文档库 最新最全的文档下载
当前位置:文档库 › 铝硅酸盐类吸附剂对霉菌毒素的选择性吸附机制及其应用

铝硅酸盐类吸附剂对霉菌毒素的选择性吸附机制及其应用

铝硅酸盐类吸附剂对霉菌毒素的选择性吸附机制及其应用
铝硅酸盐类吸附剂对霉菌毒素的选择性吸附机制及其应用

收稿日期:2001-12-31

作者简介:齐德生(1965-),男,副教授,主要从事饲料卫生和抗营养因子研究。

铝硅酸盐类吸附剂对霉菌毒素的

选择性吸附机制及其应用

齐德生 副教授

齐德生,于炎湖

(华中农业大学饲料卫生与饲料毒物实验室,湖北武汉 430070)

摘 要:对铝硅酸盐类霉菌毒素吸附剂对霉菌毒素的脱毒效果及脱毒机制进行了讨论,并探讨了其在实际应用中可能存在的问题及今后的研究方向。关键词:饲料;铝硅酸盐;霉菌毒素;脱毒;机理

中图分类号:S 816.71 文献标识码:A 文章编号:1003-6202(2002)05-0031-03

E fficiency and Mech anism of Aluminosilicate in R educing the Toxicity of Mycotoxins

ABSTRACT The detoxification efficiency and mechanism of aluminosilicate for mycotoxins were reviewed ,and the problems could be encountered in actural application and the research orientation in future were als o discussed.KE YWOR DS feed ;aluminosilicate ;mycotoxin ;detoxification ;mechanism

饲料及饲料原料霉变并由此造成的霉菌毒素污染问题是一个全球性问题,对畜牧业生产和人类健康构成了巨大危害。尽管人们采取了各种防霉措施,但由于饲料作物在田间、收获、储藏、加工等诸多环节均可受到霉菌感染。因此,防霉工作很难完全有效,饲料受霉菌毒素污染的现象十分普遍,由此造成的畜禽死亡、生产力下降、繁殖机能障碍等畜禽霉菌毒素中毒事件屡有发生。同时,霉菌毒素还可在畜禽产品中残留,为人类健康带来极大的安全隐患。因此,对霉变饲料,寻求一种经济有效并适合在大规模饲料生产中应用的去毒措施十分必要。

我国大部分地区,特别是长江以南地区,夏季高温潮湿,饲料霉变及受霉菌毒素污染的现象非常普遍。据我们调查研究发现,南方地区配合饲料受黄曲霉毒素B 1污染率达

23.5%。由于环境应激,霉菌毒素之间的联合作用及饲料营

养不全等因素的存在,饲料中低含量的霉菌毒素即可对动物造成危害。研究表明,当饲料中黄曲霉毒素(包括黄曲霉毒素B 1,B 2,G 1,G 2)含量为14.0μg/kg (低于美国鸡饲料黄曲霉毒素允许量20μg/kg 的卫生标准)时即可对肉仔鸡生产性能造成严重影响。因此,凡受霉菌毒素污染的饲料,尽管其含量可能很低,也会对动物健康和生产性能造成潜在危害,对其采取适当的脱毒处理是必要的。同时,在我国目前经济条件下,对受霉菌毒素轻度污染的饲料采取合理的脱毒处理,对提高饲料资源的可利用性具有一定的实际价值。近年来,铝硅酸盐类霉菌毒素吸附剂受到人们广泛重视,国内外畜牧兽医科技工作者对其吸附机制及应用效果进行了较深入的

研究,现综述如下。

1 铝硅酸盐矿物对抗霉菌毒素的实验效果

所谓铝硅酸盐(Aluminosilicate ,简称AS )是指含有Al 2O 3

和S iO 2的的物质,如沸石、膨润土、高岭土等都属于铝硅酸盐矿物。沸石及层状铝硅酸盐矿物(如膨润土、高岭土等)因具有较大的比表面积和离子吸附与交换能力,因此受到研究者的重视。

研究表明,膨润土能阻止T -2毒素在大鼠小肠内吸收,增加其从粪便中排出。因而,饲料中添加质量分数为5%的膨润土可消除由T -2毒素引起的动物生长抑制和拒饲现象[1]。

