文档库 最新最全的文档下载
当前位置:文档库 › 椭圆大题定值定点取值范围最值问题总结

椭圆大题定值定点取值范围最值问题总结

椭圆大题定值定点取值范围最值问题总结
椭圆大题定值定点取值范围最值问题总结

椭圆大题定值定点、取值范围、最值问题等总结

一、直线与椭圆问题的常规解题方法:

1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;

4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:

①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在)

121212100OA OB k k OA OB x x y y ?⊥?=??-?=?+=u u u r u u u r

②“点在圆内、圆上、圆外问题”

?“直角、锐角、钝角问题” ? “向量的数量积大于、等于、小于0问题”12120x x y y ?+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”

(如:AQ QB λ=?u u u r u u u r

数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题”?坐标与斜率关系;

⑥“弦长、面积问题”?转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;

①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:

1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:

(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:

(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,

5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;

6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;

椭圆中的定值、定点问题.

一、常见基本题型:

在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题

1.已知点00()P x y ,是椭圆E :2212

x y +=上任意一点,直线l 的方程为0012x x

y y +=,直线0l 过P 点与直

线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=

设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,

则0000001

212022x n m y x n m y x y ?=-?+???-?--=??,,

解得()32

00020432

000020023444244824x x x m x x x x x n y x ?+--=?-??+--?=?-?

所以直线PN 的斜率为()

432

000003200004288

234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()

()4320000003

200

4288

234x x x x y y x x y x x ++---=

---+

即()32

000432000023414288

y x x x y x x x x --+=+++--

从而直线PN 恒过定点(10)G ,.

2.已知椭圆两焦点12F F ,

在y 轴上,短轴长为22,离心率为2,P 是椭圆在第一象限弧上一点,且121PF PF ?=u u u r u u u r

,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点.

(1)求P 点坐标;

(2)求证直线AB 的斜率为定值;

解:(1)设椭圆方程为22

221y x a b

+=,由题意可得2222a b c ===,

,, 所以椭圆的方程为22

142

y x +=, 则12(02)(02)F F -,,

,,设()()000000P x y x y >>,, 则()()

10020022PF x y PF x y =--=---u u u r u u u u r

,,,,

所以()

22120021PF PF x y ?=--=u u u r u u u r ,

因为点()00P x y ,在曲线上,则22

00

124

x y +=,

所以22

00

42y x -=,从而()2

2

004212

y y ---=

,得0y =,

则点P

的坐标为(1.

(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,

设PB 斜率为0)k k >(,则PB

的直线方程为:(1)y k x =-,

由22(1)124

y k x y x ?-?

?+=??,

,得(

)

22222))40k x k k x k +++-=,

设()B B B x y ,

,则1B x ==

同理可得A x

A B

x x -, ()()28112A B A B k y y k x k x k

-=----=+,

所以直线AB

的斜率A B

AB A B

y y k x x -=

-

3.已知动直线(1)y k x =+与椭圆C :22155

3

y x +=相交于A B ,两点,已知点()

703M -,

, 求证:MA MB ?u u u r u u u r

为定值.

解:将(1)y k x =+代入22155

3

y x +=中得()

2222136350k x k x k +++-=, 所以()()

4222364313548200k k k k ?=-+-=+>,

22

1212226353131

k k x x x x k k -+=-=++,

所以(

)()()()1122121277773333

MA MB x y x y x x y y ?=+?+=+++u u u r u u u r

,, ()()()()2

1

2

1

2

771133

x x k x x =+++++

()()()2

2

2

121

2

749139

k x x k x x k =++++++

()()()2

2

2

2

2

2

2

3576491393131

k k k k k k k -=+++-++++

4

222

31654949931

k k k k ---=++=+. 4.在平面直角坐标系xOy 中,已知椭圆C :2

213

x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;

(2)若2OG OD OE =?,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,

由22

13

y kx n x y =+???+=??,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ?=-+?-=+->,

设()()1122A x y B x y ,

,,,AB 的中点()00E x y ,, 则由韦达定理得:0122

613t n

x x k

-+=

+, 即00022233131313kn kn n x y kx n k n k k k

--==+=?+=+++,

, 所以中点E 的坐标为()

2231313km n k k -++,,

因为O E D ,,三点在同一直线上,

所以O OE D k k =,即133m k -=-,解得1m k

=,

所以222212m k k k

+=+…,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3

m y x =-,

所以由2231

3m y x

x y ?=-???+=?得交点G 的纵坐标为223G m y m =+, 又因为2

13E D

n y y m k =

=+,,且2

OG OD OE =?,所以222313m n m m k =?++, 又由(1)知:1m k =,,所以解得k n =,

所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.

椭圆中的取值范围问题

一、常见基本题型:

对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.

