文档库 最新最全的文档下载
当前位置:文档库 › 蝴蝶定理和风筝定理

蝴蝶定理和风筝定理

蝴蝶定理和风筝定理
蝴蝶定理和风筝定理

第三讲 蝴蝶定理和风筝定理

一、引入

1、蝴蝶定理

在梯形ABCD 中,由对角线AC 与BD 分成的左右两个三角形(△ADO 和△BCO )形状有点像一对蝴蝶翅膀,把这两个三角形称为蝴蝶三角形(如图),蝴蝶三角形的面积相等。

即S △ADO =S △BCO

2、风筝定理

在任意四边形ABCD 中,对角线AC 、BD 分成了四个三角形(如图),

这四个三角形的面积分别记为:S 1 、S 2 、S 3 、S 4。

则它们的关系是:

S 1×S 4 =S 2×S 3

即相对的两个三角形的面积乘积是相等的。

二、新授课

【例1】如图,梯形的两条对角线分梯形为四个小三角形,已知△AOD 的面积是3平方厘

米,△DOC 的面积是9平方厘米,梯形ABCD 的面积是多少平方厘米?

练习

1、如图,2BO=DO ,且阴影部分的面积是4cm 2,那么梯形ABCD 的面积是多少平方厘米?

2、如图,阴影部分面积是4cm 2

,OC=2AO ,求梯形的面积。 A B

C

D O S 1 S 2

S 3 S 4

【例2】如图,BD ,CF 将长方形ABCD 分成四块,红色三角形的面积是4平方厘米,黄

色三角形的面积是8平方厘米,那么绿色四边形的面积是多少平方厘米?

练习

1、如图,BD ,CF 将长方形ABCD 分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米,则绿色四边形的面积是多少平方厘米?

2、如图,平行四边形ABCD 的面积是36平方厘米,对角线AC 、BD 交于O 点,E 为CD 上一点,已知四边形EFOG 的面积是3平方厘米,则阴影部分的面积为多少平方厘米?

【例3】如图,四边形ABCD 是边长为18厘米的正方形,已知CE 的长是ED 的2倍。求: (1)三角形CEF 的面积,(2)DF 的长度

练习

正方形ABCD 的边长是12厘米,已知DE 是EC 长度的2倍。三角形DEF 的面积是多少平

方厘米?CF 长多少厘米?

C

C

【例4】正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,则图中三角形

BDF 面积为多少平方厘米?

练习

1、如图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。

2、三个正方形ABCD 、BEFG 、FHKP 如图排列,正方形BEFG 的边长是3厘米,求三角形DEK 的面积。

K

第三讲 蝴蝶定理和风筝定理(A 卷)

1、如图,阴影部分的面积是12 cm 2,OC=2AO ,求梯形的面积。

2、如图,梯形ABCD 的上底AB 长为3厘米,下底CD 长为9厘米,而三角形ADO 的面积是12平方厘米,则梯形ABCD 的面积是多少平方厘米?

3、如图,长方形ABCD 中,阴影部分是直角三角形且面积是52平方厘米,OD 的长是16厘米,OB 的长是4厘米,那么四边形OECD 的面积是多少平方厘米?

4、如图,平行四边形ABCD 面积是12平方厘米,E 是AD 靠近A 点的中点。AC 与BE 相

交于点F ,则图中阴影部分面积是多少平方厘米?

5、在直角梯形ABCD 中,AB=15厘米,AD=12厘米,阴影部分的面积为15平方厘米,梯形ABCD 的面积是多少平方厘米?

C

6、梯形ABCF的下底BC是12厘米,高AB是18厘米,CE=2DE,求DF。

7、正方形ADEB和正方形ECFG底边对齐,两个正方形边长分别为6厘米和4厘米,三角形ACG的面积是多少平方厘米?

8、正方形ADEB和正方形ECFG底边对齐,两个正方形边长分别为6厘米和4厘米,三角形BDF的面积是多少平方厘米?

