文档库 最新最全的文档下载
当前位置:文档库 › 数码照相机定位汇总

数码照相机定位汇总

数码照相机定位汇总
数码照相机定位汇总

数码相机定位

摘要

系统标定是双目定位的关键,其在交通监管(电子警察)等方面具有重要作用。我们分别建立了针孔模型和矩阵模型,通过Matlab软件进行求解,确定了像点的坐标与相机的相对位置,从而解决了系统标定问题。

针对问题一,由于需要求坐标,所以我们建立了四个本文会用到的坐标系,并求出了四个坐标系间的转化关系式。我们根据相机成像的原理,建立了针孔模型,通过使用Matlab软件对圆的像作外切矩形并得出切点坐标,利用切点与圆心坐标间的关系式确定出了圆心像的像素坐标。最后通过像心与光心坐标系之间的转换关系得出了圆心像的光心坐标。

针对问题二,它其实是问题一的一个应用,我们先将图片导入计算机,使用Matlab程序得出了椭圆与其外接矩形的交点坐标,然后将此数据带入针孔模型中,运用坐标系转化法解得圆心的像的光心坐标分别为:A(-49.6,51.7,417.2),B(-23.9,49.6,417.2),C(34.4,45.4,417.2),D(19.4,-32.1,417.2),E(-60.2,-31.1,417.2)。

针对问题三,由射影定理知道我们需要用到三个圆心坐标,因此我们设定了A、C、E三个圆圆心的世界坐标。再根据像点与圆心的几何关系,利用向量垂直、相似三角形的原理求得了像点与圆心的函数关系式。利用Matlab软件求解得出像点a、c、e的坐标后,根据光心与世界间的转换关系求得了B、D的像点的光心坐标。我们将此结果与问题二的结果作比较,分析偏差,得出模型一精度高、稳定性好的结果,验证了模型一的合理性。

针对问题四,我们将两部相机放在同一世界坐标系下,分别用两部相机对处于同一位置的同一照片进行拍摄,通过问题二的方法求解得到每个相机的光心在世界坐标系中的坐标,通过两坐标间的距离即可确定两个相机间的距离。

我们通过颜色赋值、坐标与矩阵间的相互转化,把难以处理的图片信息数据化,建立针孔与坐标模型,并给出了计算结果的程序,使定位问题可以通过计算机来解决,适应于大数据的处理,节省了人力与时间。

关键字:数码相机定位;坐标系;针孔模型;矩阵;射影定理

1.问题重述

数码相机定位在交通监管等方面有广泛应用。它是指用数码相机摄制物体的相片确定物体表面某些特征点的位置,最常用的定位方法是双目定位(用两部相机来定位),即用两部固定于不同位置的相机拍摄物体,分别获得物体上的特征点在两部相机像平面上的坐标。根据两部相机精确的相对位置用几何法确定特征点的位置。精确地确定两部相机的相对位置(即系统标定)是双位定位的关键。

标定做法:先在平板上画若干点,同时用两部相机照相,得到两组像点,利用这两组像点的几何关系就可以得到两部相机的相对位置。因无法得到没有几何尺寸的“点”,我们实际做法:在物平面上画若干个圆(作为靶标),以几何圆心为点。而圆的像一般会变形,所以必须从圆的像中把圆心的像精确地找到,从而实现标定。

靶标设计:取1个边长为100mm的正方形,分别以四个顶点(A、C、D、E)为圆心,12mm为半径作圆。以AC边上距离A点30mm处的B为圆心,12mm 为半径作圆。用一位置固定的数码相机摄得其像。

我们需要建立数学模型解决如下四个问题:

(1)建立数学模型和算法以确定圆心的像坐标, 坐标系原点取该相机的光学中心,x-y平面平行于像平面;

(2)计算圆心的像坐标, 该相机的像距(即光学中心到像平面的距离)是1577个像素单位(1毫米约为3.78个像素单位),相机分辨率为1024×768;(3)设计一种方法检验模型,并对方法的精度和稳定性进行讨论;

(4)建立用此靶标给出两部固定相机相对位置的数学模型和方法。

2.基本假设

1.假设圆的成像为椭圆形,圆心的像位于椭圆的几何中心;

2.假设相机摄的像没有出错;

3.假设拍摄时标靶的平面没有扭曲。

3.通用符号说明

4.问题一的模型建立与求解

4.1问题的分析

问题一需要我们建立模型和算法来确定圆心的像坐标,我们首先就需要建立坐标系来表示坐标。基于以后会用到的所有坐标,我们拟建立世界、图像、像素和光心四个坐标系,并求其转化关系式。

我们所求的坐标应在光心坐标系中。由此,我们打算计算出各圆圆心的像素坐标,然后其转化为光心坐标[1]。

对于各圆圆心的像素坐标的计算,我们打算在椭圆的外围用计算机做一个外切矩形,由于椭圆曲线中平行的切线到椭圆中心的距离相等,那么我们就能够将矩形的中心点作为椭圆的中心,即像心。

根据相机成像的原理,我们拟建立针孔模型,通过坐标转换法来求像心的光心坐标。

4.2模型的准备

我们需要建立坐标系来表示圆心的像的坐标,为了方便,我们在此列出以后可能会用到的所以坐标系。建立的四个坐标系的名称、意义及表示方法如下:

表1 坐标系定义表

序号坐标系名称坐标系意义坐标值表示方法

1 世界坐标系根据自然环境所选定的坐标系

(三维) ()

,,

w w w x y z

2 图像坐标系坐标原点O1在图像平面的中

心,X轴、Y轴分别为平行

于图像平面的两条垂直边(二

维)

,x y ()

3 像素坐标系坐标原点O0在图像平面的左

上角,X轴、Y轴分别平行

于图像坐标系的X轴和Y轴

,u v

(),坐标值为离散的整数值

4 光心坐标系以相机的光心为坐标原点O2,

X轴、Y轴分别平行于图像坐

标系的X轴和Y轴,相机的光

轴为Z 轴()

,,

c c c x y z

坐标系的方位图如下所示:

图1 坐标系方位图

四个坐标系间的转化关系求解如下:

我们将坐标化为矩阵的形式,并由坐标系间的几何关系得到图像坐标系与光心坐标系之间的关系如下:

00000

0100101c c C c x x f y K y f z ?????? ? ? ? ?= ? ? ? ? ? ????

???

(4) K C 表示常数,f 为相机焦距。 由于任意两个空间直角坐标系之间可以通过旋转、平移的方式叠合,所以光心坐标系与空间坐标系可以由旋转矩阵R 和平移向量t 联系在一起,它们之间存在如下转换关系:

0111c w c w c w x y t x y R z z ???? ? ??? ? ?= ? ? ??? ? ?????

(5) (),,w w w x y z 为点P 在世界坐标系中的坐标。

由于图像坐标系以毫米为单位,在图像坐标系中一般采用像素坐标,故需要将图像坐标系转化为以像素为单位的像素坐标系,转化关系如下:

00101=011001u dx u x v v y dy ?? ????? ? ? ? ? ? ? ? ? ? ????? ? ???

(6) 式中00 512 384u v ==,, dx dy ,是物像元素长度比例,单位是像素。 由上述三个等式,我们分别得到了图像与光心、光心与空间、图像与像素之间的转化关系,我们将式(4)、(5)代入(6)式并化简,可以得到光心与像素之间的关系,如下所示:

()00100

10011w x w C y w x u f u y K v f v R t z ?????? ? ? ? ?= ? ? ? ? ? ???????

