文档库 最新最全的文档下载
当前位置:文档库 › 非晶合金发展及制备技术

非晶合金发展及制备技术

非晶合金发展及制备技术
非晶合金发展及制备技术

块体非晶合金材料的性能、应用及展望

块体非晶合金材料的性能、应用以及展望引言:非晶态合金又称为金属玻璃,具有长程无序、短程有序的亚稳态结构特征。固态 时其原子的三维空间呈拓扑无序排列,并在一定温度范围内这种状态保持相对稳定。与传统的晶态合金相比,非晶合金具备很多优异的性能,如高强度、高硬度、耐磨和耐腐蚀等,因而引起人们极大的兴趣。 一、非晶合金的发展历程 自1960 年加州理工学院的P.Duwez 小组采用液态喷雾淬冷法以106K/s 的冷却速率从液态急冷获得Au-Si 非晶合金以来,人们主要通过提高冷却速度的方法来获得非晶态结构。由于受到高的临界冷却速率的限制,只能获得低维的非晶材料(非晶粉、丝、薄带等),这在很大程度上限制了非晶的应用,特别是阻碍了对其力学、物理等性能的研究。 20 世纪80 年代末90 年代初,日本东北大学(Tohoku University)的T.Masumoto 和A.Inoue 等人发现了具有极低临界冷却速率的多元合金系列,如Mg-TM-Ln,Ln-AI-TM,Zr-AI-TM,Hf-AITM ,Ti-Zr-TM(Ln 为铡系元素,TM 为过渡族元素)。1993 年W.L.Johnson 等人发现了具有临界冷却速率低达1K/s 的Zr 基大块非晶合金。经过二十多年的发展,非晶从只有几个微米到现在的厘米级别,现在已经有6 个体系(锆基: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Zr55Al10Ni5Cu30;铂基:Pd40Cu30Ni10P20;钇基:Y36Sc20Al24Co20;钯基:Pt57.5Cu14.7Ni5.3P22.5;镁基:Mg54Cu26.5Ag8.5Gd11)临界尺度达到了20mm。 对非晶态的大量研究表明,非晶合金中不存在晶界、位错、层错等晶体缺陷,非晶合金具有传统的晶态金属所不具有的诸多优良性能,如良好的机械、物理、化学性能以及磁性能。鉴于大块非晶合金优良的力学、化学及物理性能以及在电子、机械、化工、国防等方面具有广泛的应用前景,大块非晶合金的研制就具有重要的技术和经济价值,是一个具有广阔发展前景的研究领域。 二、块体非晶合金的形成机理 1、合金的形成特点 合金熔体形成非晶态合金的过程与凝固结晶过程有较大的不同。非晶态合金在凝固时,随着冷速的增大和温度的降低,熔体连续地和整体地凝固成非晶合金。而晶态合金在凝固时,晶体的形成经历了形核和长大两个阶段,并且通过固液界面的运动从局部到整体逐步凝固结晶。 2、形成条件 按照传统的凝固理论,熔融的金属与合金在冷却过程中如果抑制了非均匀形核并跨越结晶区而被“冻结”,即可获得非晶态。要使金属或合金获得玻璃态组织,首先应使其熔体具有有利于形成玻璃态的合理结构,使原子在随后的冷却过程中重新排列较为困难。这种结构与合金的种类、组元原子半径差及原子间结合的本性有关,取决于非晶形成过程中的热力学和动力学。其次,应有适当高的冷却速率,减少或消除异质形核。以上分别为非晶形成的内部和外部条件,下面分别从结构条件、热力学条件以及动力学条件等方面详细论述。 2.1 结构条件 结构条件是影响非晶合金形成的主要因素。组元原子的半径差别越大,原子在无序密集排列时的密度越大,越有利于组成密集随机堆垛结构,位形改变就越困难,则越容易形成非晶。

非晶合金变压器的优缺点

非晶合金变压器的优缺点 摘要:在工业化进程中,工业革命的不断发展,给人们的生产生活带来了无数的方便,但同时也给自然环境带来极端的破坏。人们已经渐渐认识到环境保护的重要性,并提出了环保、低碳生活的概念。非晶合金变压器的诞生,响应了社会的主流。本文主要介绍了非晶合金材料的特点,及非晶合金变压器性能上的优缺点。 关键词:非晶合金变压器优缺点 非晶合金变压器是高科技环保节能产品,其节能和环保作用已被国际所公认,也被国内电力系统、建设部门上下所认识。目前,产品在制造使用技术上的可行性已日趋成熟,在市场上获得了竞争优势。其高效能、美观环保的卓越特性赢得了广大用户的一致推崇和广泛好评,被誉为“当前世界电气潮流的高科技绿色产品”。 所谓非晶合金变压器,就是指用非晶合金制造成变压器铁芯,并组装成的变压器。 非晶合金是指,合金材料在制造过程中采用了超急冷凝固的技术,使得在材料的微观结构中,金属原子在从液体(钢水)固化成固体的过程中,原子来不及排列成常规的晶体结构就被固化,而形成的原子结构无序排列的合金材料被成为非晶合金。非晶合金材料被发现具有非常优异的导磁性能,它的去磁与被磁化过程极易完成。非晶态合金与晶态合金相比,在物理性能、化学性能和机械性能方面都发生了显著的变化。此外非晶态合金材料,还被广泛地应用于电子、航空、航天、机械、微电子等众多领域中,例如,用于航空航天领域,可以减轻电源、设备重量,增加有效载荷。用于民用电力、电子设备,可大大缩小电源体积,提高效率,增强抗干扰能力。微型铁芯可大量应用于综合业务数字网ISDN中的变压器。非晶条带用来制造超级市场和图书馆防盗系统的传感器标签。非晶合金神奇的功效,具有广阔的市场前景。在第十个五年计划期间:我国的科技工作者必将在非晶态合金技术领域做出更加令世人瞩目的贡献。 以铁元素为主的非晶态合金为例,它具有高饱和磁感应强度和低损耗的特点。铁基非晶合金较硅钢材料铁芯损耗大大降低,达到高效节能效果。因而作为一种极其优良的导磁材料被引入变压器等需要磁路的产品中。 铁基非晶合金在工频和中频领域,正在和硅钢竞争。铁基非晶合金和硅钢相比,有以下优缺点。 1)铁基非晶合金的饱和磁通密度Bs比硅钢低。但是,在同样的磁通Bm 下,铁基非晶合金磁通损耗的量比0.23mm厚的硅钢小3%。一般人认为损耗小的原因是铁基非晶合金带材厚度薄,电阻率高。这只是一个方面,更主要的原因是铁基非晶合金是非晶态,原子排列是随机的,不存在原子定向排列产生的磁晶各向异性,也不存在产生局部变形和成分偏移的晶粒边界。因此,妨碍畴壁运动