第三讲 蝴蝶定理和风筝定理(B 卷)

学生姓名:____________上课时间:_____________成绩:_____________

1、如图,在梯形ABCD 中,三角形ADO 的面积是6平方厘米,且DC 的长是AB 的2倍。请问梯形ABCD 的面积是多少平方厘米?

2、如图,平行四边形ABCD 面积是72平方厘米,E 是AD 靠近D 点的三等分点。BD 与CE 相交于点F ,则图中阴影部分面积是多少平方厘米?

3、正方形ABCD 的边长是6厘米,已知DE 是EC 长度的2倍。三角形DEF 的面积是多少平方厘米?CF 长多少厘米?

4、如图,大、小正方形的边长分别是8厘米和6厘米,阴影部分面积多少平方厘米?

5、如图,四边形ABCD 是直角梯形,AB=4厘米,

AD=6厘米,DE=3厘米,那么三角形BOC 的面积是多少平方厘米?

6、如图,四边形ABCD 是一个平行四边形,已知三角形ABE 的面积是35平方厘米,阴影

三角形CEF 的面积是多少平方厘米?

7、正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为8厘米,则图中阴影(三角形BDF )部分的面积为多少平方厘米?

8、已知三角形ABC 的面积是64平方厘米,是平方四边形DEFC 面积的2倍,求阴影部分

的面积。

9、如图,四边形ABCD 是直角梯形,AB=8厘米,BF=6厘米,EF ∥AB ,求三角形CED

的面积是多少平方厘米?

椭圆中的蝴蝶定理及其应用

2003年北京高考数学卷第18(III)题考查了椭圆内的蝴蝶定理的证明,本文给出了一般圆锥曲线的蝴蝶定理的两种形式,并由它们得到 圆锥曲线的若干性质. 定理1:在圆锥曲线中,过弦AB中点M任作两条弦CD和EF,直线CE与DF 交直线AB于P,Q,则有. 证明:如图1,以M为原点,AB所在的直线为y轴,建立直角坐标系. 设圆锥曲线的方程为(*),设A(0,t),B(0,-t),知t,-t是的两个根,所以. 若CD,EF有一条斜率不存在,则P,Q与A,B重合,结论成立. 若CD,EF斜率都存在,设C(x1,k1x1), D(x2,k1x2),E(x3,k2x3), F(x4,k2x4),P(0,p),Q(0, q),, ,同理, 所以 将代入(*)得,又得 , , 同理 , ,所以,即 .

注:2003年高考 数学北京卷第18 (III)题,就是定理1中取圆锥曲线为椭圆,AB为平行长轴的弦的特殊情形. 定理2:在圆锥曲线中,过弦AB端点的切线交于点M,过M的直线l∥AB,过M任作两条弦CD和EF,直线CE与DF交直线l于P,Q,则有. 证明:如图2,以M为原点,AB所在的直线为y轴,建立直角坐标系. 设圆锥曲线的方程为(*),设A(),B(),则切线MA的方程是,切线MB的方程是 ,得,所以.(下面与定理1的证明相同,略) 特别的,当弦AB垂直圆锥曲线的对称轴时,点M在圆锥曲线的该对称轴上. 性质1:过点M(m,0)做椭圆、双曲线的弦CD,EF是其焦点轴, 则直线CE、DF的连线交点G在直线l:上.特别的,当M为焦点时,l就是准线.当M为准线与焦点轴所在直线的交点时,l就是过焦点的直线. 证明:如图3,过M做直线AB垂直焦点轴所在的直线,直线CE与DF交直线AB于P,Q,则根据定理1,定理2得.