(7) 其中,x f f dx =,y f f dy =,()1R t 为相机的外部参数特征,000

0001x y

f u f v ?? ? ? ??

?为相

机的内部参数特征。

4.3模型的建立及算法

求各圆心的像点坐标的做法如下:

第一步:将靶标的像转化为数值图像,因为圆的像域与域外颜色不同,所以可以给他们赋与不同值,并用矩阵存储。

第二步:找到圆的像的外切矩形,其做法如下:

把图片导入计算机中,得到一个灰度矩阵,矩阵的每个元素为每个像素的灰度值,然后根据此矩阵编Matlab 程序找出每个椭圆的边界与其切线(平行于x 、y 轴)的交点的横纵坐标并记录。

以A 圆为例,记A 圆的像在X 轴方向最高最低两点A x1、A x2,它们的X 坐标分别为a x1、a x2,在Y 轴方向最高最低两点A y1、A y2,,其y 坐标分别为a y1、a y2。

设A 圆的像心的像素坐标为(),x y A A ,则由于矩形的几何中心与像心重合,我们得到如下关系式:

122

x x x a a A += (1) 12

2y y y a a A += (2)

同理计算其他各圆圆心的像素坐标。

第三步:通过像心坐标系与光心坐标系的转换关系得到光心坐标,做法如下:

像素坐标系与图像坐标系中的坐标原点O 0与O 1关系为:1mm 3.78

a = ()00=,u a v a 01O O ,1mm 3.78

a = 所以, 00,a u u v v ==---1001O P O P O O ()

由于相片的分辨率为1024768?,由我们所设的图像坐标系原点在相片中的位置,我们可以得出:

00512384u mm v mm ==,

11577417.23.78

f mm =?= 由图像坐标系和光心坐标系几何关系可知P 点在光心坐标系下的坐标为:

()()()00

,,a u u a v v f -- (3) 5.问题二的模型建立与求解

5.1问题的分析

问题二实际上是问题一的一个应用,我们利用问题一中的模型和算法应该可以求得各圆圆心的像坐标。

我们打算先把图形转换成.bmp 格式,导入到计算机中,使计算机识别图形。 然后我们打算利用颜色的变化来编写Matlab 程序,确定图像的外接矩形。根据外接矩形的坐标,我们准备由式(1)、(2)计算出各圆像心的像素坐标。

最后我们拟将圆的像心的像素坐标带入公式(3)中,来求其光心坐标。

5.2模型的建立与求解

利用颜色的变化编写Matlab 程序原理如下:

由于圆像的颜色与空白处颜色不同,我们给这两个颜色分别赋值。当程序从上到下扫过图像区域时数值会发生变化,当数值发生第一次变化时的点记录为最高点,使数值发生第二次变化时的点记录为最低点。

具体做法如下:

先把图形格式转换为.bmp 格式,然后把图片导入Matlab 中,得到一个1024*768的灰度矩阵,矩阵的每个元素为每个像素的灰度值,然后根据此矩阵编Matlab 程序(见附录)找出每个椭圆的边界与其切线(平行于x 、y 轴)的交

点的横纵坐标,图形如下:

图2.图像坐标图

我们根据这些点的坐标由式(1)、(2)确定出各圆心的像的像素坐标,列表如下:

然后将上表的数据带入公式(3)中,求得其光心坐标分别为:

由表3我们得出:通过Matlab 程序和坐标系转化法,我们由针孔模型求得靶标上圆的圆心在像平面上的像坐标分别为A (-49.6,51.7,417.2),B

(-23.9,49.6,417.2),C (34.4,45.4,417.2),D (19.4,-32.1,417.2),E (-60.2,-31.1,417.2)。

6.问题三的模型建立与求解

6.1问题的分析

问题三需要我们设计方法检验问题一的模型,并对方法的精度和稳定性进行讨论。由于模型一没有提及相机在世界坐标系中的具体方位信息,所以我们打算利用这一信息来检验坐标模型。

我们拟根据问题二中已经得到的对应点的光心坐标和像素坐标,(打算)建立矩阵,来求解出像心的世界坐标参数。求解出这些参数后,我们将结果与问题二的结果作比较,应该能得出问题一模型精度的检验结果。

6.2模型的准备

世界坐标系中有六个元素来表示相机的位置,其中三个用来描述相机光心S 的空间位置,可用平移向量t 表示;另外三个是表示相机空间姿态的三个角元素可用旋转矩阵R 表示[2]。

平移向量即描述世界坐标系相对于光心坐标系相对位置的向量,

(),,x y z t t t =t

,,x y z t t t 分别表示世界坐标系的原点在光心坐标系下的三个坐标,

即这三个变量确定了相机相对与世界坐标的空间位置。

由世界坐标系到光心坐标系转换的旋转矩阵R 可以由表示相机空间姿态的三个角元素a 、b 、c 确定,

cos cos cos sin sin sin cos cos sin cos sin sin sin cos sin sin sin cos cos sin sin cos cos sin sin cos sin cos cos c a c a c b c a b c b c a c a c b c R a b c b a a b a b --?? ?=++ ? ?-??

6.3模型的建立

由射影定理[3]我们得到:两个点列间的三对对应点可以唯一确定一个射影对应。由此可知三维中的三个点及它们的像,确定了唯一的投影关系。所以,我们

由3对对应点可以建立6个独立的方程,得到唯一确定的6 个相机外部参数。根据上述原理,只要我们在世界坐标系中任取三个点就可以将相机的外部参数确定下来。

在这里,为了方便,我们取A 、C 、E 三圆的圆心为第一列对应点。把A 圆的圆心与世界坐标系的原点重合,AE 的圆心的连线与世界坐标系的X 轴重合,AC 的圆心的连线与Y 轴重合,如图所示:

图2 相机成像图

则A 、C 、E 三点在世界坐标系中的坐标可以表示为:

()()()0000,y,0,E ,0,0A B x ,,,

△ACE 的成像为△ace,它由SA 、SE 、SC 与像坐标平面的交点连线形成。a 、c 、e 由问题二已求得。我们固定a 点,将c 、e 分别沿着SC 、SE 平移到 c 1,e 1,使AC//ac 1,AE//ae 1,所以△ACE 与△ac 1e 1相似。

设c 1,e 1在光心坐标系Z 轴方向上相对c 、e 的平移量为z c1、z c2,所以

1111,AE AC,ACE ac e ae ac ?≈?⊥∴⊥

()()()()1111110c e e c e c x x x x y y y y z z ∴--+--+= (8)

又由两三角形相似,得到对应边成比例,即:

11ae AE ac AC = 带入坐标,得到等式如下:

()()()()222

21112222111e e e c c c x x y y z x y

x x y y z -+-+=-+-+ (9) 1

1111111;y ;;;e e c c e e c c z f z f z f z f x x y x x x x f f f

f ++++==== (10) 将公式(8)、(9)、(10)联立,组成一个非线性方程组, 通过Matlab (程序见附录)求出c 1,e 1的最优光心坐标值,再根据两三角形的相似比

11ac ae AC AE

ρ=

= 推得向量关系如下: 11;;ρρρ===Sa SA Se SE Sc SC

从而推出A 、C 、E 的光心坐标分别为:(),y ,z cA cA cA x (),y ,z cB cB cB x (),y ,z cC cC cC x 。

由几何关系可知: (),,,,T T

x y z ca ca ca t t t t x x x ??==?? (11)