某些水合铝硅酸钠钙对黄曲霉毒素B 1具有较高的吸附效率和吸附稳定性,在动物体内可能通过与之形成螯合物或降低其生物有效性而减轻其对小鸡的毒性。在日粮中添加

0.5%的水合铝硅酸钠钙(Hydrated S odium Calcium Aluminosili 2cate ,简称HSC AS )可显著减轻黄曲霉毒素B 1(日粮中为7.5mg/kg )对来航蛋鸡及肉仔鸡的毒害作用[2]。在日粮中

添加0.5%的HSC AS 可降低黄曲霉毒素(含量为3.5mg/kg )对雄性肉仔鸡的毒性作用,但不能减轻T -2毒素

(8.0mg/kg )的毒性[3]。在日粮中添加1%的沸石可消除黄曲

霉毒素B 1(日粮中含量为2.5mg/kg )对雄性肉仔鸡生产性能的不利影响[4]。有研究表明,日粮中添加0.5%的HSC AS 可减轻低水平黄曲霉毒素(0.5mg/kg )对火鸡体增重及血象的不利影响,但不能减缓高水平的黄曲霉毒素(含量1mg/kg )的不

1

3 粮食与饲料工业/2002年第5期 CEREA L &FEED I NDUSTRY /2002,No.5

良作用[5]。

研究表明,在黄曲霉毒素含量为3mg/kg的日粮中添加0.5%的HSC AS能消除黄曲霉毒素对阉猪生产性能及有关血液酶活性的影响[6]。用断奶仔猪及生长猪研究粘土对抗黄曲霉毒素的毒害作用,结果表明:在黄曲霉毒素B1含量为922μg/kg的日粮中添加1%的粘土(钠基膨润土)可对抗黄曲霉毒素对断奶仔猪及生长猪生长及矿物质代谢的不良影响[7]。几种粘土对抗黄曲霉毒素毒性的效果研究,结果表明:在黄曲霉毒素含量分别为500μg/kg和800μg/kg的日粮中添加0.5%的粘土可明显减轻黄曲霉毒素对断奶仔猪的不良作用。但粘土类型不同,其抗毒效果也不同[8]。

通常认为,羊对黄曲霉毒素耐受性较强。但研究表明,饲粮中黄曲霉毒素含量为2.6mg/kg时对羔羊血液酶活性有严重影响,并使羔羊出现明显的黄曲霉毒素中毒症状。当日粮中添加2%的HSC AS时,则可使羔羊血象指标不发生明显改变,临诊不出现中毒症状[9]。

以上研究表明,在饲料中添加适量的铝硅酸盐矿物能减轻黄曲霉毒素对多种动物的毒害作用,具有良好的应用前景。但也存在一些需要进一步研究的问题。

2 铝硅酸盐对抗霉菌毒素毒性的机理

关于铝硅酸盐对抗霉菌毒素毒性的机理,一般认为是由于铝硅酸盐吸附了霉菌毒素并形成了稳定复合物,阻止了霉菌毒素在动物消化道中的吸收,因而减少了进入动物机体内的毒素量,使其毒性减轻或消除[3,7]。

目前,实验中常用的铝硅酸盐样品有沸石和蒙脱石类。沸石是一种含水架状结构的多孔铝硅酸盐矿物质,其基本结构是硅氧(S iO4)四面体。硅氧四面体中的四价硅离子可被三价铝离子取代形成铝氧(AlO4)四面体,并带一个单位负电荷。多数沸石矿物的结构为相邻的四面体间公用相邻的氧原子形成简单的几何结构———多聚四面体,其中最常见的多聚四面体为中空的十四面体结构。多聚四面体间可相互通过氧原子连成四并哑铃或六并哑铃状结构。显然,在多聚四面体内部及多聚四面体之间存在着很多孔隙,空隙体积可达晶体总体积的40%~50%。因此,沸石具有巨大的比表面积,可达几百平方米每克。但由于进入多聚四面体的孔径太小,仅8!以下,只有小分子物质才能通过。因此,大多数沸石具有分子筛作用[10]。