5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B ,,且3AP PB =u u u r u u u r

求m 的取值范围.

解:(1)当直线斜率不存在时:12

m =±;

(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,

,,, 所以22

21y kx m x y =+??+=?,

得()

2222210k x knx m +++-= 所以()()()

22222(2)4214220()kn k m k m ?=-+-=-+>*

2

1212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=u u u r u u u r Q ,,

所以1222

12223x x x x x x +=-??=-?,,

消去2x 得()21212340x x x x ++=, 所以()

2

22

2213402

2

km m k k --+=++, 整理得22224220k m m k +--=,

214m =时,上式不成立;214m ≠时,222

2241m k m -=-, 所以222

22041

m k m -=-…,所以112m -<-?或112m

2

2

2241

m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112

m <<,

综上m 的取值范围为112m -<-?或112

m

(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围.

6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ?=u u u u r u u u r u u u r

. (1)求动点P 的轨迹C 的方程;

(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275

NA NB -?-u u u r u u u r 剟,求直线l 的斜率的取值范围.

解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--u u u r u u u u r u u u r

,,,,.

由已知得3(4)x --=22

3412x y +=,得22143

y x +=.

所以点P 的轨迹C 是椭圆,C 的方程为22143

y x +=.

(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,

,,. 由22(1)14

3y k x y x =-??

?+=??,

,消去y 得()

22224384120k x k x k +-+-=,

因为N 在椭圆内,所以0?>.

所以2122

2

12283441234k x x k k x x k ?+=??+?-?=?+?,

, 因为()()()()()2

12121

2

11111NA NB x x y y k x x

?=--+=+--u u u r u u u r

()()2121211k x x x x =+-++????

()()22222

22

9141283413434k k k k k k k -+--++=+=++,

所以()2

2

91181275

34k k -+--+剟,解得213k 剟.

(3)利用基本不等式求参数的取值范围

7.已知点Q 为椭圆E :221182

y x +=上的一动点,点A 的坐标为(31),

,求AP AQ ?u u u r u u u r 的取值范围. 解:(13)AP =u u u r

,设()(31)Q x y AQ x y =--u u u r ,,,, (3)3(1)36AP AQ x y x y ?=-+-=+-u u u r u u u r

因为221182

y x +=,即22(3)18x y +=, 而22(3)2|||3|x y x y +?…,所以18618xy -剟.

而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,

, 所以36AP AQ x y ?=+-u u u r u u u r

取值范围是[120]-,.

8.已知椭圆的一个顶点为(01)A -,,焦点在x

轴上.若右焦点到直线0x y -+的距离为3. (1)求椭圆的方程.

(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m 的取值范围. 解:(1)依题意可设椭圆方程为2

221x y a

+=

,则右焦点)

0F

3=,解得2

3a =,故所求椭圆的方程为2

213

x y +=. (2)设()()(),,,p p M M N N P x y M x y N x y ,,,

P 为弦MN 的中点,由22

13y kx m x y =+???+=??,

,得()()222

316310k x mkx m +++-= 因为直线与椭圆相交,

所以()()

22222(6)43131031mk k m m k ?=-+?->?<+,① 所以2

3231

M N

P x x mk x k +=

=-+,从而231p p m y kx m k =+=+,

所以21

313P AP P y m k k x mk

+++=

=-,又AM AN =,所以AP MN ⊥, 则2

3113m k mk k

++-=-,即2231m k =+,②

把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.

综上求得m 的取值范围是122

m <<.

9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM

上,且满足20AM AP NP AM =?=u u u u r u u u r u u u r u u u u r

,,点N 的轨迹为曲线E . (1)求曲线E 的方程;

(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),

且满足FG FH λ=u u u r u u u r

,求λ的取值范围.

解:(1)因为20AM AP NP AM =?=u u u u r u u u r u u u r u u u u r

. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,

,. 所以曲线E 的方程为2

212

x y += (2)当直线GH 斜率存在时,

设直线GH 方程为2y kx =+.代入椭圆方程2212

x y +=, 得()

2214302k x kx +++=,由0?>得232

k >,

设()()1122G x y H x y ,

,,,则121222431122

k x x x x k k -+==++,, 又因为FG FH λ=u u u r u u u r

,所以()()112222x y x y λ-=-,

,, 所以12x x λ=,所以2

122122(1)x x x x x x λλ+=+=,,

所以()

2

212

12

21x x

x x x λ

λ

+==

+,

所以2

22243

1122(1)k k k λλ-?? ?+ ?+??=+,整理得22(1)161312k λλ+=

??+ ?

??

因为232k >,所以21616433

32k <<+,所以116423λλ<++<,解得133λ<<.

又因为01λ<<,所以113

λ<<.