6.3模型的求解

在问题二中我们已经求得a 、c 、e 三点的光心坐标为分别为 ()49.6,51.7,417.2-、()34.4,45.4,417.2、()60.2,31.1,417.2--。

将坐标代入等式(7)(8)(9)(10)(11)中,求得c 1,e 1的光心坐标分别为:

()5.18,45.05,452.54-、()20.88,28.55,360.66--

由于a 与c 1坐标均已得到,所以ac 1的长度为57.15,ρ=0.5715,得出A 、C 、E 的光心坐标如下表所示:

由此得()()(),,,y ,f 49.6,51.7,417.195T T T x y z ca ca t t t t x ===-。

由于我们已知C 、D 的世界坐标,所以可以求出它们在光心坐标系下的坐标值,将其与用模型一得出的坐标作对比得:

由上表可以看出,模型一求解的各像点的坐标与此模型在X 轴方向上有一

定偏差,在Y 与Z 轴上偏差极小。我们得出结论如下:

通过建立模型三,与模型一得出的结果作对比,我们发现它们得出的坐标值没有太大出入,所以此模型对于解决本问题是正确的。由像点在XYZ 三个方向的偏差的大小得出:模型一在Y 轴与Z 轴上精度极高,在X 轴方向上精度有略微偏大;由于每个像点通过两种方法求解的坐标的差距均较小,我们得出矩阵转换法的稳定性很高。

7.问题四的模型建立与求解

7.1问题分析

问题四需要我们给出两部固定相机相对位置的数学模型和方法,我们首先应将两部相机放在同一世界坐标系下,因为只有处于同一坐标系才能讨论其位置关系,我们拟用相机光心间的位置关系来描述相机间的位置关系。

由于问题三已求得世界坐标系到光心坐标系转换关系,而要求的相机光心在光心坐标系下的坐标我们已知,所以我们拟采用与问题三相似的办法,打算建立圆心的像的矩阵模型,用矩阵转换法处理此模型,可能得到两个相机坐标系的旋转矩阵和平移量,通过求解矩阵来得到每个相机的光心在世界坐标系中的坐标。

由于向量的模可以表示两点间的距离,我们拟根据这两个坐标,求出此向量的模,由此两个相机光心间的距离就可以获得,相机间的位置关系从而确定[2]。

7.2模型的建立

下列等式中各参数代表的意义与问题一、问题二一致。

由问题三我们得到如下世界坐标系到光心坐标系转换关系:

=+c w c w c w x x y R y t z z ?? ? ? ???

?? ? ? ???

根据上述模型相机外部参数R 与t ,我们可以做如下转化:

-+--=c w c x w c w c y w c w c c w x x x t x y R y t y t R y z z z t z ???? ? ?→= ? ????? ? ? ? ? ? ?????? ?????

(4)

进一步转化上式(4),得到R 的逆存在如下转化关系:

1---*c x w c y w c c w x t x R y t y z t z -?? ?= ? ?? ? ?? ??

??? (5)

因为光心坐标原点对应的坐标为()0,y 0,z 0c c c x ===,我们将它带入式(5),

得到如下等式:

11-**--x w w y w w c w w t x x R t y R t y t z z --???? ?? ?== ? ???? ?→- ? ? ? ?????

我们分别设两部照相机的平移向量为t 1、t 2,旋转矩阵为R 1、R 2,则它们的关系可表示为:

111111*w w w x R t y z -?? ?- ? ???=与212222*w w w x R t y z -?? ?- ? ???

=

于是我们得到两架照相机的光心在同一世界坐标系中的坐标,分别为:

()1111,,w w w x y z P ,()2222,,w w w x y z P

两个点的坐标变成已知以后,两相机的相对位置便得到了确定。我们通过求两相机光心间向量的模来确定两部相机间距:

=PQ

PQ 即为两相机的间距。

8.模型的评价

8.1模型的优点

1.对于模型一,我们把原本难以处理的图片信息数据化,此法简便又实用,经过检验发现它的精度与稳定性都很好,可以处理大多数的此类定位问题。

2.对于模型二,我们通过摄影定理、向量垂直定理和相似三角形定理这三个自然定理来计算结果,所以本模型的精度、稳定性和可信度极高,完全能够作为检验模型一的依据。

3.对于模型三,我们通过将坐标转换为矩阵,再利用矩阵的变换来求解坐标,构建了合理的桥梁,使抽象的问题数据化,非常合理。

4.对于所有的模型,我们都给出了Matlab 程序,我们只需要输入已知数据,即可由计算机自动求算出结果,操作简单,适用于大量数据的处理。

8.2模型的缺点

由于本题所给的圆与圆的像太少,使得我们没有足够的数据带入模型检验,对于精度与稳定性的讨论就不够全面。

参考文献

[1]李琪、王博,基于线性模型的数码相机定位算法[J],计算机与现代化,第1期(总第197期):57-60页,2012年1月

[2]苏金林,数码相机定位方法的数学模型研究[J],自动化与仪器仪表,第3期(总第161期):31-34页,2012年

[3]熊琰、龚华军、沈哗青,一种基于直角三点的数码相机外参数标定方法[J],冶金自动化,增刊(s2),2006年

附录

1.问题二求各个像心的Matlab代码

str1='C:\Users\96512\Desktop\xiti3\';

str2='tupian.bmp';

str3=strcat(str1,str2);

image=imread(str3);

A=image(1:384,376:512);

for i=1:384

x=mean(A(i,:));

K(i)=x;

end

for i=1:512

y=mean(A(:,i));

M(i)=y;

end

2.问题三计算c1,e1点坐标的代码

m1=(-60.2)/417.195;

m2=(-31.1)/417.195;

m3=34.4/417.195;

m4=45.4/417.195;

e1='(xc1+49.6)*(xe1+49.6)+(ye1-51.7)*(yc1-51.7)=0';

e2='(xe1+49.6)^2+(ye1-51.7)^2+ze1^2=(xc1+49.6)^2+(yc1-51.7)^2+zc1^2';

e3='xe1=(-0.1443)*ze1-0.1443*417.195';

e4='ye1=(-0.0745)*ze1-0.0745*417.195';

e5='xc1=0.0825*zc1+0.0825*417.195';

e6='yc1=0.1088*zc1+0.1088*417.195';

g=solve(e1,e2,e3,e4,e5,e6);

全球卫星导航定位技术的原理及应用论文概要.doc

浅析全球卫星导航定位技术原理及应用 一、前言 导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。 二、简介 1:全球卫星导航定位系统(global navigation and positioning satellite system采用极轨道星座和无源定位方式为美国提供全球覆盖的导航及定位系统。简称GPS。其轨道高度约为2×104 km,在6条轨道上运行有24颗卫星,每12 h绕地球一周,能保证地球上任何地点的用户都能至少同时看到4颗卫星。它属于非静止卫星定位系统。移动用户利用导航定位接收机来接收4颗(或4颗以上卫星的导航定位信号,并测量不同信号的到达时间,求出移动用户的三维空间坐标,自动给出经度和纬度显示,从而实现用户的自主定位。也可通过无线传输手段将用户定位信息传送到调度中心,实现对移动用户的调度控制。 GPS向用户广播的导航信号为双频,分别为1 575.42MHz 和1 226.60MHz。采用多种直接序列扩频码的码分多址和伪码测距技术。直接序列扩频码主要有P码

数码相机定位方法探究(史奎举)

