AB +u u u r u u u r ,则O 点是△ABC 的( )

A. 垂心

B. 重心

C. 内心

D. 外心

例11已知O 是△ABC 所在平面上的一点,若()OA OB AB +?u u u r u u u r u u u r =()OB OC BC

+?u u u r u u u r u u u r

=()OC OA CA +?u u u r u u u r u u u r

= 0,则O 点是△ABC 的( )

A. 外心

B. 内心

C. 重心

D. 垂心

例12:已知O 是△ABC 所在平面上的一点,若aOA bOB cOC ++u u u r u u u r u u u r

= 0,则O 点是△ABC 的( )

A. 外心

B. 内心

C. 重心

D. 垂心

例13:已知O 是△ABC 所在平面上的一点,若aPA bPB cPC

PO a b c

++=++u u u r u u u r u u u r

u u u r (其中

P 是△ABC 所在平面内任意一点),则O 点是△ABC 的( )

A. 外心

B. 内心

C. 重心

D. 垂心

1.已知ABC ?三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:λ=+,则λ的值为( )

A .2

B .2

3

C .3

D .6

2.若ABC ?的外接圆的圆心为O ,半径为1,=++,则=?( )

A .21

B .0

C .1

D .2

1-

3.点O 在ABC ?内部且满足022=++OC OB OA ,则ABC ?面积与凹四边形

ABOC 面积之比是( )

A .0

B .23

C .45

D .3

4

4.ABC ?的外接圆的圆心为O ,

若++=,则H 是ABC ?的( ) A .外心 B .内心 C .重心 D .垂心

5.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若

2

22=+

2

2

2

AB OC CA +=+,则O 是ABC ?的( )

A .外心

B .内心

C .重心

D .垂心

6.已知ABC ?三个顶点C B A 、、,若?+?+?=2

,则

ABC ?为( )

A .等腰三角形

B .等腰直角三角形

C .直角三角形

D .既非等腰又非直角三角形

7.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++u u u r u u u r u u u r u u u r

, [0,)λ∈+∞. 则P 点的轨迹一定通过△ABC 的( )

A. 外心

B. 内心

C. 重心

D. 垂心

8.已知O 是△ABC 所在平面上的一点,若OA OB OC ++u u u r u u u r u u u r

= 0, 则O 点是△ABC 的( )

A. 外心

B. 内心

C. 重心

D. 垂心

9.已知O 是△ABC 所在平面上的一点,若1()3

PO PA PB PC =++u u u r u u u r u u u r u u u r

(其中P 为平

面上任意一点), 则O 点是△ABC 的( )

A. 外心

B. 内心

C. 重心

D. 垂心

三角形“四心” 与向量的完美结合(精.选)

三角形的“四心”与向量的完美结合 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则 C tan B tan A tan S S S AOB AOC BOC ::::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:::: 故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ?的充要条件是 ( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记,,的单位向量为321e ,e ,e ,则刚才O 是ABC ?内 心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 C sin B sin A sin c b a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r ABC ?的内心;

三角形四心的向量性质

三角形“四心”的向量性质及其应用 一、三角形的重心的向量表示及应用 命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若 GA GB GC ++=0.则G 是ABC △的重心. 证明:如图1所示,因为GA GB GC ++=0, 所以 ()GA GB GC =-+. 以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+, 所以GD GA =-. 又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =. 所以AE 是ABC △的边BC 的中线. 故G 是ABC △的重心. 点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b , =OC c ,试用a b c ,,表示OG . 解:设AG 交BC 于点M ,则M 是BC 的中点, ?? ? ??=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴ 而03=-++∴OG c b a 图2