又当直线GH 斜率不存在,方程为11033x FG FH λ===u u u r u u u r ,

,, 所以113λ<…,即所求λ的取值范围是)

113

???,

. 10.已知椭圆C :22221(0)y x a b a b

+=>>

,以原点为圆心,椭圆的短半轴长为半径的圆与直

线0x y -=相切. (1)求椭圆C 的方程;

(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=u u u r u u u r u u u r

(O 为坐

标原点)

,当||PA PB -

时,求实数t 取值范围.

解:(1)

由题意知c e a =,所以22

2222

12c a b e a a -

===, 即222a b =,所以2221a b ==,

. 故椭圆C 的方程为2

212

x y +=. (2)由题意知直线AB 的斜率存在.

设AB :()2y k x =-,()()1122()x y B x A y P x y ,

,,,,, 由22

(2)12y k x x y =-???+=??,

,得()2222128820k x k x k +-+-=, ()()42221644218202

k k k k ?=-+-><,,

22121222

8821212k k x x x x k k -+=?=++,. 因为OA OB tOP +=u u u r u u u r u u u r ,所以()()

212121228()12x x k x x y y t x y x t t k +++===+,,,,

()()

121221

4412y y k y k x x k t t t k +-=

=+-=????+, 因为点P 在椭圆上,所以

()

()

()

2

222

2

2

22

28(4)2

21212k k t

k t k

-+=++,

所以()

2221612k t k =+.

因为||PA PB -

12x -()()2

2121220149k x x x x ??++-?

所以()()42

2

2226482201491212k k k k k ??-??+-?

, 所以()()

224114130k k -+>,所以214

k >,

所以21142k <<,

因为(

)

2

2

2

1612k t k

=+,所以2

2

2216881212k t k k

==-++,

所以2t -<<

2t <<,

所以实数t

取值范围为(

)

22-U ,.

椭圆中的最值问题

一、常见基本题型: (1)利用基本不等式求最值,

11.已知椭圆两焦点12F F ,

在y

轴上,短轴长为

,P 是椭圆在第一象限弧上一点,且121PF PF ?=u u u r u u u r

,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,

求PAB ?面积的最大值.

解:设椭圆方程为22

221y x a b

+=

,由题意可得2a b c ===,

故椭圆方程为22

142

y x += 设AB

的直线方程:y m =+.

由22124

y m y x ?=+?

?+=??,

得22440x m ++-=,

由()

22)1640m ?=-->

,得m -< P 到AB

的距离为d =

1||2PAB S AB d ?=?=,

=

当且仅当2(m =±∈-取等号,所以三角形P

AB . (2)利用函数求最值,

12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;

(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ?面积S 的最大值和相应的点T 的坐标.

解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,

,则002x x y y ==,,所以002

y

x x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2

2

14

y x +=. (2)由题意知,||1t ….

当1t =时,切线l 的方程为1y =,

点A B ,的坐标分别为()()

3311-,,,,此时3AB =;

当1t =-时,同理可得3AB =;

当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214

y kx t y x =+??

?+=??,

,得()

2224240k x ktx t +++-=③

设A B ,两点的坐标分别为()()1122x y x y ,,,

,则由③得: 2121222

2444kt t x x x x k k -+=-=++,.

又由l 与圆221x y +=相切,得

211

k =+,即221t k =+.

所以()

()

()()()2222

2

2212122

24443||4||144t t k t AB x x y y k k k ??-??=

-+-=+-=??++??

. 因为43||

43||23

||||

t AB t t =

=+?,且当3t =±时, 2AB =,所以AB 的最大值为2,

依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ?面积1112S AB =??,

当且仅当3t =±时,AOB ?面积S 的最大值为1,相应的T 的坐标为(03)-,

或(03),.

13.已知椭圆G :2

214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m

的函数,并求AB 的最大值. 解:由题意知,||1m ….

当1m =时,切线l 的方程为1x =,点A B ,

的坐标分别为(

(11-,,

,此时AB ;

当1m =-

时,同理可得AB =;

当||1m >时,设切线l 的方程为()y k x m =-.

由22

()14y k x m x y =-???+=??,

,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,

, 又由l 与圆221x y +=

1=,即2221m k k =+.

所以

AB =

=

=

由于当1m =±

时,AB 23

||||

AB m

m =

=

+, 当且当m =时,2AB =.所以AB 的最大值为2.

【练习题】

1.已知A B C ,,是椭圆m :22221(0)y x a b

a b

+=>>上的三点,其中点A 的坐标为0),BC 过椭圆m 的中心,且0||2||AC BC BC AC ?==u u u r u u u r u u u r u u u r

. (1)求椭圆m 的方程;

(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且

||||DP DQ =u u u r u u u r

,求实数t 的取值范围.

2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP

上,且满足20NP NQ GQ NP =?=u u u r u u u r u u u r u u u r

. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;

(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.