六年级奥数——蝴蝶模型 燕尾定理练习题 教案

蝴蝶模型和燕尾定理练习题 1、如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积. D E F C B A D E F C B A D E F C B A 【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以 初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线, (法一)连接CF ,因为,2EC AE =,三角形ABC 的面积是30, 所以1103ABE ABC S S ==△△,1 152 ABD ABC S S ==△△. 根据燕尾定理,12ABF CBF S AE S EC = =△△,BD DC =1ABF ACF S BD S CD ==△△, 所以1 7.54 ABF ABC S S ==△△,157.57.5BFD S =-=△, 所以阴影部分面积是30107.512.5--=. (法二)连接DE ,由题目条件可得到1 103 ABE ABC S S ==△△, 112 10223 BDE BEC ABC S S S ==?=△△△,所以 11ABE BDE S AF FD S ==△△, 111111 2.5223232DEF DEA ADC ABC S S S S =?=??=???=△△△△, 而21 1032 CDE ABC S S =??=△△.所以阴影部分的面积为12.5. 2、(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,1 3 CQ CA =,BQ 与AP 相交于 点X ,若ABC △的面积为6,则ABX △的面积等于 . X Q P A B C X Q P A B C 4 4 11 X Q P C B A 【解析】 方法一:连接PQ . 由于12CP CB =,13CQ CA =,所以23ABQ ABC S S = ,11 26 BPQ BCQ ABC S S S == . 由蝴蝶定理知,21 :::4:136 ABQ BPQ ABC ABC AX XP S S S S === , 所以44122 6 2.455255 ABX ABP ABC ABC S S S S ==?==?= . 方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++?=△

蝴蝶定理的证明及推广

一 蝴蝶定理的证明 (一)运用简单的初中高中几何知识的巧妙证明 蝴蝶定理经常在初中和高中的试卷中出现,于是涌现了很多利用中学简单几何 方法完成蝴蝶定理的方法。 1 带有辅助线的常见蝴蝶定理证明 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而M U A M V ?? , AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。[1] 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 M B F E D M ∠=∠ ○2 由○1、○2知,DME D'MF ???,故ME=MF 。 证法3 如图4,设直线DA 与BC 交于点N 。对NEF ?及截线AMB ,NEF ?及截线CMD 分别应用梅涅劳斯定理,有 F M E A N B 1M E A N B F ??=,FM ED NC 1ME DN CF ??= 由上述两式相乘,并注意到

小学奥数-几何五大模型(蝴蝶模型)整理版

任意四边形、梯形与相似模型 卜亠\ 模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): D S1: S2 = S4: S3或者S S3 =S2 S4 ② AO : OC =[S S2 : S4 S3 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD被对角线AC BD分成四个部分,△ AOB面积为1平方千米,△ BOC面积为2平方千米,△ COD勺面积为3平方千米,公园由陆地面积是 6. 92平方千米和人工湖组成,求人工湖的面积是多少平方千米? 【分析】根据蝴蝶定理求得S^AOD=3 1-'2=1.5平方千米,公园四边形ABCD的面积是12 3 45 = 7.5平方千米,所以人工湖的面积是7.5-6.92=0.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC的面积:⑵AG:GC= ? 【解析】⑴根据蝴蝶定理,S BGC 1=2 3,那么S BGC=6 ; ⑵根据蝴蝶定理,AG:G^ 1 2 : 3 6 =1:3 . (? ??) 【例2】四边形ABCD的对角线AC与BD交于点0(如图所示)。如果三角形ABD的面积等于三角形BCD的

面积的 1 ,且AO =2 , DO =3,那么CO的长度是DO的长度的_____________ 倍。 3 【解析】在本题中,四边形ABCD为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件S A BD : S BCD =1:3,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH垂直BD于H , CG垂直BD于G,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:T AO :OC = S ABD: S BDC =1 : 3 , 二OC =2 3 =6 , ??? OC:OD =6:3 2:1 . 解法二:作AH _BD 于H , CG_BD 于G . ?- AH」CG , 3 1 ?- AO CO , 3 ?OC =2 3=6 , ?OC:OD =6:3 =2:1 ? 【例3】如图,平行四边形ABCD的对角线交于O点,A CEF、△OEF、△ODF、△BOE的面积依次是2、 4、4和6。求:⑴求A OCF的面积;⑵求A GCE的面积。 【解析】⑴根据题意可知,△BCD的面积为2 4 4 ^16,那么△BCO和:CDO的面积都是16亠2=8 , 所以A OCF 的面积为8—4=4; ⑵由于△ BCO的面积为8, △BOE的面积为6,所以A OCE的面积为8-6=2 , 根据蝴蝶定理,EG:FG 二 Sg E:S.COF =2:4 =1:2,所以S.GCE:S.GCF = EG : FG =1:2 , 1 1 2 那么S GCE S CEF 2 ~~? 1+2 3 3 【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。那么最大的一个三角形的面积是多少公顷? S 'ABD S BCD 3审 S AOD =—S DOC 3