数码相机定位方法探究 曲建跃 吴修振 沈宁 指导教员:司守奎 孙玺菁 (海军航空工程学院,烟台,264001) 摘要:数码相机定位在交通监管等方面有广泛的应用,例如可以用数码相机摄制物体的相片确定物体表面某些特征点的位置。双目定位是最常用的定位方法,即对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。双目定位的关键是系统标定,即精确地确定两部相机的相对位置。要确定两部相机的相对位置,首先应确定一个相机的像坐标系和靶标坐标系之间的转换关系,确定其内外部参数,即对一个相机进行标定。在前三问中,本文从空间平面的几何关系入手,先对靶平面坐标进行旋转,平移和投影,然后借助于相机的小孔成像原理,得到了物与像的二维坐标关系模型,再通过抓取特征点对的坐标,用最小二乘法拟合,求得物 与像二维坐标关系:????????+??????????? ??=??????7349.296064.5907971.00231.00907.07709 .0i i i i Y X y x ,进而求得靶标上五个圆的圆心的像的物理坐标为)9751.495346.50(, ?,)2821.494094.27(,?,)6651.475536.26(,,)0449.324853.17(??,,)7349.296064.59(??, ,其对应的像素坐标为)9724.3200944.195(,,)3925.4087137.197(, ,)3726.6128259.203(,,)0880.5781279.505(,(此处采用矩阵坐标表示,原点选取图像左上角的顶点)。然后通过具体点坐标对所建立的模型进行了检验,用模型求得的像坐标与实际像坐标的距离的均值作为精确度,其距离的均方差作为稳定性,得到模型的精确度为6659.1=?,稳定性5804.0=P 。第四问中,通过求得的相机的内外部参数,得到像坐标系与靶标坐标系之间的转换关系,然后通过求解方程组,得到两个相机坐标系间的坐标转换矩阵H ,从而完成了系统标定。本文特色是使用的方法简单,快捷,可操作性强,并且具有很高的精度和稳定性。 关键字:双目相机标定,几何坐标变换,小孔成像,坐标抓捕,最小二乘拟合

GPS定位原理论文20122334940

摘要 GPS是随着现代科学技术的迅速发展而建立起来的新一代精密卫星导航定位系统,具有定位精度高、观测时间短、观测站间无需通视、能提供全球统一的地心坐标等特点。本文概述了GPS定位系统的发展,介绍了GPS定位系统的组成、工作原理及GPS在汽车导航和交通运输、军事和医学上的应用等 关键词:GPS定位系统 GPS接收机 GPS定位原理

1 GPS概述 1.1 GPS概念 GPS是英文GlobalPositioningSystem(全球定位系统)的简称, GPS是随着现代航天及无线电通讯科学技术的发展建立起来的一个高精度、全天候和全球性的无线电导航定位、定时的多功能系统。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。通过硬件和软件做成GPS定位终端用于车辆定位的时候,称为车载GPS。 1.2 GPS系统的组成 GPS系统包括以下三大部分:(1)GPS卫星(空间部分);(2)地面支撑系统(地面监控部分);(3)GPS接收机(用户部分)。 GPS系统利用无线电传输特性来定位。和过去地面无线导航系统所不同的是,它由卫星来发射定时信号、卫星位置和健康状况信息,故具有发射信号能覆盖全球和定位精度高的优点。系统中所有卫星构成GPS系统的空间部分。卫星由地面站(地面监控部分)监测和控制,它监测卫星健康状况和空中定位精度。定时向卫星发送控制指令、轨道参数和时间改正数据。 用户装有GPS接收机,用来接收卫星发来的信号。GPS接收机中装有专用芯片,用来根据卫星信号计算出定位数据。用户并不需要给卫星发射任何信号,卫星也不必理会用户的存在,故系统中用户数量没有限制。具有GPS接收机的用户就构成系统的用户部分。

数学建模:数码相机定位

高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数码相机定位 摘要 柯达于1975年开发世界第一部数码相机。由此,数码照相机便家喻户晓起来。数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。 标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。 关键词:针孔成像,坐标变换,图像处理,相机镜头畸变,双目定位 。

导航定位技术与光学的联系

南京理工大学 课程论文 课程名称:导航定位技术概论 论文题目:导航定位技术与光学的联系姓名:王彬 学号: 1111100228 成绩:

导航定位技术与光学的联系 姓名:王彬学号:1111100228 专业:光信息科学与技术 引言:本文主旨是探讨导航定位系统与光信息科学与技术专业之后间的联系。对现代科技中的光学和导航技术作了详细的介绍。讨论现代光学技术与导航系统的共通之处。举例介绍了光在导航定位系统中应用的实例,如激光陀螺,光纤陀螺和激光跟踪导航。并对未来可能的发展做了展望。 光学作为一门诞生340余年的古老科学 经历了漫长的发展过程 从经典光学到近代光学 再到现代光学 它的发展也表征着人类社会的文明进程。展望21世纪 随着以光信息为代表的信息化社会的发展 人类将迈进光子时代 光子学的发展和光子技术的广泛应用将对人类生活产生巨大影响。光学是研究光的产生和传播、光的本性、光与物质相互作用的科学。光学作为一门诞生340 余年的古老科学, 经历了漫长的发展过程, 它的发展也表征着人类社会的文明进程。20 世纪以前的光学, 以经典光学为标志, 为光学的发展奠定了良好的基础; 20 世纪的光学, 以近代光学为标志取得了重要进展, 推动了激光、全息、光纤、光记录、光存储、光显示等技术的出现, 走过辉煌的百年历程; 展望21 世纪的现代光学, 将迈进光子时代, 光子学已 不是物理学的学术上的突破, 它的理论及其光子技术正在或已经成为现代应用技术的主角, 光子学的发展和光子技术的广泛应用将对人类生活产生巨大影响。 定位与导航技术是涉及自动控制,计算机,微电子学,光学,力学,以及数学等多学科的高技术,是实现飞行器特别是航天飞行任务的关键技术,也是武器精确制导的核心技术。导航定位技术被应用于人类生活中的各处各地,时时刻刻。他为我们的的生活提供了巨大的便利,深深地融入我们的生活。他包涵天文导航,地文导航,惯性导航,无线电导航,卫星导航和其他等等。目前应用最广,技术最完善最先进的是卫星导航。有美国的GPS导航系统,俄罗斯的GLONASS系统,欧洲的GALILEO系统和中国的北斗导航系统。其中最具代表性的是美国的GPS。 最初的GPS计划在联合计划局的领导下诞生了,该方案将24颗卫星放置在互成120度的三个轨道上。每个轨道上有8颗卫星,地球上任何一点均能观测到6至9颗卫星。这样 粗码精度可达100m,精码精度为10m。由于预算压缩,GPS计划不得不减少卫星发射数量 改为将18颗卫星分布在

数码相机定位(优秀论文)