3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;

(2)若直线:y kx m

,两点(A B

,不是左右顶点),且以AB为直径的圆过椭圆C的=+与椭圆C相交于A B

右顶点,求证:直线l过定点,并求出该定点的坐标.

4.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点1

M,,平行于OM

(2)

的直线l在y轴上的截距为(0)

m m≠,l交椭圆于A B

,两个不同点.

(1)求椭圆的方程;

(2)求m的取值范围;

(3)求证直线MA MB

,与x轴始终围成一个等腰三角形.

高中数学椭圆中的常见最值问题

椭圆中的常见最值问题 1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。 例1、椭圆19 252 2=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的 最大值时,P 点的坐标是 。P (0,3)或(0,-3) 例2、已知椭圆方程122 22=+b y a x (222,0c b a b a +=>>)p 为椭圆上一点, 21,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。 分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤ 当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤ 2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。 例3、已知)1,1(A ,1F 、2F 是椭圆15 92 2=+y x 的左右焦点,P 为椭圆上一动 点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。||||2PF PA -的最小值是 ,此时P 点坐标为 。 3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。 例4、已知)1,1(A ,1F 是椭圆15 92 2=+y x 的左焦点,P 为椭圆上一动点,则

最新椭圆基本知识点总结

椭圆知识点 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质 椭圆:12222=+b y a x )0(>>b a 与 122 22=+b x a y )0(>>b a 的简单几何性质

1.椭圆标准方程中的三个量c b a ,,的几何意义 222c b a += 2.通径:过焦点且垂直于长轴的弦,其长a b 2 2 3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。 4.焦点三角形的面积2 tan 2 21θ b S F PF =?,其中21PF F ∠=θ 5. 用待定系数法求椭圆标准方程的步骤. (1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程: ①依据上述判断设方程为2222b y a x +=1)0(>>b a 或22 22a y b x +=1)0(>>b a ②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2 2 22b y a x +>1, 点在椭圆外。 7.直线与椭圆的位置关系 设直线方程y =kx +m ,若直线与椭圆方程联立,消去y 得关于x 的一元二次方程:ax 2+bx +c =0(a ≠0). (1)Δ>0,直线与椭圆有两个公共点;(2)Δ=0,直线与椭圆有一个公共点; (3)Δ<0,直线与椭圆无公共点. 8.弦长公式: 若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则弦长

与椭圆有关的最值问题

与椭圆有关的最值问题 圆锥曲线在高考中占很重要的地位,每年必考。对椭圆、双曲线、抛物线的研究方法基本相同,椭圆 为三曲线之首,对椭圆的学习就更为重要了。而椭圆中的最值问题是比较重要的课题,它主要体现了转化 思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式 等内容。能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。下面介绍几种常见 的与椭圆有关的最值问题的解决方法。 1 ?定义法 2 2 例1。P(-2, 3 ),F2为椭圆——=1的右焦点,点M 在椭圆上移动,求丨MP| + | MF 2 |的最大值 25 16 和最小值。 分析:欲求丨MP| + | MF 丨的最大值和最小值 可转化为距离差再求。由此想到椭圆第一定义 | MF | =2a- | MF | , F 1为椭圆的左焦点。 解:| MP| + | MF | = | MP| +2a- | MF | 连接 PR 延长 PF 1 交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知 -| PF |兰| MP| - | MF |兰| PR |当且仅当M 与M 1重合时取右等号、M 与M 2重合时取左等号。因为 2a=10, | PF 1 | =2所以(| MP| + | MF |) ma>=12, (| MP | + | MF | ) min =8 2 2 X y 结论1:设椭圆二 2 =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆内一点,M(x,y)为椭圆上任意 a b 一点,则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为2a - | PR |。 2 2 例 2: P(-2,6),F 2为椭圆— -L 25 16 M ,此点使| MP| + | MF |值最小,求最大值方法同例 1。 MF |连接PF 1并延长交椭圆于点 皿仆则M 在M 1处时| MP | - | MF I 取最大值| PF 1 |。二| MP | + | MF |最大值是10+ , 37,最小值是,41 2 2 x y 结论2:设椭圆一2 - =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆外一点,M(x,y)为椭圆上任意一点, a b 则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为 PF ?。 2. 二次函数法 2 2 例3?求定点A(a,0)到椭圆务'£ =1上的点之间的最短距离。 a b 分析:在椭圆上任取一点,由两点间距离公式表示| PA |,转化为x,y 的函数,求最小值。 1 1 解:设 P(x,y)为椭圆上任意一点,| PA | 2=(x-a) 2+y 2 =(x-a) 2+1- x 2 = (x_ 2a)2+1d 由椭圆方 =1的右焦点,点 M 在椭圆上移动,求| MP | + | MF |的最大值和 最小值。 分析:点P 在椭圆外,PF 2交椭圆于 解:| MP | + | MH | = | MP | +2a- | M 1 M 2