3 c b a OG ++= ∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键. 变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则 AD BE CF ++=0. 证明:如图的所示, ??? ? ? ???? -=-=-=GC CF GB BE GA AD 232323 )(23 GC GB GA CF BE AD ++-=++∴ 0=++GC GB GA AD BE CF ∴++=0.. 变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1 ()4 PO PA PB PC PD =+++. 证明:1()2PO PA PC =+,1()2 PO PB PD =+, 1()4 PO PA PB PC PD ∴=+++. 点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P 与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用 命题二:已知G 是ABC △内一点,满足MC MB MA ==,则点M 为△ABC 的外心。 例2 已知G 、M 分别为不等边△ABC 的重心与外心,点A ,B 的坐标分别为A (-1,0),B (1,0),且GM ∥AB ,(1)求点C 的轨迹方程;(2)若直线l 过 图3

三角形四心的向量特征及应用

本文发表于中国数学会主办的《数学通报》2010年第12期 三角形“四心”的向量特征及应用 浙江省上虞市春晖中学 林国夫(邮编:312353) 翻阅近几年各省的竞赛、模拟和高考试题,笔者发现有关三角形的“四心”(即重心,垂心,内心和外心)的向量特征的试题频频出现.考虑到比较熟悉的三角形的重心的向量形式0=++GC GB GA 具有很好的完美性,出于兴趣,笔者对三角形的其余“三心”的向量特征进行了探究,得到了类似于重心的优美的向量表达式,并撰此拙文供读者参考. 1 三角形重心的向量特征 定理1 已知为G ABC Δ的重心,记CGA BGC AGB ΔΔΔ,,的面积为 ,,,CGA BGC AGB S S S ΔΔΔ则=++,且.CGA BGC AGB S S S ΔΔΔ== 证明 如图1,为的重心,为边上的中线,则G ABC ΔAD BC 32= )(31)(2132+=+×=.即)(3 1?+?=?. 故0=++GC GB GA . 由于3:1)32(:22:2::=×===ΔΔΔΔAD AG S S S S ABD AGB ABC AGB . 即ABC AGB S S ΔΔ=31,同理ABC BGC S S ΔΔ=31,ABC CGA S S ΔΔ=3 1, 故 .CGA BGC AGB S S S ΔΔΔ==说明 我们还可以得到更进一步的结果: (1)为G ABC Δ的重心的充要条件为 =++.(2)与+共线.并可以得到下面一个有用的推论. 推论1 已知是不共线三点,点是平面内一点,且C B A ,,P ABC PB PA 21λλ+3λ+=, 其中0321≠??λλλ.记CPA BPC APB ΔΔΔ,,:||:|2的面积为则,,,CPA BPC APB S S S ΔΔΔCPA BPC S S ΔΔ:|APB S Δ|:|13λλλ=. 证明 如图2,记PC PC PB PB PA PA 3'2'1',,λλλ===,根据定理1可知, 点P 是的重心,且'''C B A Δ1:1:1::''''''=ΔΔΔPA C PC B PB A S S S . 由于)''sin ''2 1(:)sin 21 (:''PB A PB PA APB PB PA S S PB A APB ∠??∠??=ΔΔ | |||1'21'λλ?=?=PB PB PA PA ,即||||21''λλ?=ΔΔPB A APB S S ,

平面向量中的三角形四心问题

平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在 给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。 一、重心(baryce nter) 三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。 结论1 : 若G为ABC所在平面内一点,则G 是三角形的重心 证明:设BC中点为D,则2GD GA GB GC 0 GA GB GA 2GD, 这表明,G在中线AD上 同理可得G在中线BE,CF上 故G为ABC的重心

结论2: 1 —. 若P 为 ABC 所在平面内 点,贝S PG (PA PB 3 G 是ABC 的重心 PC) - 1 — 证明:PG (PA PB PC) (PG PA) (PG PB) (PG PC) 0 GA GB GC 0 G 是ABC 的重心 二、垂心(orthocenter) 三角形的三条高线的交点叫做三角形的垂心。 结论3: H 是ABC 的垂心 证明:HA HB HB HC HB ? S- HB AC 0 HB AC 同理,有 HA CB,HC AB 故H 为三角形垂心 若H 为ABC 所在平面内一点,则HA HB HB HC HC HA (HA