全球第二大非晶合金带材生产商毛利率可能高达100%

全球第二大非晶合金带材生产商毛利率可能高达100% 全球第二大非晶合金带材生产商--安泰科技非晶带材 毛利率可能高达100% 非晶带材技术壁垒非常高,目前全世界仍仅有安泰科技和日本日立金属能够生产。 安泰科技高管透露,公司4万吨非晶带材项目将在今年3月底全部建成投产,将成为全球第二大非晶合金带材生产商,2010年非晶带材销售计划为1.2万吨以上,成本在1.5万元/吨以下,销售价格为2.8-3.1万元/吨,也就是说毛利率可能高达100%。 安泰科技从事非晶材料的研制已经有20年时间,安泰科技目前还处在追赶者的地位,但所幸的是安泰科技在追赶者中遥遥领先,因为除了日立金属和安泰科技外,世界上基本上没有第三家公司可以批量生产非晶带材的技术和工艺。按照安泰科技刚刚开始的扩产计划,未来三年内,非晶产能也将扩展到5万吨。一旦产能能够顺利扩展,未来非晶材料市场将只属于日立金属和安泰科技两家所有。 对于非晶带材市场来说,中国需求一直被压抑着。非晶变压器的推广一直处于缓慢迈步状况。市场普遍认为,此前非晶带材全球仅有日立金属一家供应商,处于产业战略的考虑,在国内厂商实现量产之前,国内的需求一直被压抑。截

止08年底的数据显示,OECD组织已经有超过15%的配电变压器更换为非晶合金变压器,而同期国内市场仅仅1%实现了更换。市场前景可见一斑。显然,随着安泰科技非晶带材的量产,国内长期压抑的需求将得以释放。 目前,非晶带材的热试已经成功,2010年产量3.5 万-4万吨,公司目前积极扩充产能,到2011年产能将达到10万吨,发改委之所以没有出台扶持策,主要就是因为公司前期没有量产,随着公司4万吨项目的推进,发改委有望出台策强推公司产品。目前非晶产品的完全成本在1.3万元/吨,随着产量上去,成本有望进一步降低到1.2万元/吨以下。 简单测算下,如果2009年产能可以达到3.5万吨,按照3万元/吨的销售价格,考虑所得税和销售费用率,每吨利润1.4万元,非晶带材项目明年利润可贡献4.5-5亿。而10万吨量产后,利润可能突破15亿,不考虑增资扩股,远期的每股收益将达3元以上,那么长期我们对股价的想象空间将从此打开。 —————————— 安泰科技:正与国家电网就采购非晶带材谈判 2010年01月25日 1月25日,安泰科技(000969.SZ)董事会秘书张晋华接受电话采访时表示,“国家电网正与安泰科技就采购非晶带材产品展开讨论,近期有望出结果。毕竟公司4万吨/年的非晶

非晶合金干式变压器的特点及性能分析

非晶合金干式变压器的特点及性能分析 摘要:随着我国经济发展水平的提高,我国开始提高节能生活的要求,在这种 背景下,而用非晶合金作为铁心的干式变压器逐渐取代传统的变压器,成为电力 行业节能的首选。该文从非晶合金的介绍出发,对非晶合金的特点和安全性进行 叙述,最后阐述了非晶合金干式变压器需要改进的几个问题,这对于我国电力行 业的进步和发展有重要的作用,同时也对我国实现节能减排有重要的现实意义。 关键词:非晶合金;干式变压器;特点;性能 1 关于非晶合金的介绍 1. 1 非晶合金简介 非晶合金是将铁、碳、硅、硼等材料熔化后采用超急冷凝固的方法,将液态 合金凝固时晶体中的原子来不及采取有序的方式排列结晶,使得得到的固态合金 没有晶格和晶界,从而得到的非晶合金。这种非晶合金的制作工艺简单,还具 有许多优异的性能,从80 年代开始就成为国内外材料科学界重点关注和研发的 对象。目前,非晶合金主要分为铁镍基非晶合金、铁基非晶合金和钴基非晶合金等。 1 . 2 非晶合金的特性 非晶合金是一种新型的具有软磁性能的材料,其磁化功率小且单位耗损较低,由于它没有晶界和晶格,使得它的温度稳定性较高;同时非晶合金是一种无取向 的材料,使得它的制作工艺较简单且性能优异;以硅钢片为铁心材料制作的伸缩 度远远低于非晶合金,因此,在生产中,应该采取有效的措施,防止产生较大 的噪声;非晶合金的硬度较大,在非晶合金的加工的过程中,切剪相对硅钢片来 说难度大大增加了,因此,在产品加工时应该尽量减少非晶合金的切剪;另外, 非晶合金受到机械应力的影响较大,机械应力容易改变非晶合金的磁性,因此, 在设计采用非晶合金制造变压器时,应该尽量减少铁心受到的机械应力,从而减 少非晶合金受到的影响。 2 干式变压器的分类和特点 2.1 干式变压器的分类 干式变压器对于安全的要求很高,它的铁心一般不会放在液体中,对于一些 电压较低、容量较小的变压器,为了制造过程的便利和日后维护,也常常将它做 成干式变压器。干式变压器一般分为三种,即密闭式变压器、开启式变压器和塑 封式变压器。 2.1.1 密闭式变压器 密闭式变压器即将变压器用一个外壳封起来,使其与外界断绝联系,这样的 变压器往往在一些外界环境较恶劣的位置比较常见。密闭式变压器的内部往往充 入六氟化硫气体,该气体属于惰性气体,具有良好的热稳定性,它的散热能力和 绝缘性都比空气好得多,这就有效解决了密闭式变压器内部容易发生故障的问题。 2.1.2 开启式变压器 开启式变压器是目前使用最广、最常见的一种类型,整个变压器与空气相连通,它的结构比较简单,这种类型的变压器比较适用于一些需求电压比较小、容 量比较低的工程,在一些空气比较干燥洁净的环境中比较常见。该变压器主要由 空气散热,但是空气承受电压冲击的能力相对较弱,因此,在使用的过程中应该 与电压高的线路隔开,避免受到高强度电压的影响。 2.1.3 塑封式变压器