(完整版)椭圆知识点复习总结

椭圆知识点总结复习 1. 椭圆的定义: (1)椭圆:焦点在x 轴上时122 22=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参 数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程 22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 例一:已知线段AB 的两个端点A ,B 分别在x 轴,y 轴上,AB=5,M 是AB 上的一个点,且AM=2,点M 随AB 的运动而运动,求点M 的运动轨迹方程 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线: 两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 例二:设椭圆22 221(0)x y a b a b +=>>上一点P 作x 轴的垂线,恰好过椭圆的一个焦 点1F ,此时椭圆与x 轴交于点A ,与y 轴交于点B ,且A,B 两点所确定的直线AB 与OP 平行,求离心率e

2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系:(往往设而不求) (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>与过点(2,0),(0,1)A B 的直线有且只有一个公共 点T ,且椭圆的离心率2 e = (1)求椭圆的方程 (2)设12,F F 分别为椭圆的左,右焦点,M 为线段2AF 的中点,求证:1ATM AFT ∠=∠ (3)求证:2 121 2 AT AF F =. ?4、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。 例五:已知椭圆22 221x y a b +=上一点P 到椭圆左焦点的距离为3,则点P 到右 准线的距离为____(答:10/3); 例六:椭圆1342 2=+y x 内有一点)1,1(-P ,F 为右焦点,在椭圆上有一点M , 使MF MP 2+ 之值最小,则点M 的坐标为_______(答:)1,3 6 2( -) ; 5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形) 问题:0||S c y =,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

2018届高中数学专题05解密与椭圆双曲线抛物线概念有关的最值问题特色训练新人教A版选修2_1

专题05 解密与椭圆双曲线抛物线概念有关的最值问题 一、选择题 1.【四川省绵阳南山中学2017-2018学年高二上学期期中】已知点P 是抛物线2 2y x =上的一个动点,则点 P 到点()0,2A 的距离与P 到该抛物线的准线的距离之和的最小值为( ) A . 9 2 B . 5 C . 2 D . 172 【答案】D 2.【吉林省舒兰一中2017-2018学年高二上学期期中】如图,已知椭圆 22 13216 x y +=内有一点()122,2,B F F 、是其左、右焦点, M 为椭圆上的动点,则1MF MB +的最小值为( ) A . 42 B . 62 C . 4 D . 6 【答案】B 【解析】() 122MF MB a MF MB +=-- 2 2BF a ≥-→ 822262==当且仅当2,,M F B 共线时取得最小值2故答案选B

3.【北京朝阳垂杨柳中学2016-2017学年高二上学期期中】已知经过椭圆 22 12516 x y +=右焦点2F 的直线交椭圆于A 、B 两点,则1AF B 的周长等于( ) A . 20 B . 10 C . 16 D . 8 【答案】A 【解析】因为椭圆的方程为 22 12516x y +=,所以由椭圆的定义可得1212210,210AF AF a BF BF a +==+==, 1ABF ∴?周长为112220AF BF AF BF +++=,故选A . 4.【内蒙古自治区太仆寺旗宝昌一中2016-2017学年高二下学期期中】设为定点,动点满 足 |,则动点的轨迹是( ) A . 椭圆 B . 直线 C . 圆 D . 线段 【答案】D 5.【福建省闽侯第六中学2018届高三上学期第一次月考】已知椭圆: 22 2 1(02)4x y b b +=<<,左、右焦点分别为12,F F ,过1F 的直线l 交椭圆于,A B 两点,若22BF AF +的最大值为5,则b 的值是( ) A . 1 B 2 C . 3 2 D 3【答案】D 【解析】试题分析:由椭圆定义,得2248AB AF BF a ++==,所以当线段AB 长度达最小值时, 22BF AF +有最大值.当AB 垂直于x 轴时, 22 2min ||222 b b AB b a =?=?=,所以22BF AF +的最大 值为285b -=,所以2 3b =,即3b = D . 考点:1、椭圆的定义及几何性质;2、直线与椭圆的位置关系. 【方法点睛】(1)涉及椭圆上的点与两焦点的距离时,要注意联想椭圆的定义,要结合图形看能否运用定

椭圆的常见题型及解法一

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F 的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P ( , )是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。 证法1: 。 因为,所以 ∴ 又因为,所以 ∴ , 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知 11 PF e d ,又 ,所以,而 。 ∴ , 。

2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y + =的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则1020332,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P Q 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知可得 ,所以直线AB 的方程为 ,代入椭圆方程得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为 直径的圆C 与以长轴为直径的圆相内切。

押题第37道 椭圆中与面积有关的取值范围问题(原卷版)