(完整word版)蝴蝶定理的八种证明及三种推广.docx

蝴蝶定理的证明 定理: 设 M 为圆内 弦 PQ 的中点,过 M 作弦 AB 和 CD 。设 AD 和 BC 各相交 PQ 于点 E 和 F , 则 M 是 EF 的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的 帮助下,翩翩起舞! 证法 1 如图 2 ,作 OU AD , OV BC U ,V 分别为 AD 、 BC 的中点,且由于 ,则垂足 EUO EMO 90 FVOFMO 90 得 M 、 E 、U 、O 共圆; M 、F 、V 、 O 共圆。 则 AUM= EOM , MOFMVC 又 MAD MCB , U 、V 为 AD 、BC 的中点,从而 MUA MVC , AUM MVC 则 EOM MOF ,于是 ME=MF 。 证法 2 过 D 作关于直线 OM 的对称点 D' ,如图 3 所示,则 FMD' EMD ,MD=MD' 1 A ○ C 联结 D'M 交圆 O 于 C',则 C 与 C'关于 OM 对称,即 P E FQ U M PC' CQ 。又 V D O 1 1 1 CFP= ( QB+PC )= (QB+CC'+CQ )= BC'= BD'C' 2 2 2 故 M 、F 、 B 、 D' 四点共圆,即 MBF MD'F 而 MBF EDM 2 ○ B 图 2 C' C A 由 1 、 2 知, DME D'MF , 故 ME=MF 。 ○ ○ P E F Q M 证法 3 如图 4,设直线 DA 与 BC 交于点 N 。对 NEF 及截线 AMB , NEF 及截 线 CMD 分别应用梅涅劳斯定理,有 FM EA NB 1 , FM ED NC 1 ME AN BF ME DN CF 由上述两式相乘,并注意到 NA ND NC NB O B D D' 图 3 N 得 FM 2 AN ND BF CF BF CF ME 2 AE ED BN CN AE ED A C P E F Q PM +MF MQ - MF PM 2 MF 2 PM - ME MQ+ME PM 2 ME 2 M D O B 化简上式后得 ME=MF 。[2] 图 4 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。

小学奥数之几何蝴蝶定理问题完整版

小学奥数之几何蝴蝶定 理问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

C F E A D B C B E F D A 几何之蝴蝶定理 一、 基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 S 1 : S 2 = a : b 定理2:等分点结论( 鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 定理3:任意四边形中的比例关系( 蝴蝶定理) 1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4 上、下部分的面积之积等于左、右部分的面积之积 2)AO ∶OC = (S 1+S 2)∶(S 4+S 3) 梯形中的比例关系( 梯形蝴蝶定理) 1)S 1∶S 3 =a 2∶b 2 上、下部分的面积比等于上、下边的平方比 2)左、右部分的面积相等 3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab 4)S 的对应份数为(a+b )2 定理4:相似三角形性质 1) H h C c B b A a === 2) S 1 ∶S 2 = a 2 ∶A 2 定理5:燕尾定理 S △ABE ∶ S △AEC = S △BGE ∶ S △GEC = BE ∶EC S △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FC S △ADC ∶ S △DCB = S △ADG ∶ S △DGB = AD ∶DB 二、 例题 例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米? 1 2 AD AB = ,例2、有一个三角形ABC 的面积为1,如图,且 13BE BC =,1 4 CF CA =,求三角形DEF 的面积. 例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为 AB 上的一点,且BE=1 3 AB,已知四边形 EDCA 的面积 是35,求三角形ABC 的面积. 例4 如图,ABCD 是直角梯形,求阴影部分的面积 和。(单位:厘米) 例5、两条对角线把梯形ABCD 分割成四个三角 形。已知