蒙脱石属于2∶1型层状铝硅酸盐矿物,由两个硅氧四面体片中间夹一个铝氧八面体片组成。晶层表面都是氧原子,没有氢氧原子组,晶层间没有氢键结合力,晶层间联系较松弛,具有较大的膨胀性,晶层间距为0.96~2.14nm,水分子和交换性阳离子可以进入层间。因此,蒙脱石不仅具有巨大的外表面积,也有巨大的内表面积,其比表面积可达600~800m2/g。在蒙脱石形成过程中,蒙脱石的硅氧四面体中的S i4+可被Al3+替换,铝氧八面体片中的Al3+可被Mg2+或Fe2+替换。因此,使晶层间产生永久性负电荷,此负电荷可由进入层间的K+,Na+,Ca2+等来平衡[11,12]。

可见,沸石和蒙脱石都具有巨大的比表面积,因而具有巨大的表面能;同时,沸石的四面体表面及蒙脱石的层间都拥有永久负电荷,能产生较大的静电引力。因此,使其具有巨大的吸附能力。与活性炭相比,它们都具有很大的比表面积,但活性炭的吸附力完全是色散力,而沸石和蒙脱石不仅有很大的色散力,也有很强的静电力,色散力和静电力的加和使沸石和蒙脱石具有特别强的吸附性能。由于静电引力作用,沸石和蒙脱石对极性、不饱和及易极化分子具有优先的选择吸附作用。而活性炭是一种非极性吸附剂,易吸附非极性分子[12,13]。许多霉菌毒素,如黄曲霉毒素、玉米赤霉稀酮等的分子结构中含有极性基团如:—OH, C O,—NH2或含有可极化的基团如: C C ,—C6H5等,能在沸石和蒙脱石表面发生强烈吸附作用。木炭和HSC AS 在体外都可结合霉菌毒素,但在体内只有HSC AS能对抗霉菌毒素的毒性[14]。这可能正是由于色散力和静电力的存在使铝硅酸盐矿物对霉菌毒素产生了特殊的吸附作用。

关于霉菌毒素在铝硅酸盐表面上的具体吸附行为目前还不十分清楚。蒙脱石矿物层间区域具有层间交换、层间吸附、层间催化、层间聚合、层间柱撑等特性。有机农药分子在蒙脱石矿物层间区域可发生分子吸附、氢键吸附、不可逆交换吸附、质子化吸附及吸附分解模式等[15]。霉菌毒素分子结构与有机农药分子结构具有某些相似之处。因而,霉菌毒素在蒙脱石矿物表面是否也存在相似的吸附模式,需要进行深入研究。

据推测,HSC AS边面上未完全配位的铝离子能与黄曲霉毒素上的β-羰基进行化学吸附而形成稳定复合物,因而降低了黄曲霉毒素的生物有效性。有资料表明,层状铝硅酸盐矿物对黄曲霉毒素的吸附效率要比其他霉菌毒素高许多。这可能是由于黄曲霉毒素具有呈刚性平面的分子结构,能进入层状铝硅酸盐的内表面(即晶层间)。而玉米赤霉烯酮虽部位结构具有刚性平面,但分子结构的其余部分非常松散。串珠镰刀菌毒素分子结构则完全不具刚性,由于位阻作用,它们不能进入晶层间。黄曲霉毒素因能进入层状铝硅酸盐内表面,不仅扩大了吸附点位,同时,与晶层间可交换性阳离子产生强烈相互作用,使之不易解吸。因此,层状铝硅酸盐矿物对黄曲霉毒素表现出较高的吸附效率和吸附稳定性[14]。

体外实验表明,许多铝硅酸盐矿物都能与霉菌毒素形成稳定的复合物,但体内的实验发现,它们对抗霉菌毒素毒性的能力并不相同。可见,吸附剂与霉菌毒素的结合是其能预防霉菌毒素毒性的关键,但其能否减轻或消除霉菌毒素对动物的毒害作用还取决于吸附剂和霉菌毒素的类型及吸附剂—霉菌毒素复合物在动物消化道中的具体行为。粘土铝硅酸盐矿物的特殊空间结构、表面活性及巨大的比表面积可能是其对抗霉菌毒素毒性的物质基础。