非晶合金在电机中的应用

1引言 1.1非晶合金促进电机产业发生重大变革 节能环保、发展绿色低碳经济已受到人们的广泛重视,国家“十二五”规划明确提出了以环境保护为重点的经济发展要求,2012年下半年出台的节能减排“十二五”规划进一步提出了推动节能减排技术创新和推广应用的要求。电机是应用量大、使用范围广的高耗能动力设备,据统计,我国电机耗电约占工业用电总量的70%左右。因此,推行电机节能具有重要的经济效益和社会效益。 非晶合金作为一种新型软磁材料,具有优异的电磁性能(高磁导率、低损耗)。将非晶合金材料应用于电机铁心来替代常规硅钢片材料,能够显著降低电机的铁耗、提高电机效率,节能效果显著,尤其对于铁耗占主要部分的高频电机应用场合(如电动车驱动电机、高速电主轴、航空发电机、舰船发电机和其他军事领域等),节能效果更好,具有广阔的应用前景。从长远看,非晶合金材料的逐步推广应用,必将会使现有硅钢片电机的市场地位受到挑战。图1为电机发展历程中的几个重大节点。 1.2非晶合金带材的主要特点 非晶材料作为一种新型软磁功能材料,具有典型的“双绿色”节能特征。表1给出了非晶合金带材和冷轧硅钢片的性能对比。从对比数据中可以看出非晶合金带材突出的优点是铁耗极低,仅为冷轧硅钢片的1/5~1/10,甚至1/15,将非晶合金材料应用于电机铁心来替代常规硅钢片材料,能够显著降低电机的铁耗。但是其应用于电机时有两个弱点: ①物理性能薄、脆、硬,且磁性能对应力非常敏感,需要开发新的拓扑结构和制造工艺; ②饱和磁密低,目前仅1.56T,工作磁密小于1.3T。如果电机定子铁心的工作磁密设 计值高于1.3T,需增加定子铁心的尺寸。

2非晶合金电机的研发动态 2.1研发过程 随着变频器的发展和大量应用,非晶合金电机的运行频率从早期的50Hz、60Hz发展到如今的几百甚至上千赫兹。非晶合金材料在不断发展,非晶合金电机的制造工艺、拓扑结构和优化设计技术也在不断深入,电机的性能也在不断提高。美国通用电气公司(GE)早在1978年便申请了制造非晶合金定子铁心的专利,非晶带材一边开槽一边卷绕成圆柱形铁心。GE的研究人员于1982年开发了一台额定功率250W的非晶合金(牌号Met.glass2605SC)异步电机样机,这是首次在文献资料公开发表的非晶合金电机?。 美国莱特公司(LE)是目前世界上非晶合金电机做得最成功的企业之一,也是最早实现非晶电机产业化的公司,其产品均为轴向磁通非晶永磁电机。LE公司自1996年开始研究非晶合金在电机中的应用,从1998年到2001年,该公司处于技术积累阶段。从2001年到2004年,该公司开始开发原型样机和铁心模型,并于2003年形成了一套适用于非晶合金轴向磁通电机定子铁心加工的工艺体系心。从2004年到2006年,该公司开始进行非晶合金电机整机工艺和技术开发,并着手寻找适宜的应用场合。从2007年到2009年,LE公司开始将非晶合金轴向磁通永磁电机推向市场,进行初步的产品化。图2为LE 公司开发的典型非晶合金电机产品——双定子、单转子轴向磁通永磁电机的拓扑结构。