结论4: 2 ------ 2 ------ 2 ------ 2 -------- 2 ------ 2 若H 为 ABC 所在平面内一点,贝U HA BC HB AC HC AB H 是ABC 的垂心 2 2 2 2 HB CA 得,HA (HB HC)2 HB (HC HA)2 HB HC HC HA 同理可证得,HA HB HB HC HC HA 由结论3可知命题成立 三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点 做圆心可以画三角形的外接圆。 结论5: 若0是ABC 所在平面内一点,则 OA OB OC 0是ABC 的外心 证明:由外心定义可知 命题成立 2 2 证明:由HA BC 结论6: 若0是ABC 所在平面内一点,则

与三角形四心相关的向量结论

与三角形“四心”相关的向量结论 濮阳市华龙区高中 张杰 随着新课程对平面几何推理与证明的引入,三角形的相关问题在高考中的比重有所增加。平面向量作为平面几何的解题工具之一,与三角形的结合就显得尤为自然,因此对三角形的相关性质的向量形式进行探讨,就显得很有必要。本文通过对一道高考模拟题的思考和探究,得到了与三角形“四心”相关的向量结论。希望在得出结论的同时,能引起一些启示。 问题:设点O 在ABC ?内部,且有03=++OC OB OA ,则BOC ?与AOC ?的面积的比值是____. 分析:∵03=++OC OB OA 设OD OB =3,则0=++OC OD OA , 则点O 为ADC ?的重心.∴ACD AOD COA DOC S S S S ????= ==31. 而 AOC COD BOC S S S ???==3131, ∴3 1:=??COA BOC S S . 探究:实际上,可以将上述结论加以推广,即可得此题的本源。 结论: 设O 点在ABC ?内部,若()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S A O B C O A B O C ::::=?? 证明: 已知O 点在ABC ?内部,且()+∈=++R r n m OC r OB n OA m ,,0 设:OF OC r OE OB n OD OA m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ??=1,DOF AOC S mr S ??=1,DOE AOB S mn S ??=1, ∴r n m S S S AO B CO A BO C ::::=?? 说明: 此结论说明当点O 在ABC ?内部时,点O 把ABC ?所分成的三个小三角形的面积之比等于从此点出发分别指向与三个小三角形相对应的顶点的三个向量所组成的线性关系式前面的系数之比。 应用举例:设点O 在ABC ?内部,且40OA OB OC ++= ,则ABC ?的面积与OBC ?的面积之比是: A .2:1 B .3:1 C .4:3 D .3:2 分析:由上述结论易得:1:1:4::=??AO B CO A BO C S S S ,所以2:34:6:==?O BC ABC S S ,故选D 当把这些点特定为三角形的“四心”时,我们就能得到有关三角形“四心”的一组统一的向量形式。 引申:设O 点在ABC ?内部,且角C B A ,,所对应的边分别为c b a ,, 结论1:若O 为ABC ?重心,则0=++OC OB OA 分析:重心在三角形的内部,且重心把ABC ?的面积三等分. 结论2 :O 为ABC ?内心,则0=++OC c OB b OA a 分析:内心在三角形的内部,且易证S △BOC :S △COA :S △AOB =c b a :: 结论3: O 为ABC ?的外心,则02sin 2sin 2sin =++OC C OB B OA A 分析: 易证S △BOC :S △COA :S △AOB =sin2A :sin2B :sin2C.

三角形各种心的向量性质

1、三角形重心的向量性质:0=++OC OB OA . 2、三角形外心的向量性质:||||||OC OB OA ==. 3、三角形垂心的向量性质:OA OC OC OB OB OA ?=?=?. 4、三角形内心的向量性质:0=++OC c OB b OA a . 证明:内心是内角分线的交点,c AB ,b AC 是AB ,AC 方向上的单位向量, 所以+c AB b AC 平分BAC ∠, 又AO 平分BAC ∠, 所以AO 与+c AB b AC 共线, 由共线定理知AO +=c AB (λ)b AC , 所以AB AO ?+=c AB (λAB b AC ?), 所以)( 2b AB AC c AB AB AO ?+=?λ, )cos 1(cos cos 22A c A c c b A bc c c b A B A C c AB +=+=+=?+, 由于AO 在AB 方向上的投影是AF , 所以2 tan 2tan ||||||A rc c A OF AB AF AB AO =?==?, 所以)cos 1(2tan A c A rc +=λ, 所以)cos 1(2tan A A r +=λ, 而A A A A A A A A sin 2cos 2sin 22cos 22 cos 2sin )cos 1(2tan 2==?=+, 所以A r sin =λ, 根据r c b a A bc S ?++==?2sin 21,知道c b a b c A r ++=sin , c b a F E D O C B A