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2008高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用):评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数码相机定位 摘要 本文对双目定位的具体模型和方法进行了研究,分别给出了针孔成像模型、椭圆拟合模型等并对其进行研究。这种方法可以较好的解决由于像坐标存在误差,而引起靶标坐标能否精确计算的问题。我们用此模型,比较准确的还原出靶标上的点。给定靶标上的点,我们可以对应的求出像面上的点,即得到了一个像面上的点与靶标上的点的一一对应的较准确的关系。 我们首先要确定出像面上椭圆的中心坐标,因此我们采用了几何方法,建立合理的坐标,根据椭圆最高点和最低点的连线、最左与最右点的连线必交与椭圆中心的原理,创造性的利用了Photoshop软件直接将所给的图形以像素为单位进行坐标化处理,再读出各个点的坐标,这样椭圆中心即可确定下来,靶标上圆的圆心在该相机像平面的像坐标也就确定了。 由于本文采用的是一个优化模型,求出的是其近似解,与实际的原坐标位置有一定的偏移,所以我们需检验其精度,采用两种方法检验:1、通过靶标面和像平面中存在的几何关系建立一定的方程,从而去验证上述模型的精度;2、如果直接用图像中图形边界做切线,精度将会变得非常低,会造成很大的误差,所以在本模型中,先要利用所给图像中图形的边界(在1中提取)拟合出椭圆的方程。通过MATLAB、最小二乘法等计算出像平面椭圆圆心的坐标,结果与实际进行比较,进而检验模型的精度和稳定性。 对于由两部相机摄的像确定两部相机的相对位置及方向,我们通过建立方程并求解,从而得到两部相机之间的位置关系。该方法可以较好的处理误差所引起的方程不相容问题。 关键词:针孔成像模型几何模型椭圆拟合Photoshop

卫星导航技术论文

论卫星导航定位技术的原理及应用 导航技术是涉及自动控制、计算机、微电子学、光学、力学以及数学等多学科的高技术,是实现飞行器特别是航天器飞行任务的关键技术,也是武器精确制导的核心技术,这对于提高航空器、航天器以及武器装备的机动性、反应速度和远程精确打击能力具有重要意义,在海、陆、空、天等现代高技术武器及武器平台中得到广泛的应用。按照定位导航的方式可分成:卫星定位导航、自主式导航、组合导航以及无源导航。而此文着重介绍的是卫星定位导航这一技术。 在人类早期物质生产活动中,人类的活动范围内总存在森林、草原,人们总是随着自然环境的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年世界上第一颗人造地球卫星发射后,人类便发现卫星可以作为一个已知的空间信号源,为人类获取相关的信息资源,开展测距、定位、导航研究搭建了一个世界共享的技术平台。 卫星导航看似涉及了多方面学科的知识,实际原理并不算复杂。卫星导航按测量导航参数的几何定位原理分为测角、时间测距、多普勒测速和组合法等系统(测角法和组合法因精度较低等原因没有实际应用)。多普勒测速定位是指用户定位设备根据从导航卫星上接收到的信号频率与卫星上发送的信号频率之间的多普勒频移测得多普勒频移曲线,根据这个曲线和卫星轨道参数即可算出用户的位置。而时间测距导航定位的方法是用户接收设备精确测量由系统中不在同一平面的4颗卫星(为保证结果唯一,4颗卫星不能在同一平面)发来信号的传播时间,然后完成一组包括4个方程式的模型数学运算,就可算出用户位置的三维坐标以及用户钟与系统时间的误差。卫星导航系统的组成也不算复杂,只有导航卫星、地面台站和用户定位设备三个部分。导航卫星是卫星导航系统的空间部分,由多颗导航卫星构成空间导航网。地面台站则是用来跟踪、测量和预报卫星轨道并对卫星上设备工作进行控制管理,通常包括跟踪站、遥测站、计算中心、注入站及时间统一系统等部分。跟踪站用于跟踪和测量卫星的位置坐标。遥测站接收卫星发来的遥测数据,以供地面监视和分析卫星上设备的工作情况。计算中心根据这些信息计算卫星的轨道,预报下一段时间内的轨道参数,确定需要传输给卫星的导航信息,并由注入站向卫星发送。剩下的用户定位设备通常由接收机、定时器、数据预处理器、计算机和显示器等组成。它接收卫星发来的微弱信号,从中解调并译出卫星轨道参数和定时信息等,同时测出导航参数(距离、距离差和距离变化率等),再由计算机算出用户的位置坐标(二维坐标或三维坐标)和速度矢量分量。用户通过这个设备即可得到卫星导航的帮助。 说到卫星导航,就不得不提到美国的全球定位系统(GPS Global Positioning System)。GPS系统的前身为美军研制的一种子午仪卫星定位系统(Transit),1958年研制,64年正式投入使用。尽管TRANSIT在导航技术的发展中具有划时代的意义,但它存在观测时间长、定位速度慢(2个小时才有一次卫星通过,一个点的定位需要观测2天),不能满足连续实时三维导航的要求,尤其不能满足飞机、导弹等高速动态目标的精密导航要求。于是在六十

推荐-数学建模优秀数码相机定位的数学模型 精品 精品

数码相机定位的数学模型 摘要 随着数码相机定位在各领域的广泛应用,对相关问题《机器视觉》的研究也成为热点。因此建立一个精度较高,稳定性好的数码相机定位的数学模型,具有很好的现实意义。 问题1要求给出确定靶标上圆的圆心在给定相机像平面的像坐标的算法,问题2利用问题1的模型对给定数据求解。为此,首先建立了四个空间直角坐标系,在MATLAB中把图3的数字信息提取出来,主要是五个椭圆的边缘点的信息;同时为了便于运算,通过坐标变换将计算机图像坐标变换为图像坐标;并用提取的图像边界坐标拟合出5个椭圆的方程,利用“曲线切线的投影仍与曲线的投影相切,而且切点的投影仍为投影的切点”这一引理,提取出靶标上圆及其像上的公切点的坐标作为特征点,利用RAC两步法标定过程和最小二乘法建立了计算世界坐标系到相机坐标系的旋转变换矩阵R和平移向量T及径向畸变系数k的算法。利用16个公切点作为特征点,通过Matalb编程求得靶标上圆的圆心在文中给定相机像平面的五个坐标(单位:mm):A(-49.7132, 51.1289 417.1958),B(-23.3475, 49.1539 417.1958),C(33.8194, 44.8716, 417.1958),D(18.8173,-31.5798, 417.1958),E(-59.7830, -31.1754, 417.1958)。 问题3的解决分为两步:一是通过对模型计算出的焦距及畸变系数及上面五个坐标值的分析得出模型的精度较高的结论;二是采用改变特征点数的方法或利用“A,B,C三个标靶的中心的像应在一条直线上”验证模型的稳定性。问题4采用二目立体视觉模型确定了给出两部固定相机相对位置的数学模型和方法。 本文建立的算法可操作性强,精度较高,稳定性好,对解决类似问题的计算有一定的推广价值。 关键词:拟合椭圆特征点提取 RAC两步法坐标旋转矩阵公切点

基于激光雷达的移动机器人定位与导航技术 大学论文

目录 第一章绪论 (3) 1.1引言 (3) 1.2移动机器人的定义与主要研究内容 (3) 1.2.1移动机器人的定义 (3) 1.2.2移动机器人的主要研究内容 (4) 1.3本文研究课题与内容安排 (5) 1.3.1研究课题 (5) 1.3.2内容安排 (6) 第二章移动机器人导航技术概述 (8) 2.1移动机器人工作环境表示方法 (8) 2.1.1几何地图 (8) 2.1.2拓扑地图 (10) 2.2移动机器人定位技术 (11) 2.2.1相对定位技术 (11) 2.2.2绝对定位技术 (12) 2.3移动机器人路径规划方法 (13) 2.3.1Dijkstra和A*图搜索算法 (13) 2.3.2人工势场法 (13) 2.3.3调和函数势场法 (14) 2.3.4回归神经网络法(RNN) (15) 第三章基于线段关系的扫描匹配定位 (17) 3.1环境描述 (17) 3.2定位传感器 (19) 3.3直线段提取................................................................................. . (20) 3.3.1LRF数据点分段 (20) 3.3.2直线拟合 (21) 3.3.3直线斜率计算 (21) 3.4线段关系(LSR)匹配 (23) 3.4.1判据选取 (23) 3.4.2递进式对应性计算 (25) 3.4.3距离关系比较的分离与合并 (26) 3.4.4最佳匹配搜索 (28) 3.4.5位姿计算 (29) 3.5实验及结果分析 (29) 第四章基于已知地图的路径规划 (32) 4.1基于A*算法的拓扑地图规划 (33) 4.1.1拓扑地图的表示 (33) 4.1.2A*算法 (34) 4.2基于回归神经网络(RNN)的栅格规划算法 (36) 4.2.1栅格环境的RNN表示 (36)