非晶合金的制备方法

纳米非晶合金制备简介 摘要:本文主要介绍了国内外几种非晶合金制备技术,其中包括水淬法、射流成型法、金属模铸造、复合爆炸焊接法及机械合金化法、粉末固结成形法等,并对各种制备技术的进行了比较分析。 关键词:块体金属玻璃块体金属玻璃的连接制备 Introduction of the Preparation amorphous alloy Abstract:In this paper, Several fabricating methods of bulk metallic glass matrix composites from both home and abroad were presented,such as water quenching method, jet molding, metal mold casting, composite explosive welding and mechanical alloying, powder consolidation and forming method,than Analysis and comparing these preparation techniques bulk metallic glass. Key words: bulk metallic glass, joining of bulk metallic glass, preparation 1.引言 非晶态合金也称金属玻璃,与晶态合金相比,其三维空间的原子排列呈拓扑无序状,结构上没有晶界与堆垛层错等缺陷存在,但原子的排列也不像理想气体那样的完全无序。非晶合金是以金属键作为其结构特征,虽然不存在长程有序,但在几个晶格常数范围内保持短程有序[1]。与非晶聚合物及无机非晶材料一样,非晶合金在物理性能、化学性能及力学性能方面是各向同性的,并随着温度的变化呈现连续性[2]。通常其具有以下四个基本特征:(1)结构上呈拓扑密堆长程无序,但在长程无序的三维空间又无序的分布着短程有序的“晶态小集团”或“伪晶核”,其大小不超过几个晶格的范围;(2)不存在晶界、位错、层错等晶体缺陷;(3)具有非晶体的一般特性:物理、化学和机械性能各向同性;(4)热力学上处于亚稳态,当处于晶化温度以上时将发生晶态结构相变,但晶化温度以下能长期稳定存在[3]。 美国加州理工学院的Duwez教授是研究非晶合金最早的一个人,于1960年首次采用 快淬方法制得Au 70Si 30 非晶合金薄带[4][5]。1969年,Pond等[6]制备出具有一定宽度的连续 薄带状非晶合金,为大规模生产非晶合金提供了条件。至此为止,非晶合金材料由于受到冷却速度的限制,为保证热量快速散出,制得的非晶合金为薄带、薄片、细丝或粉末等。由于形状的限制,非晶合金材料的许多优良特性无法在实际应用中得到发挥,人们希望得到可与晶态合金相比拟的大尺寸非晶合金,因此,随后很多人投入到开发新的制备非晶合金的方法中去,发明了许多固相非晶化技术,如机械合金化、离子束注入、氢吸收等。1974年,贝尔实验室的H. S. Chen[7]发表文章指出原子尺寸和混合热对玻璃合

非晶合金的发展与应用

非晶合金的发展与应用 学校: 班级: 学号: 姓名: 指导教师: 日期: 目录 目录 2 一、非晶合金简介 2 二、非晶合金的发展历史 2 三、非晶形成的控制因素 3 3.1 非晶形成的热力学因素 3 3.2非晶形成的动力学因素3 3.3非晶形成的结构学因素3 四、大块非晶合金制备方法 3 4.1液相急冷法 3 4.2气相沉积法 4 4.3化学溶液反应法 4 4.4固相反应法 4 五、非晶合金制备工艺技术 4 5.1铜模吸铸法 5 5.2粉末冶金技术5 5.3熔体水淬法 5 5.4压铸法 5 5.5非晶条带直接复合爆炸焊接5 5.6定向凝固铸造法 5 5.7磁悬浮熔炼铜模冷却法5 5.8固态反应5 六、非晶合金性能 6 6.1大块非晶合金的机械性能 6 6.2非晶合金优秀的耐蚀性6 七、非晶合金应用实例 6 八、参考文献7 一、非晶合金简介 非晶态合金又称金属玻璃,具有短程有序、长程无序的亚稳态结构特征。固态时其原子的三维空间呈拓扑无序排列,并在一定温度范围内这种状态保持相对稳定。与晶态合金相比,非晶合金具备许多优异性能,如高硬度、高强度、高电阻、耐蚀及耐磨等。块体非晶合金材

料的迅速发展,为材料科研工作者和工业界研究开发高性能的功能材料和结构材料提供了十分重要的机会和巨大的开拓空间。 二、非晶合金的发展历史 1959年,美国加州理工大学Duwez在研究晶体结构和化合价完全不同的两个元素能否形成固溶体时,偶然发现了Au70-Si30 非晶合金。1969年陈鹤寿等将含有贵金属元素Pd的具有较高非晶形成能力的合金(Pd-Au-Si,Pd-Ag-Si等),通过B2O3反复除杂精炼,得到了直径1mm的球状非晶合金样品。1989年日木东北大学的Inoue等通过水淬法和铜模铸造法制备出毫米级的La-AI-Ni大块非晶合金,随后Zr基非晶合金体系也相继问世。20世纪90年代以来,人们在大块非晶合金制备方而取得了突破性进展。Inoue等成功地制备了Mg-Y-(Cu, Ni), La-AI-Ni-Cu, Zr-AI-Ni-Cu等非晶形成能力很高,直径为1一10 mm的棒,条状大块非晶态合金。Johnson等也发现了非晶形成能力比较好的Zr-Ti-Ni-Cu-Be合金体系。目前,合金材料体系有La基、 Zr基、已开发出的块体非晶Mg基、 Al基、Ti基、 Pd基、 Fe基、Cu 基、Ce基等。 1970年在前南斯拉夫的布莱拉召开了第一届国际快淬金属会议(RQI ) ,1975年在关国的坎布里奇召开了第二届国际快淬金属会议(RQII),此后每隔3年就定期举办一次国际快淬金属会议。1975年关国Allied Corporation开始生产Metglas 2826,其软磁性能比Permalloy 好;1978年示范推广采用Meglas磁芯的节能变压器;1979年利用平断而流铸技术专利生产宽金属玻璃带;1980年在关国帕西潘尼建设投资1千万关元的工厂,生产Metglas合金。此后,国际快淬金属会议虽然从未间断,但是,非晶合金的应用却止步于软磁材料,在其它方而一直没有取得进展,会议的关注度慢慢冷了下来,2005年8月在韩国举办了第十二届会议(RQ 12)。 特别是Johnson教授用他们发现的Vitreloy合金制造了第一件非屏,高尔夫球杆,引起了人们对大块非屏,合金作为结构材料的极大兴趣和期望。2000年9月在新加坡举办了首届大块非屏,合金国际研讨会(International conference on bulk metallic glasses),此后,每隔1. 5年定期举行,人们的关注度也越来越高。2002年3月在中国台湾,2004年10月在中国北京,2005年5月在美国田纳西州,已经举办了4届会议。2006年10月在日本淡路岛举办第五届大块非屏,合金国际研讨会。 半个世纪以来,非晶合金已经从当初被嘲笑为“愚蠢的合金”,发展成为今天航天、航空等高技术和高档手表、手机、手提电脑等时尚品争相选用的时尚材料。作为兼有玻璃、金属,固体和液体特性的新型金属材料,非晶合金是金属材料很多记录的“保持者”:比如,非晶合金是迄今为止发现的最强的金属材料和最软的金属材料之一(最强的Co基非晶合金的强度高达到创纪录的6.0 GPa最软的Sr基非晶合金的强度低至300 MPa);非晶合金还是迄今为止发现的最强的穿甲材料,最容易加工成型的金属材料,最耐蚀的金属材料,最理想的微、纳米加工材料之一;非晶合金还具有很宽的成分调制范围、具有过冷液相区(软化区)、遗传、记忆、软磁、大磁熵和蓄冷效应等独特性能。 三、非晶形成的控制因素 3.1 非晶形成的热力学因素 在热力学上,非晶态是一种亚稳态,在相同温度下其对应的自由能既高于平衡条件下的非晶态相,也高于非平衡过程的其他所有亚稳相.因为任何其他亚稳相的形成都比非晶态相更依赖于原子扩散和重排。 3.2非晶形成的动力学因素 从动力学的观点来看,讨论非晶态合金形成的关键问题,不是材料从液态冷却时是否会形成非晶,而是讨论在什么条件下,能使液态金属冷却到非晶态转变温度以下而不发生明显的结晶,或不发生可察觉到的结晶。从液态到固态的快速冷却过程中,如果抑制了结晶过程