【押题背景】 取值范围类似于函数的值域,解析几何中几何量的取值范围问题,需要选择合适的变量构建出可解出范围的函数,是高中数学的传统难点.解决椭圆中的面积取值范围问题,关键在于找到构建面积的合理路径,设法简化表达式,将问题转化为常见的函数模型,从而求出取值范围. 【押题典例】 典例1 已知椭圆C: 22 22 x y a b +=1(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,以PF1为直径的圆E:x2 2 9 2 y ? += ?? 过点F2. (1)求椭圆C的方程; (2)过点P且斜率大于0的直线l1与C的另一个交点为A,与直线x=4的交点为B,过点(3)且与l1垂直的直线l2与直线x=4交于点D,求△ABD面积的最小值. 【答案】(1) 22 1 84 x y +=;(2). 【解析】(1)在圆E的方程中,令y=0,得到:x2=4,所以F1(﹣2,0),F2(2,0), 又因为 2 1 2 OE F P =,所以P点坐标为(2,所以12 2a PF PF =+= 则a=b=2,因此椭圆的方程为 22 1 84 x y +=; (2)设直线l1:y=k(x﹣2)(k>0),所以点B的坐标为() 42k,设A(x A,y A),D(x D,y D),将直线l1代入椭圆方程得(1+2k2)x2+(﹣8k2)x+8k2﹣k﹣4=0, 所以x P x A 2 2 84 12 k k -- = + ,所以x A 2 2 42 12 k k -- = + , 直线l2的方程为y 1 k =-(x﹣3),所以点D坐标为 1 4 k ?? ? ?? , 押题第37道椭圆中与面积有关的取值范围问题

椭圆知识点总结

【椭圆】 一、椭圆的定义 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。这两个定点叫椭圆的焦点,两焦 点的距离叫作椭圆的焦距。 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121 F F PF PF <+,则动点P 的轨迹无图形。 二、椭圆的方程 1、椭圆的标准方程(端点为a 、b ,焦点为c ) (1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2 22b a c -=; (2)当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中2 22b a c -=; 2、两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 三、椭圆的性质(以122 22=+b y a x )0(>>b a 为例) 1、对称性: 对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且 是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 2、范围: 椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足 a x ≤, b y ≤。

3、顶点: ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 4、离心率: ① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。 ② 因为)0(>>c a ,所以e 的取值范围是)10(<

破解椭圆中最值问题的常见策略

破解椭圆中最值问题的常见策略

————————————————————————————————作者:————————————————————————————————日期: ?

破解椭圆中最值问题的常见策略 有关圆锥曲线的最值问题,在近几年的高考试卷中频频出现,在各种题型中均有考查,其中以解答题为重,在平时的高考复习需有所重视。圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。本文通过具体例子,对椭圆中的常见最值问题进行分类破解。 第一类:求离心率的最值问题 破解策略之一:建立c b a ,,的不等式或方程 例1:若B A ,为椭圆)0(12222>>=+b a b y a x 的长轴两端点,Q 为椭圆上一点,使0120=∠AQB , 求此椭圆离心率的最小值。 分析:建立c b a ,,之间的关系是解决离心率最值问题常规思路。此题也就要将角转化为边的思想,但条件又不是与焦点有关,很难使用椭圆的定义。故考虑使用到角公式转化为坐标形式运用椭圆中y x ,的取值进行求解离心率的最值。 解:不妨设),(),0,(),0,(y x Q a B a A -,则a x y k a x y k BQ AQ -= += ,, 利用到角公式及0 120=∠AQB 得:0120tan 1=-++ -- +a x y a x y a x y a x y (a x ±≠), 又点A 在椭圆上,故2222 2y b a a x -=-,消去x , 化简得2232c ab y =又b y ≤即b c ab ≤2 232 则4 2 2 2 3)(4c c a a ≤-,从而转化为关于e 的高次不等式 04432 4≥-+e e 解得 13 6 <≤e 。 故椭圆离心率的最小值为3 6 。(或222233()ab c a b ≤=-,得:303b a <≤,由21()b e a =-, 故 13 6 <≤e )(注:本题若是选择或填空可利用数形结合求最值) 点评:对于此类最值问题关键是如何建立c b a ,,之间的关系。常用椭圆上的点),(y x 表示成 c b a ,,,并利用椭圆中y x ,的取值来求解范围问题或用数形结合进行求解。 破解策略之二:利用三角函数的有界性求范围 例2:已知椭圆C:22 221(0)x y a b a b +=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使 12F Q F Q ⊥,求椭圆离心率的最小值。