卫星导航与定位技术学科发展研究论文

卫星导航与定位技术学科发展研究论文 一、引言 卫星导航与定位技术是利用各种用户终端接收由卫星导航定位系统播发的、并沿着视 线方向传送的信号,对目标进行导航、定位和授时。将卫星导航与定位技术与传统的导航 定位技术相比较可知,卫星导航与定位技术具有高时空分辨率、全天候、连续地提供导航、定位和定时的特点。经过几十年的发展,卫星导航与定位技术取得了巨大的进步,已经成 为当今世界高技术群中对现代社会最具影响力的技术之一,并且已然渗透到国民经济的各 个领域,应用于海上舰船、陆地车辆、航空与航天飞行器的导航,以及大地测量、石油勘探、精细农业、精密时间传递、地球与大气科学研究以及移动通信等多领域。未来卫星导 航与定位技术将进入以保障地球系统环境安全、发展战略性新兴空间信息产业、探索地球 系统的新阶段。 卫星导航与定位技术是事关国民经济社会发展、国家科技进步、国家安全等方面的综 合技术领域,是国家科技实力与竞争力的重要标志之一。世界主要军事大国以及经济体都 竞相发展独立自主的全球卫星导航系统Global Navigation Satellite System,GNSS,包括:美国的GPSGlobal Positioning System、俄罗斯的GLONASS Global Navigation Satellite System,欧盟的GALILEOGalileo Navigation Satellite System以及中国的北斗卫星导航系统BDSBeiDou NavigationSatellite System。 当前,卫星导航与定位技术正在从单一的GPS时代转变为多星座并存兼容的GNSS新 时代,卫星导航体系全球化和增强多模化;从以卫星导航为应用主体转变为PNT定位、导航、授时移动通信和Internet等信息载体融合的新阶段。BDS的逐步建成为我国卫星导航与定位技术的进一步发展提供了良好契机。我国应该抓住这一机遇,大力推进卫星导航与 定位学科的进一步发展,为培养大量高精尖专业技术人才,争夺卫星导航与定位的国际市 场奠定良好基础。本文旨在调研国内外卫星导航与定位技术学科的发展现状,对国内外最 具代表性的高校和研究机构进行了对比分析,为我国卫星导航与定位技术学科的发展提出 若干建议。 二、卫星导航与定位技术学科发展 目前,国内研究卫星导航与定位技术的高校和机构主要包括:武汉大学、同济大学、 中南大学、河海大学、山东科技大学、长安大学、上海天文台、中国测绘科学研究院和中 国科学院测量与地球物理研究所等。本文以武汉大学作为国内卫星导航与定位学科的研究 代表。武汉大学卫星导航定位技术研究中心始建于1998年,以建设世界一流学科为目标,经过十余年的努力,在卫星导航及相关领域开展了广泛深入的研究,为我国自主卫星导航 系统的新技术、新方法和新应用的发展做出了巨大贡献。

基于两步法的数码相机定位

基于两步法的数码相机定位

基于两步法的数码相机定位 摘要 数码相机定位在机器自动装配系统、工业视觉检测与识别、三维重建、机器人视觉导航、运动分析、海上目标跟踪、交通监管(电子警察)等诸多领域中得到了运用。 本文给出了确定靶标上圆的圆心在该相机像平面的像坐标的数学模型及确定两部固定相机相对位置的数学模型,并设计出了相应的求解算法。 首先在仅考虑单相机的情况下,在分析相机成像原理和四个坐标系之间的相互变换关系的基础上,考虑了相机径向畸变和切向畸变即非线性畸变因素,选择了一种简化模型,克服了相机内外参数未知情况下求解像坐标的困难,最终建立了基于两步法的像坐标确定模型。该模型满足牛顿迭代法的收敛条件,保证了模型解的稳定性。 其次利用该模型,针对问题1和问题2,借助于Matlab工具,计算了靶标上给定5个圆的圆心像坐标。 然后选择Canny算子对给定靶标的像的几何中心进行了精确检测,并对两种结果进行了对比,分析了误差,精度及稳定性。比较结果如表1所示: 表1 两种算法所得像坐标结果对比(单位: 像素) U坐标的平均误差:1.6551,V坐标的平均误差:1.6754 平均误差:1.6653 最大误差点为C点,最小误差点为A点。 根据表1的数据证明了两步法确定像坐标的模型具有一定的可靠性和实用性。 然后根据给定靶标模型,并在上述模型的基础之上建立了确定两部相机相对位置的模型,同时给出基于平行线“消隐点”理论的切实可行的解法。 本文最后讨论了文中所建模型和所给算法的优缺点及改进方向。 关键词:两步法;像坐标;内外参数;边缘检测;相对位置;平行线消隐点

一、问题的提出 1.1 背景说明 数码相机定位在交通监管(电子警察)等方面有广泛的应用。由于目前数字图像的处理速度越来越快,且可达0.02个像素精度[1],因此考虑畸变系统误差的高精度标定具有重要的意义。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。 本文是通过确定数码照相机的位置,属性参数并建立成像模型,从而确定空间坐标系中物点同它在图像平面上像点之间的对应关系,并通过对所得到的结果进行相关的处理,最终得到其在像平面理想的像坐标。 1.2 重述 有人设计靶标如下A,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。以C边上距离A点30mm处的B为圆心,12mm为半径作圆,如下图1所示。 图1靶标示意图 由于图形的图像与拍摄点的位置有关,所以一下得到用一位置固定的数码相机摄得其像,如图2所示。

数码相机定位问题研究

数码相机定位问题研究 赵志刚 薛江堂 冷振鹏 摘要 基于双目CCD 立体测量系统标定技术被广泛用于交通监管中,该技术的核心是摄影测量。本文利用MATLAB 对圆的边界提取,再用最小二乘法拟合椭圆曲线,并借助摄影测量基本公式建立二维模型求得靶标圆心像坐标。并对该模型作t 检验,再利用针孔模型分别求得两部相机像平面对应于物平面的旋转向量12,R R 和平移向量12,t t ,进而确定两相机的相对位置。 首先,我们假设:已知四点的物平面坐标和像平面坐标,借助摄影测量基本公式建立二维模型求得物平面与像平面的对应关系,但有12,c c ...8c 八个未知数待定(将在第二问中给予求解)。 其次,我们根据A 、B 、C 、D 、E 五个圆形靶标的成像情况利用MATLAB 软件提取其边缘阈值。在此基础上利用最小二乘法拟合椭圆求得其中心坐标。在不考虑畸变影响的前提下,该中心坐标即为圆心的像坐标。任取A 、B 、C 、D 、E 中四点代入模型一中,即可求得物平面和像平面的对应关系。 再次,我们在第三问中分别以A 、B 、C 为研究对象求出其在模型一的条件下的圆心像坐标。利用t 检验,比较拟合椭圆中心坐标与模型一求得结果的差异,在置信度0.05a =情况下,这三组结果无显著差异,从而检验了模型的精度及稳定性。 最后利用线性相机模型(针孔模型)确定世界坐标系和计算机数字图像坐标的对应关系,从而分别求得两部摄像机的旋转矩阵12,R R 和平移向量12,t t ,从而我们可以求得两相机相机坐标系间的关系: 112R R R -= 1122t t R t -=- 问题二的求解结果如下表:

1.问题重述 (1)问题的背景 摄影技术自 20 世纪 40 年代开始应用于交通事故分析,已经得到广泛的应用,但仅用做简单定性分析,随着计算机视觉和图像处理技术的发展,摄影测量技术在交通事故现场测量中的应用研究已经成为热点,国内外许多学者已经做了大量研究,使定量分析成为可能。如在 80 年代,Kerkoff 对透视投影发展的历史、透视绘图原理和透视成像原理进行了详细阐述,根据透视原理研究了利用摄影图像确定拖痕长度等的方法,逐步形成了二维摄影测量方法,开发出 Pc-rect 等现场测量软件。在 1994 年,Nicholas 等提出了交通事故现场的反投影照片三维重建法。近年来,随着计算机视觉原理的突破和飞速发展,国内学者李江教授、许洪国教授等相继提出了利用立体视觉原理的多照片重建交通事故现场的方法,并初步开发了软件。为改变标定参考物的限制,进行照相机自标定研究,鲁光泉等提出了基于基础矩阵的交通事故现场三维重建方法。当前主要的交通事故现场重建方法,有二维方法、三维方法等。 (2)问题的提出 用数码相机摄制物体的相片确定物体表面某些特征点的位置,目前最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置是关键,这一过程称为系统标定。本问题的第四小问就是解决该问题。 系统标定最常用的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。所以我们实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,系统标定就可实现。题目中第一问和第二问就是解决该问题。该题目不但要求我们建立模型和算法,而且要求我们对所见的模型进行精度和稳定性分析。在前三个问题的基础上,第四问要求我们通过物平面与像平面的对应关系找到像平面相对物平面的旋转矩阵和平移矩阵,从而建立两部相机像平面的夹角和距离关系,以便确定两部相机的相对位置。 2.条件假设 (1)不考虑相机自身因素导致的误差 (2)对第二问中抽样选取部分边界点拟合的椭圆误差不予考虑 (3)两相机透镜光心处于同一水平高度 (4)两部相机的内部参数是相同 (5)本题中所给图像信息和数据真实准确 (6)不考虑人为因素造成的误差

浅析室内定位技术论文

浅析室内定位技术基本原理 摘要:在室内环境无法使用卫星定位时,使用室内定位技术作为卫星定位的辅助定位,解决卫星信号到达地面时较弱、不能穿透建筑物的问题。最终定位物体当前所处的位置。 关键词:室内定位技术方案前景分析 一、定位技术 除通讯网络的蜂窝定位技术外,常见的室内无线定位技术还有:Wi-Fi、蓝牙、红外线、超宽带、RFID、ZigBee和超声波。 1. Wi-Fi技术 通过无线接入点(包括无线路由器)组成的无线局域网络(WLAN),可以实现复杂环境中的定位、监测和追踪任务。它以网络节点(无线接入点)的位置信息为基础和前提,采用经验测试和信号传播模型相结合的方式,对已接入的移动设备进行位置定位,最高精确度大约在1米至20米之间。如果定位测算仅基于当前连接的Wi-Fi接入点,而不是参照周边Wi-Fi的信号强度合成图,则Wi-Fi定位就很容易存在误差(例如:定位楼层错误)。 另外,Wi-Fi接入点通常都只能覆盖半径90米左右的区域,而且很容易受到其他信号的干扰,从而影响其精度,定位器的能耗也较高。 2. 蓝牙技术 蓝牙通讯是一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点后,将网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微网络的主设备。这样通过检测信号强度就可以获得用户的位置信息。 蓝牙定位主要应用于小范围定位,例如:单层大厅或仓库。对于持有集成了蓝牙功能移动终端设备,只要设备的蓝牙功能开启,蓝牙室内定位系统就能够对其进行位置判断。 不过,对于复杂的空间环境,蓝牙定位系统的稳定性稍差,受噪声信号干扰大。 3. 红外线技术 红外线技术室内定位是通过安装在室内的光学传感器,接收各移动设备(红外线IR标识)发射调制的红外射线进行定位,具有相对较高的室内定位精度。 但是,由于光线不能穿过障碍物,使得红外射线仅能视距传播,容易受其他灯光干扰,并且红外线的传输距离较短,使其室内定位的效果很差。当移动设备放置

数码相机常见故障及故障排除的方法

数码相机常见故障及故障排除的方法第1招数码相机近距拍摄效果不好【故障现象】用数码相机近距离拍摄的照片效果很差。【故障分析】在拍摄照片时,如果物体离数码相机太近,超出了焦距对焦范围,那么,拍摄出来的照片的最终效果就不会太清晰。【故障解决】如果数码相机有微距拍摄功能,只要激活其功能并在相机允许的近距离范围内拍摄相片即可得到较好的效果。【经验总结】现在市场上流行的多数数码相机不具有微距拍摄的功能,所以最好在数码相机的焦距范围内拍摄照片。第2招数码相机拍摄的景物与LCD监视器里显示的景物有位移【故障现象】用数码相机拍摄的景物与LCD监视器里显示的景物有位置移动的现象。【故障分析】因为所有的照片在拍摄时都会有停滞的现象,也就是指在按动快门后到能够实际拍摄出景物之间有一定的延时,此时如果景物有变化或拍摄者的手抖动,就会造成这种故障的发生。【故障解决】使用三角架或更换为停滞时间短的数码相机即可解决问题。【经验总结】数码相机在电量不足情况下也有可能导致这种故障的发生。第3招相机突然断电导致故障【故障现象】数码相机使用的是外接电源,没有使用电池进行连接,在使用时不小心碰掉了外接电源的插头,当再次开机使用

时,发现相机中的SIM卡既无法删除旧照片,也无法再保存新照片。【故障分析】可能是由于SIM卡正在使用时突然断电导致写入数据错误或存储卡数据系统紊乱,从而导致无法删除和保存照片。【故障解决】只要使用读卡器重新格式化SIM卡后即可解决问题。【经验总结】、在使用数码相机的过程中,注意不要让数码相机突然掉电,这样会导致写入数据错误或存储卡中数据的紊乱,从而无法删除或保存图片。第4招相机自动关闭【故障现象】数码相机在拍照时突然自动关闭。【故障分析】(1)如果数码相机突然自动关闭,首先应该想到的是电池电力不足。因为数码相机是个耗电大户,由于电池电力不足而自动关闭的现象经常出现。可在更换电池后,数码相机仍然无法启动。(2)此时感到数码相机比较热,由此明白是由于连续使用相机时间过长,造成相机过热而自动关闭。【故障解决】停止使用,使其冷却后再使用即可排除故障。【经验总结】由于数码相机耗电很大,电池电力不足导致自动关闭的现象会经常出现。第5招液晶显示器显示图像时有明显瑕疵或出现黑屏【故障现象】液晶显示器加电后能正常显示当前状态和功能设定,但是不能正常显示图像,而且画面有明显瑕疵或出现黑屏现象。【故障分析】这种现象多数是