非晶合金、纳米晶薄带项目

非晶合金、纳米晶薄带项目可行性研究报告

第一章项目概况 第一节基本情况 一、项目名称:非晶合金、纳米晶薄带生产 二、承办单位:****有限公司 三、企业性质:有限责任公司 四、企业法人:***** 五、项目建设地点:******* 第二节项目产品描述 非晶合金薄带是70年代问世的一种新型软磁材料,它采用先进的速凝固技术,把熔化的钢液以1×106℃/S的冷却速度直接冷却成厚度仅为20um—40um的金属薄带,与传统金属带材生产工艺相比,节省了五~六道工序。生产过程节能,无污染排放。由于采取了超急冷却技术,带材中原子排列组合上具有短程有序,长程无序特点的非晶合金组织。该合金具有许多独特性能特点:如优异的磁性,耐蚀性,耐磨性,高硬度,高电阻率等,被人们称为二十一世纪最新的绿色环保软磁材料。 该材料的应用范围广阔,可替代传统的硅钢,铁氧体和坡莫合金等软磁材料,用该材料作为铁芯主要用材并制造的非晶合金配电变压器,与用硅钢片作为铁芯的配电变压器比对,具有很好的节能效果。其比对效果见下表:

由上表可见,平均空载损耗降低70%~80%,其节能效果显著. 第三节项目背景 目前,全球只有日立金属大规模生产非晶合金带材。日立金属的非晶合金带材的产能,于07年扩张至5.2万吨后,理论上,也只能生产出3058万kV A非晶合金变压器,以上产量与我国目前每年约2.4亿kV A配电变压器的需求量相距甚远。而我国的非晶合金带材主要依赖于进口,因此,非晶合金带材的供给,成为我国大规模推广应用非晶合金变压器的最大障碍。 我国非晶合金变压器的研制工作始于“七五”,掌握非晶合金变压器生产技术的企业较多。国家80年代科技攻关课题中,将“非晶合金铁芯配电变压器研制”作为重点课题。1986年5月,上海钢铁研究所与宁波变压器厂合作,用该所研制的非晶合金带材试制出国内第一台单相3kV A非晶合金变压器。目前,除上海置信电气以外,我国其它知名变压器生产企业,如顺特电气、江苏华鹏、特变电工、杭州钱江电器集团、天威保变、西变等厂家均掌握了非晶合金变压器的生产技术。但是,由于非晶合金带材的供应依赖于进口,加之受到带材出口国的制约和价格上涨的因素影响,实际上以上厂家的非晶合金变压器均未大规模生产。铁芯及变压器的生产技术并不是制约我国推广非晶合金变压器的关键性因素,如原材料供应问题得到缓和,变压器生产厂家要扩大非晶合金变压器产能易如反掌,只有非晶合金带材生产的国产化才能促成非晶合金变压器规模化生产的飞跃。目前,日立金属