所以c b a b c ++=λ, 将之代入AO +=c AB ( λ)b AC ,并整理得:AC c AB b AO c b a +=++)(, 由于OA OB AB -=,OA OC AC -=, 所以)()()(OA OC c OA OB b AO c b a -+-=++, 进一步整理即可得证.

向量与三角形四心的一些结论

【一些结论】:以下皆是向量 1 若P是△ABC的重心PA+PB+PC=0 2 若P是△ABC的垂心PA?PB=PB?PC=PA?PC(内积) 3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外心|PA|2=|PB|2=|PC|2(AP就表示AP向量|AP|就是它的模) 5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心 6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心 8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点 【以下是一些结论的有关证明】 1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与

三角形“四心”向量表示

三角形四心的向量问题 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?0OC OB OA =++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心??=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心 则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ?的充要条件是 | CB || CA |OC | BC || BA |( OB AC | AB |OA =-?=-?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则 刚 才 O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是c b a =++

讲义平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为ABC ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b AC c AB 、 分别为 AC AB 、方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ B C D

(完整版)平面向量与三角形四心问题.docx

平面向量基本定理与三角形四心 已知 O 是ABC 内的一点,BOC ,AOC , AOB 的面积分别为S A, S B, S C,求证:S A? OA S B? OB S C? OC 0 A 如图 2延长 OA 与 BC 边相交于点 D 则 O B C 图 1 BD S A BD S BOD S ABD S BOD S C DC S ACD S COD S ACD S COD S B OD DC OB BD OC BC BC A O S B OB S C OC S B S C S B S C B D C OD S BOD S COD S BOD S COD S A OA S BOA S COA S BOA S COA S B S C 图2 OD S A OA S B S C S A OA S B OB S C OC S C S B S B S C S B S C S A? OA S B? OB S C? OC 0 推论 O 是 ABC 内的一点,且 x?OA y?OB z?OC0 ,则S BOC: S COA: S AOB x : y : z

有此定理可得三角形四心向量式O 是ABC 的重心 S BOC: S COA: S O 是ABC 的内心 S BOC: S COA: S O 是ABC 的外心 S BOC: S COA: S AOB AOB AOB 1:1:1OA OB OC0 a : b : c a ?OA b ?OB c ?OC0 sin 2A :sin 2B : sin 2C sin 2A ? OA sin 2B ? OB sin 2C ?OC0 O 是ABC 的垂心 S BOC: S COA: S AOB tan A: tan B : tan C tan A ?OA tan B ? OB tan C ?OC0 C O A D B 证明:如图 O 为三角形的垂心, tan A CD , tan B CD tan A: tan B DB : AD AD DB S BOC: S COA DB : AD S BOC: S COA tan A : tan B 同理得 S COA: S AOB tan B : tan C , S BOC: S AOB tan A : tan C S BOC: S COA: S AOB tan A: tan B : tan C 奔驰定理是三角形四心向量式的完美统一

三角形四心的向量性质练习

三角形“四心”的向量 一、三角形的重心的向量表示及应用 命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若 GA GB GC ++=0u u u r u u u r u u u r .则G 是ABC △的重心. 证明:如图1所示,因为GA GB GC ++=0u u u r u u u r u u u r , 所以 ()GA GB GC =-+u u u r u u u r u u u r . 以GB u u u r ,GC u u u r 为邻边作平行四边形BGCD , 则有GD GB GC =+u u u r u u u r u u u r ,所以GD GA =-u u u r u u u r . 又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =u u u r u u u r ,GE ED =u u u r u u u r . 所以AE 是ABC △的边BC 的中线.故G 是ABC △的重心. 点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =u u u r a ,=u u u r OB b , =u u u r OC c ,试用a b c ,,表示u u u r OG . 解:设AG 交BC 于点M ,则M 是BC 的中点, ?? ? ??=-=-=-GC OG c GB OG b GA OG a Θ GC GB GA OG c b a ++=-++∴ 而03=-++∴OG c b a 3 c b a OG ++= ∴ 图2