小学几何之蝴蝶定理大全精编版

小学几何之蝴蝶定理大全 一、 基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 S 1 : S 2 = a : b 定理2:等分点结论( 鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 20 3 4153= ? 定理3:任意四边形中的比例关系( 蝴蝶定理) 1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4 上、下部分的面积之积等于左、右部分的面积之积 2)AO ∶OC = (S 1+S 2)∶(S 4+S 3) 梯形中的比例关系( 梯形蝴蝶定理) 1)S 1∶S 3 =a 2∶b 2 上、下部分的面积比等于上、下边的平方比 2)左、右部分的面积相等 3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab 4)S 的对应份数为(a+b )2

定理4:相似三角形性质 1) H h C c B b A a = = = 2)S1∶S2 = a2 ∶A2 定理5:燕尾定理 S△ABG ∶S△AGC = S△BGE ∶S△GEC = BE∶EC S△BGA ∶S△BGC = S△AGF ∶S△GFC = AF∶FC S△AGC ∶S△BCG = S△ADG ∶S△DGB = AD∶DB 二、例题分析 例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC的面积是多少平方厘米?

C F E A C B E F D A 例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,1 4 CF CA =,求三角形DEF 的面积. 例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=1 3 AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积. 例4、例1 如图,ABCD 是直角梯形,求阴影部分的面积和。(单位:厘米) 例5、两条对角线把梯形ABCD 分割成四个三角形。已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米) 例6、如下图,图中BO=2DO ,阴影部分的面积是4平方厘米,求梯形ABCD 的面积是多少平

小学奥数几何篇 五大模型——蝴蝶定理(附答案)

五大模型——蝴蝶模型 例1. 四边形ABCD的对角线AC与BD交于点O,如果三角形ABD 1,且AO=2,DO=3,那么CO的长的面积等于三角形BCD的面积 3 度是DO的长度的倍

例2. 如图,平行四边形ABCD的对角线交与点O点,△CEF、△OEF、△ODF、△BOE的面积依次是2、4、4和6 求:(1)△OCF 的面积;(2)求△GCE的面积 例3.如图,边长为1的正方形ABCD中,BE=3EC,CF=FD,求三角形AEG的面积。

例4. 如图,边长为1的正方形ABCD的边长为10厘米,E为AD 中点,F为CE中点,G为BF中点,求三角形BDG的面积

例5. 如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知AOB于BOC的面积分别为25平方厘米于35平方厘米,那么梯形ABCD的面积是平方厘米 例6.梯形ABCD的对角线AC与BD交与点O,已知梯形上底为2, 2,求三角形AOD与且三角形ABO的面积等于三角形BOC面积的 3 三角形BOC的面积之比。 例7. 如下图,一个长方形一些直线分成了若干个小块,已知三角形ADG的面积是11,三角形BCH的面积是23,求四边形EGFH 的面积。

例8. 右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米 例9. 如图,长方形ABCD被CE、DF分成四块,已知期中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC的面积为平方厘米 例10. 如图,正六边形面积为6,那么阴影部分面积为多少?

蝴蝶模型习题 1、如图,长方形ABCD中,BE:EC=2:3,DF:FC=1:2,三角形DFC面积为2平方厘米,求长方形ABCD的面积. 2、梯形的下底是上底的1.5倍,三角形OBC的面积是9cm2,问三角形AOD的面积是多少? 3、如图,长方形中,若三角形1的面积与三角形3的面积比为4:5,四边形2的面积为36,则三角形1的面积为 4、如图,长方形ABCD中,阴影部分是直角三角形且面积为54,OD的长是16,OB的长是9,那么四边形OECD的面积是多少? 5、如图,△ABC是等腰三角形,DEFG是正方形,线段AB与CD相较于K点,已知正方形DEFG的面积48,AK:KB=1:3,则△BKD的面积是多少?