全球卫星定位论文

全球卫星定位系统及其应用论文 GPS系统原理及应用 学院:哲学与法学学院 班级:法学091 姓名:刘硕 学号:2009092024 摘要:本文系统介绍了GPS的原理和其三大子系统,着重介绍了GPS系统在交通运输中的应用,包括在道路工程、汽车导航和交通管理中的应用以及其他应用。 关键字:用途,作用,GPS应用,系统,数据处理 一、全球定位系统GPS简介 全球卫星定位系统GPS是美军70年代初在"子午仪卫星导航定位"技术上发展而起的具有全球性、全能性(陆地、海洋、航空与航天)、全天候性优势的导航定位、定时、测速系统。GPS由三大子系统构成:空间卫星系统、地面监控系统、用户接收系统。 1.空间卫星系统 空间卫星系统由均匀分布在6个轨道平面上的24颗高轨道工作卫星构成,各轨道平面相对于赤道平面的倾角为55Ο,轨道平面间距60Ο。在每一轨道平面内,各卫星升交角距差90Ο,任一轨道上的卫星比西边相邻轨道上的相应卫星超前30Ο。事实上,空间卫星系

统的卫星数量要超过24颗,以便及时更换老化或损坏的卫星,保障系统正常工作。该卫星系统能够保证在地球的任一地点向使用者提供4颗以上可视卫星。 空间系统的每颗卫星每12小时(恒星时)沿近圆形轨道绕地球一周,由星载高精度原子钟(基频F=10.23MHZ)控制无线电发射机在"低噪音窗口"(无线电窗口中,2至8区间的频区天线噪声最低的一段是空间遥测及射电干涉测量优先选用频段)附近发射L1、L2两种载波,向全球的用户接收系统连续地播发GPS导航信号。GPS工作卫星组网保障全球任一时刻、任一地点都可对4颗以上的卫星进行观测(最多可达11颗),实现连续、实时地导航和定位。 GPS卫星向广大用户发送的导航电文是一种不归零的二进制数据码D(t),码率fd=50HZ。为了节省卫星的电能、增强GPS信号的抗干扰性、保密性,实现遥远的卫星通讯,GPS卫星采用伪噪声码对D码作二级调制,即先将D码调制成伪噪声码(P码和C/A码),再将上述两噪声码调制在L1、L2两载波上,形成向用户发射的GPS射电信号。因此,GPS信号包括两种载波(L1、L2)和两种伪噪声码(P码、C/A码)。这四种GPS信号的频率皆源于10.23MHZ (星载原子钟的基频)的基准频率。基准频率与各信号频率之间存在一定的比例。其中,P 码为精确码,美国为了自身的利益,只供美国军方、政府机关以及得到美国政府批准的民用用户使用,C/A码为粗码,其定位和时间精度均低于P码,目前,全世界的民用客户均可不受限制地免费使用。 2.地面监控系统 地面监控系统由均匀分布在美国本土和三大洋的美军基地上的5个监测站、一个主控站和三个注入站构成。该系统的功能是:对空间卫星系统进行监测、控制,并向每颗卫星注入更新的导航电文。 地面监控系统各站的主要任务是: 监测站:用GPS接收系统测量每颗卫星的伪距和距离差,采集气象数据,并将观测数据传送给主控点。5个监控站均为无人守值的数据采集中心。 主控站:主控站接收各监测站的GPS卫星观测数据、卫星工作状态数据、各监测站和注入站自身的工作状态数据。根据上述各类数据,完成以下几项工作: (1)及时编算每颗卫星的导航电文并传送给注入站。 (2)控制和协调监测站间、注入站间的工作,检验注入卫星的导航电文是否正确以及卫星是否将导航电文发给了GPS用户系统。 (3)诊断卫星工作状态,改变偏离轨道的卫星位置及姿态,调整备用卫星取代失效卫星。 (4)注入站:接受主控站送达的各卫星导航电文并将之注入飞越其上空的每颗卫星。 (5)用户接收系统:用户接收系统主要由以无线电传感和计算机技术支撑的GPS卫星接收机和GPS数据处理软件构成。 (6)GPS接收机:GPS卫星接收机的基本结构是天线单元和接收单元两部分。天线单元的主要作用是:当GPS卫星从地平线上升起时,能捕获、跟踪卫星,接收放大GPS信号。接收单元的主要作用是:记录GPS信号并对信号进行解调和滤波处理,还原出GPS卫星发送的导航电文,解求信号在站星间的传播时间和载波相位差,实时地获得导航定位数据或采用测后处理的方式,获得定位、测速、定时等数据。 微处理器是GPS接收机的核心,承担整个系统的管理、控制和实时数据处理。视屏监控器是接收机与操作者进行人机交流的部件。 目前,国际上已推出几十种测量用GPS接收机,各厂商的产品朝着实用、轻便、易于操作、美观价廉的方向发展。 GPS数据处理软件,GPS数据处理软件是GPS用户系统的重要部分,其主要功能是对GPS接

基于北斗卫星定位系统设计本科论文

北斗/BDS精确授时定位系统 设计与应用 电子与信息学院电子信息工程专业 118552014015 杨** 指导老师 *** 【摘要】目的:提取北斗卫星系统发送出的经纬度/时间/日期/海拔/时速/航速信息。方法:采用廉价并且满足要求的MCS-51单片机,通过电路转化成TTL电平供单片机处理,另一方面,通过将接收的信息,利用MAX232转化成串行数据、通过串口连接到PC机,在PC机上通过Unicore Control & Display软件查看并显示出的信息。结果:实现了以上信息的提取并显示并在PC机上显示数据,完成北斗定位模块的应用与研究。结论:在室内和室外定位的时间长短不一,越空旷的地带,提取定位信息速度越快,并且精度越高。 【关键词】GPS、BDS/北斗、定位、授时、海拔 1.前言 1.1选题背景 Global Positioning System即称为全球卫星定位系统,是采用卫星对某地球表面物进行准确定位的技术。到目前为止有美国的GPS全球定位系统(其优点为技术成熟定位精度高,目前主导着定位系统行业);第二是俄罗斯的CLONSS(格洛纳斯系统)全球卫星导航系统(抗干扰能力极强);第三是欧洲Galileo satellite navigation system(伽利略)卫星定位系统(精确最高比CPS高10倍),第四就是由我国的BeiDou Navigation Satellite System(北斗)卫星导航定位系统(自主研发并且具有互动性与开放性优点);统称为全球四大定位系统。这些全球定位系统可以保证在任意的时间和空间,不受天气的影响同步观测到4颗卫星以及4颗以上,这样就可以在定位、导航、授时等方面得到很大的便捷。现今广泛应用于航海作业、航空业、车辆定位、以及国家军事安全的引导等,为个人出行提供安全可靠的路线,同时被广泛的应用还有手机追踪等。 1.2选题目的 正是由于GPS技术所具有的不受任何天气影响、高精度和无需人工测量等的特点。伴随着冷战结束和经济全球化的飞跃发展,从美国政府宣布取消SA政策开始,全球加大了GPS在民用信号精度的重视,国防建设、社会发展与国民经济建设的各个应用领域基本上都涉及甚至大力使用这项先进技术。同时利用C/A码进行单个点定位的精度由100米提高到将近20米,这将进一步推动GPS技术的应用。据有关数据显示,汽车GPS导航系统无论在国外还是国内,利用率越来越高,带动了一定程度上的经济发展。可见,开发属于中国本土的定位系统不容克缓,也对北斗卫星系统提出了挑战和巨大的机遇。 2. 卫星定位原理 2.1 理论模型

相关文档
相关文档 最新文档