(完整版)三角形“四心”的向量表示

三角形“四心”的向量表示 我们都知道,在三角形中,因为有三条边和三个内角,所以有很多的性质。在三角形众多的“心”中,有几个是学生应该掌握的,主要是四个心:重心,内心,外心,垂心。不仅要理解其定义、性质,还需了解和分析其向量的表示形式。由于向量是一种研究几何图形的另一种工具,所以我们有必要对它们进行整理和归纳,让同行借鉴。 一.各心的定义。 1. 重心:三角形三条边的中线的交点。其性质一是连接重心和顶点,延长后必交于对应边的中点。其性质二是重心把中线长分成2:1。 2. 垂心:三角形三边的高线的交点。其性质为垂心与顶点的连线必与对应的边垂直。 3. 外心:三角形三边的中垂线的交点,即三角形的外接圆的圆心。其性质是外心到三顶点等距离。 4. 内心:三角形三内角平分线的交点,即三角形的内切圆的圆心。其性质是内心到三边等距离。 二.各心的向量表示。 在三角形ABC 中,点O 为平面内一点,若满足: 1.0=++OC OB OA ,则点O 为三角形的重心。 分析:由OB OC OA +=-,以OC OB ,为邻边作一平行四边形OBEC , 点D 为BC 中点,如图,由向量的平行四边形法则, 有OB OC OE +=,交BC 于D ,从而有OA AO OD OE -===2 故O 为重心。

E C B 2==,则点O 为三角形的外心。 3 .OA OC OC OB OB OA ? =? =?, +=+=+,则点O 为三角形的垂心。 分析:由OA OC OC OB OB OA ?=?=?有三个等式,其中一个如OC OB OB OA ?=?, 则有0)(=-OC OA OB ,有0=?CA OB ,故AC OB ⊥。同理可证,点O 为三角 形的垂心。 D C 而在三角形ABC 中,记OA a =,OB b =,OC c =,则由2222BO AC CO AB +=+ 2222)()(+-=+-,展开为c a b a ?=?22,则0)(=?- 故OB AC ⊥ ,同理可证OA BC ⊥,从而点O 为三角形的垂心。 40=++,则点O 为三角形的内心。 分析:若点O 为三角形ABC 的内心。如图,延长AO ,过点C 作BO CE //,由于 CDE BDO ??与相似,有DB CD OB CE =,由AD 为角A 的平分线,有AB AC DB CD =,