蝴蝶定理、燕尾定理——黄冈中学 周刊

燕尾定理 燕尾定理: 在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ??=. O F E D C B A 梯形中比例关系(“梯形蝴蝶定理”): A B C D O b a S 3 S 2 S 1S 4 ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2 a b +. 等积变形 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =??△△

E D C B A E D C B A 如图,22S =,34S =,求梯形的面积. S 4 S 3 S 2 S 1 【巩固】(2006年南京智力数学冬令营)如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米. 35 25O A B C D 梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三 角形BOC 面积的2 3 ,求三角形AOD 与三角形BOC 的面积之比. O A B C D (第十届华杯赛)如下图,四边形ABCD 中,对角线AC 和BD 交于O 点,已知1AO =,并且3 5 ABD CBD =三角形的面积三角形的面积,那么OC 的长是多少? A B C D O 梯形的下底是上底的1.5倍,三角形OBC 的面积是2 9cm ,问三角形AOD 的面积是多少?

小学的奥数-几何五大模型(蝴蝶模型)

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): S 4 S 3 S 2 S 1O D C B A ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积 是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平 方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =? 任意四边形、梯形与相似模型

B 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???) 【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形BCD 的 面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 A B C D O H G A B C D O 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已 知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3ABD BCD S S ??=, ∴1 3AH CG =, ∴1 3AOD DOC S S ??=, ∴1 3 AO CO =, ∴236OC =?=, ∴:6:32:1OC OD ==. 【例 3】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、 4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。

四年级下册数学竞赛试题-几何.风筝模型和梯形蝴蝶定理C级.学生版-全国通用

【例 1】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC ? C B 【巩固】 在△ABC 中 DC BD =2:1, EC AE =1:3,求OE OB =? 【例 2】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次 是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积. O G F E D C B A 例题精讲 风筝模型和梯形蝴蝶定理

【巩固】 如右上图,已知BO=2DO ,CO=5AO ,阴影部分的面积和是11平方厘米,求四边形ABCD 的面积。 【例 3】 如图,边长为1的正方形ABCD 中,2BE EC =,CF FD =,求三角形AEG 的面积. A B C D E F G 【巩固】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求 长方形ABCD 的面积. A B C D E F G 【例 4】 如图,在ABC ?中,已知M 、N 分别在边AC 、BC 上,BM 与AN 相交于O ,若AOM ?、ABO ?和BON ?的面积分别是3、2、1,则MNC ?的面积是 . O M N C B A 【巩固】 如图4,在三角形ABC 中,已知三角形ADE 、三角形DCE 、三角形BCD 的面积分别是89、28、26, 那么三角形DBE 的面积是 。

【例 5】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米。则阴影部分的面 积是 平方厘米。 E 【巩固】 在梯形ABCD 中,上底长5厘米,下底长10厘米,20=?BOC S 平方厘米,则梯形ABCD 的面积是 平方厘米。 【例 6】 如下图,一个长方形被一些直线分成了若干个小块,已知三角形ADG 的面积是11,三角形BCH 的面积是23,求四边形EGFH 的面积. H G F E D C B A 【巩固】 如图,长方形中,若三角形1的面积与三角形3的面积比为4比5,四边形2的面积为36,则三

蝴蝶定理的证明

图 5 蝴蝶定理的证明 定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而MUA MVC ??,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○ 1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ???,故ME=MF 。 证法 3 如图4,设直线DA 与BC 交于点N 。对NEF ?及截线AMB ,NEF ?及截线CMD 分别应用梅涅劳斯定理,有 FM EA NB 1ME AN BF ??=,FM ED NC 1ME DN CF ??= 由上述两式相乘,并注意到 NA ND NC NB ?=? 得 2 2 FM AN ND BF CF BF CF ME AE ED BN CN AE ED ?=???=? ()()()()2 2 22 PM MF MQ MF PM MF PM ME MQ+ME PM ME -= =-+-- 化简上式后得ME=MF 。 [2] 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。 证法 4 (Steven 给出)如图5,并令 图 2 图 3 图 4

小学奥数-几何五大模型(蝴蝶模型)知识讲解

小学奥数-几何五大模型(蝴蝶模型)