非晶软磁合金材料及其产业现状与发展前景分析

非晶软磁合金材料及其产业现状与发展前景 纳米(超微晶)软磁合金材料 铁基纳米晶合金由铁、硅、硼和少量的铜、钼、铌等组成,其中铜和铌是获得纳米晶结构必不可少的元素。它们首先被制成非晶带材,然后经过适当退火,形成微晶和非晶的混合组织。这种材料虽然便宜,但磁性能极好,几乎能够和非晶合金中最好的钴基非晶合金相媲美,但是却不含有昂贵的钴,是工业和民用中高频变压器、互感器、电感的理想材料,也是坡莫合金和铁氧体的换代产品。 非晶软磁合金材料的优点 优良的磁性:与传统的金属磁性材料相比,由于非晶合金原子排列无序,没有晶体的各向异性,而且电阻率高,因此具有高的导磁率是铁氧体的10倍以上、低的损耗(是硅钢片的1/5-1/10,是铁氧体损耗的1/2~1/5),是优良的软磁材料,代替硅钢、坡莫合金和铁氧体等作为变压器铁心、互感器、传感器等,可以大大提高变压器效率、缩小体积、减轻重量、降低能耗。非晶合金的磁性能实际上是迄今为止非晶合金最主要的应用领域。 非晶合金的制造是在炼钢之后直接喷带,只需一步就制造出了薄带成品,节约了大量宝贵的能源,同时无污染物排放,对环境保护非常有利。正是由于非晶合金制造过程节能,同时它的磁性能优良,降低变压器使用过程中的损耗,因此被称为绿色材料和二十一世纪的材料。 非晶软磁合金材料的应用领域 电力电子技术领域: 大功率中、高频变压器 逆变电源变压器 大功率开关电源变压器 通讯技术: 程控交换机电源 数据交换接口部件 脉冲变压器 UPS电源滤波和存储电源、功率因素校正扼流圈、标准扼流圈 抗电磁干扰部件: 交流电源、可控硅、EMI差模、共模电感、输出滤波电感 开关电源: 磁饱和电抗器 磁放大器 尖峰抑制器 扼流圈 传感器: 电流电压互感器 零序电流互感器 漏电开关互感器 防盗感应标签 目前非晶软磁合金材料的产品,应用场合主要包括:互感器铁心、大功率逆变电源变压器和电抗器铁心、各种形式的开关电源变压器和电感铁心、各种传感器铁心等。 在低频电磁元件中,铁基非晶合金被大量应用,在电力配电变压器中的应用已取得良好效果,成为现在生产量最大的非晶合金。在中、高频领域可以代替钴基非晶合金和铁镍高导磁合金。 纳米晶合金的最大应用是电力互感器铁心。电力互感器是专门测量输变电线路上电流和电能的特种变压器。 从目前国内外应用以及今后发展来看,非晶合金的大量使用还是在电力系统:a、配电变压器铁心。铁基非晶合金铁心具有高饱和磁感应强度、低矫顽力、低损耗(相当于硅钢片的1/3~1/5)、低激磁电流、良好的温度稳定性,使非晶合金变压器运行过程中的空载损失远低于硅钢变压器。这种情况尤其适用于空载时间长、用电效率低的农村电网。

非晶合金介绍

非晶合金介绍 发布时间:2012-9-22 阅读次数:139 字体大小: 【小】【中】【大】 铁基非晶合金(Fe-based amorphous alloys) 铁基非晶合金是由80%Fe及20%Si,B类金属元素所构成,它具有高饱和磁感应强度(1.54T),磁导率、激磁电流和铁损等各方面都优于硅钢片的特点,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电变压器可节能60-70%。铁基非晶合金的带材厚度为0.03mm左右,广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯, 适合于10kHz 以下频率使用 由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。 在以往数千年中,人类所使用的金属或合金都是晶态结构的材料,其原子三维空间内作有序排列、形成周期性的点阵结构。 而非晶态金属或合金是指物质从液态(或气态)急速冷却时,因来不及结晶而在室温或低温保留液态原子无序排列的凝聚状态,其原子不再成长程有序、周期性和规则排列,而是出于一种长程无序排列状态。具有铁磁性的非晶态金合金又称铁磁性金属玻璃或磁性玻璃,为了叙述方便,以下均称为非晶态合金。 发展史 1960年美国Duwez教授发明用快淬工艺制备非晶态合金为始。其间,非晶软磁合金的发展大体上经历了两个阶段:第一个阶段从1967年开始,直到1988年。1984年美国四个变压器厂家在IEEE会议上展示实用非晶配电变压器则标志着第一阶段达到高潮,到1989年,美国AlliedSignal公司已经具有年产6万吨非晶带材的生产能力,全世界约有100万台非晶配电变压器投入运行,所用铁基非晶带材几乎全部来源于该公司。从1988年开始,非晶态材料发展进入第二阶段。这个阶段具有标志性的事件是铁基纳米晶合金的发明。1988年日本日立金属公司的Yashiwa等人在非晶合金基础上通过晶化处理开发出纳米晶软磁合金(Finemet)。1988年当年,日立金属公司纳米晶合金实现了产业化,并有产品推向市场。1992年德国VAC公司开始推出纳米晶合金替代钴基非晶合金,尤其在网络接口设备上,如ISDN,大量采用纳米晶磁芯制作接口变压器和数字滤波器件。 制作方法 1.水淬法 2.铜模吸铸法 3.铜模喷铸法 4.甩带 5.定向凝固 6.粉末冶金 7.高能球磨等

非晶合金研究综述

非晶态合金研究现状及发展前景综述 [摘要]:概述了非晶态材料的发展历史及该领域的最新研究进展,并从成分结构条件、热力学条件、动力学条件等方面阐述了大块非晶合金的形成机制。介绍了非晶合金的制备方法,并比较了其产业化的可行性。同时综述了大块非晶合金优异的性能和应用前景。 [Abstract]:An overview of the latest research progress in the history of the development of non crystalline material and the field, and the formation mechanism of bulk amorphous alloys was expounded from the aspects of component structure condition, thermodynamic conditions, dynamic conditions etc.. Introduced the preparation method of amorphous alloy, and the feasibility of its industrialization. The properties and application of bulk amorphous alloys with excellent and review. 1.引言 非晶态合金是指不具有长程有序但短程有序的金属合金,又由于其具有金属合金的一些特性,故它们也被称为玻璃态合金或者非结晶合金,属于非晶态材料中新兴的分支[1]。 非晶态合金长程无序但短程有序,是指原子在空间排列上不呈周期性和平移对称性,但在1~2nm的微小尺度内与近邻或次近邻原子间的键合(如配位数、原子间距、键角和键长等参量)具有一定的规律性。短程有序又可分为化学短程有序和几何短程有序。化学短程有序是指合金元素的混乱状态,即每个合金原子周围的化学成分与平均成分不同的度量;几何短程有序包括拓扑短程有序和畸变短程有序[2]。 非晶态合金与晶态合金一样,都是多组元的合金体系,但是与晶态合金中原子的周期性排列不同,在非晶态合金中,原子的排列不具有长程有序的特点,而仅在单个原子的附近具有一定程度的短程有序,如图1.1所示[3]。非晶态合金独特的原子排列结构使得它具有了显著区别于晶态合金的物理、化学和力学行为[4-7]。因此,非晶态合金作为一种完全不同于晶态合金的新材料具有科学研究上的重要价值[8]。另外,非晶态合金具有某些优异的性能,如高强度、高弹性、耐腐蚀、热成型性能好,等等,这使得非晶态合金具有非常广阔的应用前景[9-10]。例如,与传统的工程材料相比,非晶态合金就综合了晶态合金在力学性能方面的高强度和工程塑料高弹性的优点,如图1.2所示。因此,近年来世界各研究单位投入了大量的研究力量和经费,对非晶态合金的形成理论、制备工艺和性能表征等各个方面进行了深入系统的研究[11-14]。对非晶态合金的研究已成为当代材料科学发展的一个最活跃、最令人激动的方向[15-16]。