(完整版)三角形四心与向量.docx

三角形“四心 ”向量形式的充要条件应用 知识点总结 1.O 是 ABC 的重心 OA OB OC 0 ; 若 O 是 S BOC S AOC S AOB 1 S ABC OA OB OC 0 ; ABC 的重心,则 3 故 uuur uuur uuur uuur G 为 ABC 的重心 . PG 1 ( PA PB PC ) 3 2.O 是 ABC 的垂心 OA OB OB OC OC OA ; 若 O 是 ABC (非直角三角形 )的垂心,则 S BOC : S : S tan A : : AOC AOB tan B tan C 故 tan AOA tan BOB tan C OC 0 2 2 2 3.O 是 ABC 的外心 | OA | | OB | | OC | (或 OA OB OC ) 若 O 是 : : sin : : ABC 的外心则 S BOC S AOC S AOB BOC sin AOC sin AOB sin2A : sin2B: sin2C 故 sin 2A OA sin 2BOB sin 2C OC OA ( AB AC OB BA BC OC CA CB ) 0 4. O 是内心 ABC 的充要条件是 ) ( ) ( | AB | AC | BA | | BC | | CA | | CB | 引进单位向量,使条件变得更简洁。如果记 AB , BC , CA 的单位向量为 e 1 , e 2 ,e 3 ,则刚才 O 是 ABC 内心的充要条件 可以写成 OA (e 1 e 3 ) OB (e 1 e 2 ) OC (e 2 e 3 ) , O 是 ABC 内心的充要条件也可以是 aOA b OB cOC 0 。若 O 是 ABC 的内心,则 S BOC : S AOC : S AOB a : b : c 故 aOA bOB cOC 0或 sin A OA sin BOB sin COC 0 ; uuur uuur uuur uuur uuur uuur r ABC 的内心 ; A | AB | PC | BC | PA |CA | PB 0 P 是 e 1 e 2 uuur uuur 向量 AB AC )( 0) 所在直线过 ABC 的内心 ( 是 BAC 的角平分线所在直 B C ( uuur uuur | AB | | AC | 线) ; P 范 例 ( 一)将平面向量与三角形内心结合考查 例 1.O 是平面上的一定点, A,B,C 是平面上不共线的三个点, 动点 P 满足 OP OA ( AB AC ) , 0,则 AB AC P 点的轨迹一定通过 ABC 的( ) (A )外心( B )内心( C )重心( D )垂心 AB uuur uuur uuur 又 OP OA AP ,则原 解析:因为 是向量 AB 的单位向量设 AB 与 AC 方向上的单位向量分别为 e 1和 e 2 , AB

向量与三角形四心(教师版)

向量与三角形内心、外心、重心、垂心知识的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++0OC OB OA ???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 OC OB OA ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)若O 是ABC ?的重心,则ABC AOB AOC BOC S 31 S S S ????= == (3)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足. 0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为ABC ?的垂心 (4) O 是△ABC 所在平面内一点2 2 2 2 2 2 → →→→ → →+=+=+AC OB BA OC BC OA 则 O 是△ABC 的垂心 证明:由 ,得,所以 。 同理可证。容易得到 由以上结论知O 为△ABC 的垂心。 O A B C D E O A B C D E

三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的充要条件应用 在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一.知识点总结 1)O是的重心; 若O是的重心,则故; 为的重心. 2)O是的垂心; 若O是(非直角三角形)的垂心,则 故 3)O是的外心(或) 若O是的外心 则 故 4)O是内心的充要条件是 引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成: O是内心的充要条件也可以是 若O是的内心,则 故; 的内心; 向量所在直线过的内心(是的角平分线所在直线); 二.范例 (一).将平面向量与三角形内心结合考查 例1.O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的()(A)外心(B)内心(C)重心(D)垂心 解析:因为是向量的单位向量设与方向上的单位向量分别为,又,则原式可化为,由菱形的基本性质知AP 平分,那么在中,AP平分,则知选B. 点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?没见过!想想,一个非零向量除以它的模不就是单位向量?此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。 (二)将平面向量与三角形垂心结合考查“垂心定理” 例2.H是△ABC所在平面内任一点,点H是△ABC的垂心. 由, 同理,.故H是△ABC的垂心. (反之亦然(证略)) 例3.(湖南)P是△ABC所在平面上一点,若,则P是△ABC的(D) A.外心B.内心C.重心D.垂心 解析:由. 即 则 所以P为的垂心. 故选D. 点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合。 变式:若H为△ABC所在平面内一点,且 则点H是△ABC的垂心 证明:

向量与三角形四心的一些结论(终审稿)

向量与三角形四心的一 些结论 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

【一些结论】:以下皆是向量 1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PAPB=PBPC=PAPC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外心 |PA|2=|PB|2=|PC|2(AP就表示AP向量 |AP|就是它的模) 5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心 6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或 AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心 8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点【以下是一些结论的有关证明】 是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线