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): S 4 S 3 S 2 S 1O D C B A ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四 个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是 123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =? 任意四边形、梯形与相似模 型

B 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???) 【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角 形BCD 的面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 A B C D O H G A B C D O 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方 法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3 ABD BCD S S ??=, ∴13 AH CG =, ∴13 AOD DOC S S ??=, ∴13 AO CO =, ∴236OC =?=, ∴:6:32:1OC OD ==. 【例 3】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积 依次是2、4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。

小学奥数之几何蝴蝶定理问题

几何之蝴蝶定理 一、 基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 S 1 : S 2 = a : b 定理2:等分点结论( 鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 20 3 4153= ? 定理3:任意四边形中的比例关系( 蝴蝶定理) 1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4 上、下部分的面积之积等于左、右部分的面积之积 2)AO ∶OC = (S 1+S 2)∶(S 4+S 3) 梯形中的比例关系( 梯形蝴蝶定理) 1)S 1∶S 3 =a 2∶b 2 上、下部分的面积比等于上、下边的平方比 2)左、右部分的面积相等 3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab 4)S 的对应份数为(a+b )2 定理4:相似三角形性质

C B E F D A 1) H h C c B b A a === 2) S 1 ∶S 2 = a 2 ∶A 2 定理5:燕尾定理 S △ABE ∶ S △AEC = S △BGE ∶ S △GEC = BE ∶EC S △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FC S △ADC ∶ S △DCB = S △ADG ∶ S △DGB = AD ∶DB 二、 例题 例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米? 例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,1 4 CF CA =,求三角形DEF 的面积. 例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE= 1 3 AB,已知四边形EDCA 的面积是35,求三角 形ABC 的面积.

小学几何之蝴蝶定理大全

小学几何之蝴蝶定理大全 一、基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 定理2:等分点结论(鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 3 1 3 5 4 20 定理3:任意四边形中的比例关系(蝴蝶定理) 1)S1∶S2 =S4∶S3 或S1×S3 = S 2× S4 上、下部分的面积之积等于左、右部分的面积之 积 2 )AO∶OC = (S1+S2)∶(S4+S3) 梯形中的比例关系(梯形蝴蝶定 理) 1)S1∶S3 =a2∶b2 上、下部分的面积比等于上、下边 的 平方比 2)左、右部分的面积相 等 3)S1∶S3∶S2∶S4 =a 2∶b2 ab∶ab S1 : S2 = a : b 4)S 的对应份数为(a+b)2

定理 4:相似三角形性质 2) S 1 ∶S 2 = a 2 ∶A 2 定理 5:燕尾定理 S △ ABG ∶ S △AGC = S △ BGE ∶ S △GEC = BE ∶ EC S △ BGA ∶ S △BGC = S △ AGF ∶ S △GFC = AF ∶ FC S △ AGC ∶ S △BCG = S △ ADG ∶ S △DGB = AD ∶ DB 二、 例题分析 例 1、如图, AD DB , AE EF FC ,已知阴影部分面积为 5 平方厘米, 多少平方厘米? 1) BCH ABC 的面积是

例2、有一个三角形ABC 的面积为1,如图,且AD 1 AB,2 1 ABC中,,D为BC的中点, E 为AB上的一点,且BE= AB,已知四 边3 形EDCA的面积是35 ,求三角形ABC的面积. 例4、例 1 如图,ABCD 是直角梯形,求阴影部分的面积和。(单位:厘米) 例5、两条对角线把梯形ABCD分割成四个三角形。已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米) 例6、如下图,图中BO=2DO,阴影部分的面积是 4 平方厘米,求梯形ABCD的面积是多少平 B 三角形DEF 的面积. BE 1BC , 3 1 CF CA ,求 4 例3、如图,在三角形