非晶合金带材报告

非晶合金带材 一非晶合金带材介绍 在日常生活中人们接触的材料一般有两种:一种是晶态材料,另一种是非晶态材料。所谓晶态材料,是指材料内部的原子排列遵循一定的规律。反之,内部原子排列处于无规则状态,则为非晶态材料,一般的金属,其内部原子排列有序,都属于晶态材料。科学家发现,金属在熔化后,内部原子处于活跃状态。一但金属开始冷却,原子就会随着温度的下降,而慢慢地按照一定的晶态规律有序地排列起来,形成晶体。如果冷却过程很快,原子还来不及重新排列就被凝固住了,由此就产生了非晶态合金,制备非晶态合金采用的正是一种快速凝固的工艺。将处于熔融状态的高温钢水喷射到高速旋转的冷却辊上。钢水以每秒百万度的速度迅速冷却,仅用千分之一秒的时间就将1300℃的钢水降到200℃以下,形成非晶带材。根据带材的宽度可分为窄带非晶带材(100mm 以下),宽带非晶带材(140mm以上)。性能方面具有最高的饱和磁感应强度,高导磁率、低矫顽力、低损耗、低激磁电流和良好的度稳定性和时效稳定性。带材均匀、稳定性高、柔韧性好,不易断,具有较高的填充系数。

图1 非晶合金带材 1.非晶带材分类 (1)铁基非晶合金,主要元素是铁、硅、硼、碳、磷等。它们的特点是磁性强(饱和磁感应强度可达1.4T~1.7T)、磁导率、激磁电流和铁损等软磁性能优于硅钢片,价格便宜,最适合替代硅钢片,特别是铁损低(为取向硅钢片的1/3~1/5),代替硅钢做配电变压器可降低铁损60%~70%。铁基非晶合金的带材厚度为0.03毫米左右,广泛应用于中低频变压器的铁心(一般在10千赫兹以下),例如配电变压器、中频变压器、大功率电感、电抗器等。 (2)铁镍基非晶合金,主要由铁、镍、硅、硼、磷等组成,它们的磁性比较弱(饱和磁感应强度大约为1T以下),价格较贵,但磁导率比较高,可以代替硅钢片或者坡莫合金,用作高要求的中低频变压器铁心,例如漏电开关互感器。(3)钴基非晶合金,由钴和硅、硼等组成,有时为了获得某些特殊的性能还添加其它元素,由于含钴,它们价格很贵,磁性较弱(饱和磁感应强度一般在1T以下),但磁导率极高, 一般用在要求严格的军工电源中的变压器、电感等,替代坡