【新整理】三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的充要条件应用 在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一. 知识点总结 1)O 是ABC ?的重心?0OC OB OA =++; 若O 是ABC ?的重心,则ABC AOB AOC BOC S 31 S S S ????= ==故0OC OB OA =++; 1()3 PG PA PB PC =++ ?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S A OB A OC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心 则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S A OB A OC BOC =∠∠∠=???:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ?的充要条件是 )| CB |CB | CA |CA ( OC )| BC |BC | BA |BA ( OB )AC AC | AB |AB ( OA =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成:0)e e (O C )e e (O B )e e (O A 322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ?的内心,则c b a S S S A OB A OC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=? ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠ 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); 二. 范例 (一).将平面向量与三角形内心结合考查 例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足)( AC AC AB AB OA OP + +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 A C B 1 e 2 e P

高考数学测试卷三角形“四心”的一种向量表示

三角形四心嘚一种向量表示 几个记法:在△ABC 中,O 是其内部(不包括边界)一点,连结AO 并延长交BC 于D ,连结BO 并延长交CA 于E ,连结CO 并延长交AB 于F 。 记:AB AF t FB =,BC BD t DC =,CA CE t EA =; AC AE t EC =,CB CD t DB =,AC AE t EC =; 且有:1AB BA AC CA BC CB t t t t t t ?=?=?= 记:A AO AD λ=,B BO BE λ=,C CO CF λ= 引理1.线段嘚定比分点嘚向量关系式 (1)111BC BC BC t AD AB AC t t = +++ (1.1.1); 111CA CA CA t BE BC BA t t = +++; (1.1.2) 111AB AB AB t CF CA CB t t = +++。 (1.1.3) (2)若AB AF AB λ=,BC BD BC λ=,CA CE CA λ=,则有: (1)BC BC AD AB AC λλ=-+ (1.2.1); (1)CA CA BE BC BA λλ=-+; (1.2.2) (1)AB AB CF CA CB λλ=-+。 (1.2.3) 证明:只证明(1.1.1),其它同理。 ∵BC BD t DC = ∴1BC BC t BD BC t = +则有 F D E C A B O 图1

1()1111BC BC BC BC BC BC BC AD AB BD t AB BC t t AB AC AB t t AB AC t t =+=++=+-+= +++ 引理2.11 AC AB AB AC AB AC t t AO AB AC t t t t = +++++ (2.1.1) 1 AB AC A A B A C t t t t λ+= ++ (2.1.2) 11 BC BA BC BA BC BA t t BO BC BA t t t t = +++++ (2.2.1) 1 BC BA B B C BA t t t t λ+= ++ (2.2.2) 11 CA CB CA CB CA CB t t CO CA CB t t t t = +++++ (2.3.1) 1 CA CB C CA CB t t t t λ+= ++ (2.3.2) 且有2A B C λλλ++= (2.4) 证明: ∵点B 、O 、E 共线,且B BO BE λ= ∴(1)(1)1AC B B B B AC t AO AB AE AB AC t λλλλ=-+=-+?+ ………………① 同理,∵点C 、O 、F 共线,且C CO CF λ= ∴(1)(1)(1)11AB AB C C C C C C AB AB t t AO AC AF AC AB AB AC t t λλλλλλ=-+=-+? =?+-++ ………………② ∴1111AB B C AB AC B C AC t t t t λλλλ? -=?+???=-+??,解得:1111AC B AB AC AB C AB AC t t t t t t λλ+?=?++??+?=++?? ………………③

三角形重心外心垂心内心的向量表示及其性质

三角形“四心”向量形式的充要条件应用 1.O 是ABC ?的重心?0OC OB OA =++; 若O 是ABC ?的重心,则 AB C AOB AOC B OC S 31 S S S ????= ==故=++; 1()3PG PA PB PC =++?G 为ABC ?的重心. 2.O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故C tan B tan A tan =++ 3.O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ?的充要条件是 | CB || CA |( | BC || BA |( AC | AB |( =?=?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? ,O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 。若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?是ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠所在直线过ABC ?的内心(是BAC ∠的角平 分线所在直线) ; 例1.O 是平面上的一定点,A,B,C 是平面上不 共线的三个 点,动点P 满足 OA OP + +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心

相关文档
相关文档 最新文档