蝴蝶定理

一、蝴蝶定理的发展历程简介:。 蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 如图,过圆中弦AB的中点作M引任意两弦CD和EF,连结CF和ED,分别交AB于P、Q,则PM=QM 由于此图形似只蝴蝶飞舞,故此定理因此而得名:蝴蝶定理。此定理早在1815年在英国杂志《男士日记》上见刊,征求证明,有意思的是,迟到1972年以前,人们的证明都并非初等,且十分繁琐。然近些年来,证明者不乏其人,使得这只翩翩起舞的蝴蝶栖止不定,变化多端。笔者结合自己的证明和收集别人的研究,整理证法十种,以飨读者。 证法1 (证∠POM=∠QOM) 作CF、DE的弦心距OG、OH,连OM,则OM⊥AB且OGPM四点共圆。 ∴∠POM=∠PGM…①。同理,∠QOM=∠QHM…② ∵△MFC∽MDE,∴MF﹕FC=MD﹕DE ∴MF﹕2FG=MD﹕2DH,∴MF﹕FG=MD﹕DH ∠F=∠D ∴△MFG∽△MDH,∴∠MGF=∠MHD…③

由①②③得:∠POM=∠QOM ∴PM=QM 证法2 (作△PMD′≌△QM D) 作C关于直线OM的对称点C'连C'M交⊙O于D',则AC弧=BC'弧,MD'=MD,∠PMD'=∠QMD ∠CPM=0.5AF弧+0.5BC'C弧=0.5AF弧+0.5AC弧+0.5CC'弧=0.5FCC'弧=∠FD'M 从而PFD’M四点共圆。 ∴∠PD’M=∠PFM=∠D ∴在△PD’M与△QDM中 ∠PD’M=∠D MD’=MD ∠PMD’=∠QMD ∴△PMD’≌△QMD ∴PM=QM 证法3 (利用梅氏定理) 延长CF、ED相交于G点。

小学奥数几何五大模型(蝴蝶模型)

模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系 (“蝴蝶定理”):S 4S 3 S 2S 1O D C B A ①12 43::S S S S 或者1324S S S S ②124 3::AO OC S S S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是 6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 根据蝴蝶定理求得312 1.5AOD S △平方千米,公园四边形ABCD 的面积是123 1.57.5平方千米,所以人工湖的面积是7.5 6.920.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵ :AG GC ?A B C D G 321 ⑴根据蝴蝶定理,123BGC S ,那么6BGC S ;⑵根据蝴蝶定理,:12:361:3AG GC .(???)任意四边形、梯形与相似模型

【例2】四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形 BCD 的面积的1 3,且2AO ,3DO ,那么CO 的长度是DO 的长度的_________倍。A B C D O H G A B C D O 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形” ,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件 :1:3ABD BCD S S ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知 条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造 这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学 生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ,∴236OC , ∴:6:32:1OC OD . 解法二:作AH BD 于H ,CG BD 于G .∵1 3 ABD BCD S S ,∴1 3AH CG ,∴13AOD DOC S S ,∴13AO CO ,∴236OC , ∴:6:32:1OC OD . 【例3】如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是 2、4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。 O G F E D C B A ⑴根据题意可知,BCD △的面积为244616,那么BCO △和CDO 的面积都是162 8,所以OCF △的面积为844;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862, 根据蝴蝶定理, ::2:41:2COE COF EG FG S S ,所以::1:2GCE GCF S S EG FG ,那么1 1 2 21233 GCE CEF S S .【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的

(完整word版)蝴蝶定理的八种证明及三种推广

蝴蝶定理的证明 定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而MUA MVC ??,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○ 1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ???,故ME=MF 。 证法 3 如图4,设直线DA 与BC 交于点N 。对NEF ?及截线AMB ,NEF ?及截线CMD 分别应用梅涅劳斯定理,有 FM EA NB 1ME AN BF ??=,FM ED NC 1ME DN CF ??= 由上述两式相乘,并注意到 NA ND NC NB ?=? 得 2 2 FM AN ND BF CF BF CF ME AE ED BN CN AE ED ?=???=? ()()()()2 2 22 PM MF MQ MF PM MF PM ME MQ+ME PM ME -= =-+-- 化简上式后得ME=MF 。[2] 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。 图 2 图 3 图 4

相关文档