高中数学与椭圆有关的最值问题

与椭圆有关的最值问题 圆锥曲线在高考中占很重要的地位,每年必考。对椭圆、双曲线、抛物线的研究方法基本相同,椭圆为三曲线之首,对椭圆的学习就更为重要了。而椭圆中的最值问题是比较重要的课题,它主要体现了转化思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式等内容。能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。下面介绍几种常见的与椭圆有关的最值问题的解决方法。 1.定义法 例1。P(-2,3),F 2为椭圆116 252 2=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2 ︱的最大值 和最小值。 分析:欲求︱MP ︱+︱MF 2︱的最大值和最小值 可转化为距离差再求。由此想到椭圆第一定义 ︱MF 2︱=2a-︱MF 1︱, F 1为椭圆的左焦点。 解:︱MP ︱+︱MF 2︱=︱MP ︱+2a-︱MF 1︱连接PF 1延长PF 1 交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知 –︱PF 1︱≤︱MP ︱-︱MF 1︱≤︱PF 1︱当且仅当M 与M 1 22a=10, ︱PF 1︱=2所以(︱MP ︱+︱MF 2︱)max =12, (︱MP ︱+︱MF 2︱)min =8 结论1:设椭圆122 22=+b y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x,y)为椭圆上任意 一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为2a –︱PF 1︱。 例2:P(-2,6),F 2为椭圆 116 252 2=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2 ︱的最大值和最小值。 分析:点P 在椭圆外,PF 2交椭圆于M ,此点使︱MP ︱+︱MF 2︱值最小,求最大值方法同例1。 解:︱MP ︱+︱MF 2︱=︱MP ︱+2a-︱MF 1︱连接PF 1并延长交椭圆于点M 1,则M 在M 1处时︱MP ︱-︱MF 1︱取最大值︱PF 1︱。∴︱MP ︱+︱MF 2︱最大值是10+ 37 ,最小值是 41。 结论2:设椭圆122 22=+b y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆外一点,M(x,y)为椭圆上任意一点, 则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为PF 2。 2.二次函数法 例3.求定点A(a,0)到椭圆122 22=+b y a x 上的点之间的最短距离。 分析:在椭圆上任取一点,由两点间距离公式表示︱P A ︱,转化为x,y 的函数,求最小值。

椭圆中四边形面积最值问题一例刘向阳

椭圆中四边形面积最值问题一例 -------教学设计 扬中市第二高级中学刘向阳 一、引入问题背景: 生活中我们经常要研究最优解的问题。在解析几何中,运动是曲线的灵魂,在形的运动中必然伴随着量的变化,而在变化中,往往重点变量的变化趋势,由此产生圆锥曲线中的中的最值问题等.本课重点是借助对常见的面积问题的研究提炼出解决此类问题的思想方法和基本策略,并能进行简单的应用. 二、教学内容分析: 解决椭圆最值问题,不仅要用到椭圆定义、方程、几何性质,还常用到函数、方程、不等式及三角函数等重要知识,综合性强,联系性广,策略性要求高.其基本的思想是函数方程思想、化归思想和数形结合思想,基本策略主要是代数和几何两个角度分析. 由于圆锥曲线是几何图形,研究的量也往往是几何量,因此借助几何性质,利用几何直观来分析是优先选择;但几何直观往往严谨性不强,难以细致入微,在解析几何中需要借助代数的工具来实现突破. 几何方法主要结合图形的几何特征,借助椭圆的定义以及平面几何知识寻找存在“最值”的位置;代数方法主要是将几何量及几何关系用代数形式表示,建立目标函数,从而转化为函数的最值问题,再借助函数、方程、不等式等知识解决问题. 三、学生学习情况分析: 椭圆的最值问题的解决,涉及的知识面广,需要综合运用平面几何、代数、不等式等相关知识,还需要较强的运算技能和分析问题解决问题的能力. 在本课的学习中,学生可能存在的问题有:知识的联系性和系统性较弱,难以调动众多的知识合理地解决问题;运算能力不强,算得慢,易算错,影响问题解决的执行力;问题解决的策略性不强,就题论题,对问题的数学本质认识模糊等现象.再加上学生对复习课的认识比较片面,对复习课缺乏新鲜感。 由于椭圆的最值问题涉及到图形运动和数量变化,学生往往缺乏对问题的直觉把握和深切的感受,教学中可通过几何画板直观的呈现数、式、形的联动变化,使学生逐步形成多元联系的观点。

(完整版)微专题-圆锥曲线中的最值问题(解析版)

专题30 圆锥曲线中的最值问题 【考情分析】 与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。 江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展 【备考策略】 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】 1.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲 线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞ 2. P 是双曲线 22 1916 x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为7 3.抛物线y=-x 2 上的点到直线4x +3y -8=0距离的最小值是 43 4.已知抛物线y 2 =4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12 +y 2 2 的最小值是 32 . 5.已知点M (-2,0),N (2,0),动点P 满足条件||||2PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程; (Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ?u u u r u u u r 的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支, 所求方程为:22 x y 122 -= (x >0) (Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0, 此时A (x 02 x 2-),B (x 020 x 2-,OA OB ?u u u r u u u r =2