高硼FeNbB非晶合金的软磁性能

随着Si 含量的增高而减低,这可能是因为合金的固有频率增高而引起的δ值减低之故。(4)Al 2Si 合金的减振特性受硅晶粒晶界总长度L 比Si 含量的影响更大,微细硅晶粒均匀分散的组织对于提高减振性能很有效。(文 凡取自《粉体および粉末冶金》,1999,46(7):715) 大块非晶合金的开发 1988年以来发现Mg 基、Ln 基、Zr 基、Fe 基、Pd 2Cu 基、Ti 基以及Ni 基等许多合金系,都能够以011~数百K/s 的一般冷却速度冷凝而形成非晶相。因为能以比传统非晶合金最高可慢7个数量级之多的低临界冷却速度来获得非晶合金,所以可采用各种铸造法来制取最大厚度可达100mm 的块状非晶合金。合金非晶化可获得极高的强度性能,用合模法制得的Zr 2Al 2Ni 2Cu 系和Zr 2Ti 2Al 2Ni 2Cu 系非晶合金的抗拉强度σt 为1700~1850MPa 、弹性模量E 为78~92GPa ,σt 随着E 的增高而增高,要比商用晶态Z 合金(≈830MPa )高1倍以上,而E 值要比σt 相同的晶态合金高2倍。 1975年发现Fe 2P 2B 和Fe 2Si 2B 系非晶合金优越的软磁特性,此后广泛深入地研究了Fe 基和Co 基非晶合金的软磁性,进入80年代之后软磁非晶合金便获得了实际应用。但当时还只能以超过105K/s 的高冷却速度 生产厚度<50 μm 的薄带。根据过冷液体稳定化的三条经验法则,开发了Fe 2(Al ,G a )2(P ,C ,B ,Si )系和(Fe ,Co )2(Zr ,Nb )2(Mo ,W )2C 系软磁非晶合金,这些合金系可用铜模铸造法制得非晶,前者厚度约2mm ,后者约为6mm 。Fe 2(Al ,G a )2类金属系非晶合金的磁特性:饱和磁化强度(I s )111~115T ,矫顽力(H c )2~6A/m ,磁导率(μe )在1kHz 下高达20000,磁致伸缩(λs )为28~38× 1026。近年来,开发成功利用非晶合金的纳米晶化获得Fe 3B +α2Fe +Nd 2Fe 14B (或Pr 2Fe 14B )复相合金,其最大磁能积约为90kJ/m 3,是很有发展前途的硬磁材料。今后,Ti 基、Al 基、Mg 基块状非晶合金作为高比强度材料,Fe 基和Co 基非晶合金作为新型磁性材料,在基础研究和实用化方面可望获得重大进展。(光 明取自《素形材》,1999,40(5):5) 高硼Fe 2Nb 2B 非晶合金的软磁性能 迄今所发现的软磁Fe 基和Co 基非晶合金有Fe 2P 2C ,(Fe ,Co )2P 2B 、 (Fe ,Co )2Si 2B ,(Fe ,Co )2(Cr ,Mo ,W )2C ,(Fe ,Co )2Zr ,(Fe ,Co )2Hf 、 (Fe ,Co )2(Zr ,Hf ,Nb )2B 系,其中熔体旋淬(Fe ,Co )2类金属非晶条带,以及溅射法制取的(Fe ,Co )2(Zr ,Hf )2B 非晶薄膜作为软磁材料已获得实用化,但这两类非晶合金并不具备很宽的过冷液 相区(>30K ),所以其玻璃化转变冷却速度要求在105K/S 以上,并且只能形成厚度≤50 μm 的非晶材料。近年来发现B 浓度增高至20%(原子)以上的(Fe ,Co )2(Zr ,Hf )2B 系合金和Fe 2Nb 2B 系合金具有50K 以上的过冷液相区,所以玻璃转化冷凝速度很低。为此,研究了具有大过冷液相区的Fe 2Nb 2B 系非晶合金的成分范围、软磁性能和热稳定性及其对化学成分的依赖关系。 研究用的合金是由纯铁、纯铌和纯硼晶体的混合物在氩气氛中进行电弧熔化制得的,并用熔体旋淬法在 氩气保护下制得快淬带材。利用Cu 2K α辐射X 光衍射法和透射电镜检验非晶组织。采用振动样品磁强计和B —H 曲线扫描仪分别测定饱和磁化性能和矫顽力。用阻抗分析仪在1kHz 至10MHz 频率范围内测量磁导率,运用电容法评价在最高外加磁场为115T 下的磁致伸缩。 研究结果表明:(1)Fe 2Nb 2B 三元系合金能在含Nb2%~14%、B10%~35%很宽的成分范围形成非晶合金。(2)过冷液相区ΔT x (晶化温度T x -玻璃化温度T g )随着合金中B 和Nb 含量的增高而显著增大,Fe 62Nb 8B 30的ΔT x 最大71K 。然而Co 62Nb 8B 30的ΔT x 却减小为38K ,Ni 62Nb 8B 30合金则不能非晶态化。(3)通过单一放热反应发生Fe 62Nb 8B 30非晶合金的晶化,同时析出α2Fe 、Fe 2B 和FeNb 2B 2相。(4)Fe 62Nb 8B 30非晶合金具有很好的软磁性能,其饱和磁化强度(I s )为0168T ,矫顽力(H c )为216A/m ,在1kHz 下的磁导率μe 为19300,磁致伸缩λs 小为717×1026。这种非晶合金的高μe 和低H c 性能,作为性能优异的新型软磁合金是颇具吸引力的。(国 文取自《Mater Trans J IM 》,1999,40(7):643) 加少量B 的块状非晶FC20(Fe 2C 2Si )铸铁 块状非晶合金即使在晶化处理以后也仍然非常脆,这主要是由于析出了大量化合物所致。如果能够获得—04—金属功能材料 2000年

非晶合金强度理论介绍

xxxxx大学 非晶合金强度理论 姓名:xxx学号:xx 学院:材料科学与技术学院 专业:xx 题目:非晶合金强度理论 2016年5月 xx

非晶合金的强度理论 摘要:非晶合金的力学性能是目前非晶材料领域最受关注的性能,因为非晶合金尤其是块体非晶合金具有独特的力学性能如超高强度和断裂韧性、高硬度、低弹性模量、独特的形变和断裂行为等。块体非晶合金是迄今为止发现的最强、最硬、最软和最韧的金属结构材料。本文主要介绍非晶合金的强度、塑性(脆性)等非晶合金最显著、最有特点的力学性能及相关的研究进展。 1. 非晶合金的强度和硬度 提高材料的强度是材料领域永恒的课题,因为人们对高强度材料的追求是无止境的。另一方面,强度的物理机制一直是重要而基础的物理问题。对强度物理本质的理解也是认知凝聚态物质本质的关键性钥匙。J Frenkel[1]首先从理论上给出强度的物理机制,并估算出理想晶体的强度。他假设晶体的原子被囚禁在周期势井φ(γ) =φ0sin2(πγ/4γ0)中,固体断裂对应于使这些原子克服势垒(即所有键断开)所需要的最小的力τc: τc=φ0(γ)|γ=γc。这样得到晶体固体的理想强度(或极限强度),τc= 2Gγc/π ≈ G/10。他的工作不仅首次给出晶体固体强度的物理本质的图像,最终还导致位错等缺陷概念的提出和发现,意义重大。 对非晶固体强度和高弹性极限的物理本质的认识,我们并不清楚非晶甚至最简单的以原子为组成单元的非晶合金的高强度的本质。[2] 大块非晶合金为研究非晶物质强度和形变提供了理想体系。实验发现非晶合金的强度和模量具有线性关联[12]:τc /G ≈0.036 <<1/10(τc是切变强度),可以看出其强度仍然远小于理想强度。实验还发现非晶合金的强度取决于其弹性模量以及冻结在非晶合金中的构型(configuration) 。最近提出的流变单元的概念可以解释非晶合金强度的结构原因:非晶强度主要取决于其键合强度(用模量表征)和类液体的流变单元(类似缺陷)的软化作用,可近似表示成:

相关文档