椭圆知识点总结

椭圆的知识点总结(一) 一、椭圆的定义 1、椭圆的第一定义:平面内与两定点F 1、F 2的距离和等于常数(2a ,且2a>|F 1F 2|)点的轨迹叫做椭圆。 说明:两个定点F 1(c ,0)、F 2(-c ,0)叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距(2c ); 建立合适的坐标系,椭圆截与两焦点连线重合的直线所得的弦为长轴,长为2a ,椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为2b 。 2、椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当0

二、椭圆的方程 1、椭圆的标准方程 ● 焦点在x 轴,22 22x 1y a b +=(a>b>0) ● 焦点在y 轴,22 22x 1y b a +=(a>b>0) 椭圆上任意一点到F 1,F 2距离的和为2a ,F 1,F 2之间的距离为2c 。而公式中的b2=a2-c2,b 是为了书写方便设定的参数,同时在椭圆的图像中,b 代表短轴的一半。 ● 当焦点位置不明确时,方程可设为2 2 m 1x ny +=(m>0,n>0,且m≠n ),即标准方程 的统一形式。 ● 根据椭圆的第一定义推导标准方程: 考虑焦点在x 轴的情况(焦点在y 轴的情况类似),根据椭圆的第一定义,建立坐标系,以F 1,F 2的连线为x 轴,F 1,F 2的中垂线为y 轴。 1222222222222 222222242222,)F -,0F ,022()44()444()() 22p x y c c a a x c y a x c y a xc a x c y a xc a x a xc a c a y a a xc x c a ==-++=--+=-??-+=-??-++=-+设点坐标为(,坐标为(),坐标为()222224222222222222422222422224222222222222222222 22)() 1x a c a y a x c b a c a x a a b a y a x a b a x a a b a y a x a x b a b a y x b x b a y a b x y a b ++=+=-+-+=+-+-+=+--+=-+=+=令,代入,有 ( ● 根据椭圆的第二定义推导标准方程:

椭圆大题定值定点、取值范围、最值问题总结

椭圆大题定值定点、取值范围、最值问题等总结 一、直线与椭圆问题的常规解题方法: 1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组; 4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型: ①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在) 121212100OA OB k k OA OB x x y y ?⊥?=??-?=?+=u u u r u u u r ②“点在圆内、圆上、圆外问题” ?“直角、锐角、钝角问题” ? “向量的数量积大于、等于、小于0问题”12120x x y y ?+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题” (如:AQ QB λ=?u u u r u u u r 数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题”?坐标与斜率关系; ⑥“弦长、面积问题”?转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略; ①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想: 1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法: (1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法: (1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明, 5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

椭圆的经典知识总结

椭圆知识总结 班级 姓名 椭圆的定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;? 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:12222 =+b y a x ) 0(>>b a ,其中222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:12 2 2 2=+b x a y ) 0(>>b a ,其中2 22 b a c -=; 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和2 2 2 b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆: 122 22=+b y a x )0(>>b a 的简单几何性质1(?)对称性:对于椭圆标准方程122 2 2 =+ b y a x )0(>>b a : 说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、 原方程都不变,所以椭圆12 2 2 2=+b y a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。?(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆12 2 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:? ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示, 记作a c a c e ==22。? ②因为)0(>>c a ,所以e 的取值范围是)10(<>b a 的区别和联系 标准方程 12222=+b y a x )0(>>b a 122 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤, b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长=a 2,短轴长=b 2 离心率 )10(<<= e a c e 准线方 程 c a x 2 ± = c a y 2± = 注意:椭圆12 2 22=+b y a x ,122=+b x a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e a c e ,222c b a +=; 不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。 规律方法: 1.如何确定椭圆的标准方程? ?任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。 确定一个椭圆的标准方程需要三个条件:两个定形条件b a ,;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。 2.椭圆标准方程中的三个量c b a ,,的几何意义?椭圆标准方程中,c b a ,,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为: )0(>>b a ,)0(>>c a ,且)(222c b a +=。可借助右图理解记忆:显然:c b a ,,恰构成一个直角三角形的三条边,其中a 是斜边,b 、c 为两条直角边。 3.如何由椭圆标准方程判断焦点位置? 椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看2x ,2 y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上。 4.方程均不为零)C B A C By Ax ,,(2 2=+是表示椭圆的条件 方程C By Ax =+22可化为12 2 =+ C By C Ax ,即 12 2=+B C By A C x ,所以只有A、B 、C 同号,且A ≠B 时,方程表示椭

相关文档 最新文档