总之,铝硅酸盐矿物吸附霉菌毒素的机制及对抗霉菌毒素毒性的机理目前不十分清楚,不少研究仅从铝硅酸盐及霉菌毒素的分子结构进行推测,尚缺乏有力证据,需要用现代

23齐德生等:铝硅酸盐类吸附剂对霉菌毒素的选择性吸附机制及其应用/2002年第5期 

界面化学理论及X射线、X射线光电子能谱等先进技术设备对之进行深入探索。

3 铝硅酸盐类霉菌毒素吸附剂在生产应用中存在的问题311 对饲料中正常营养成分的吸附问题

添加在饲料中的铝硅酸盐矿物在吸附霉菌毒素的同时也不可避免地会吸附饲料中正常的营养成分(如氨基酸、维生素、矿物元素等),造成营养成分有效性下降。因此,如何从分子水平探明饲料中正常营养成分与霉菌毒素的竞争吸附问题,铝硅酸盐对霉菌毒素的吸附量与吸附机制,铝硅酸盐矿物在动物消化道特殊环境中的吸附行为及铝硅酸盐矿物-霉菌毒素复合物在动物消化道不同酸碱环境中解吸特征问题等,并在此基础上对天然铝硅酸盐矿物进行适当改性处理,制成有机粘土,改变铝硅酸盐矿物的表面特性[16],使

今后需要深入研究的一个重要方面。

312 对不同霉菌毒素的选择性吸附问题

饲料发生霉变后,可能会受到多种霉菌毒素污染,人们希望加入饲料中的铝硅酸盐能够吸附所有的霉菌毒素。但从以往的研究来看,它们对各种霉菌毒素的吸附能力并不相同,使其在实际生产中应用受到限制。因此,如何通过改性处理,改变层状硅酸盐矿物的晶层间距,以减少霉菌毒素在被吸附过程中的空间位阻效应,扩大对霉菌毒素的吸附范围和有效性,并减少对营养成分的吸附,是今后应该加强研究的一个重要方向。

313 影响吸附效果的因素

影响铝硅酸盐矿物吸附霉菌毒素效果的因素很多,其中主要是吸附剂的种类、在饲料中的添加水平、污染饲料的霉菌毒素种类及饲料霉变程度等。如何选择合适的铝硅酸盐矿物种类及在饲料中适宜的添加水平,是取得良好脱毒效果的关键。因此,应通过体外化学吸附实验、改性实验和动物饲养实验,筛选出对霉菌毒素吸附效率高,吸附稳定性强,对霉菌毒素吸附范围广,而对饲料营养成分吸附少的铝硅酸盐矿物,用于饲料工业生产。

314 霉菌毒素吸附剂产品开发问题

目前,铝硅酸盐类霉菌毒素吸附剂仍主要处于实验室研究阶段,用于饲料生产实际的产品为数不多。我国批准进口的霉菌毒素解毒剂“驱毒霸”(S OR B-IT)是多种天然硅酸盐的混合剂;“保以康”是由保以康与硅藻土按20∶80的比例混合而成。这类产品的实际应用效果还待进一步试验。国内尚未见此类上市产品。因此,研究和开发霉菌毒素吸附剂产品是一件有理论意义和实际价值的工作。考虑到铝硅酸盐矿物除具有吸附性能外,其本身的化学元素组成对动物的健康和生产性能也会有一定影响。因此,在今后的研究中,应通过动物体内、体外试验,明确铝硅酸盐对霉菌毒素的吸附量及吸附条件,明确其在饲料中应用的安全性。通过模拟动物消化道各段酸、碱环境及物质组成,研究铝硅酸盐-霉菌毒素复合物的稳定性等,借以指导铝硅酸盐矿物在饲料生产中的合理利用。

主要参考文献

[1] Cars on M S,T K Sm ith.R ole of Bentonite in Prevention of T-2T ox2

icosis in Rats[J].Journal of Animal Science,1983,57(6):1498~1506.

[2] Phillips T D,et al.Hydrated S odium Alum inosilicate:A High A ffinity

S orbent for A flatoxin[J].P oultry Science,1988,67(2):243~247.

[3] K ubena L F,et al.E fficacy of a Hydrated S odium Calcium Alum i2

nosilicate to Reduce the T oxicity of A flatoxin and T-2T oxin[J].

P oultry Science,1990,69(7):1078~1086.

[4] M iazz o R,et al.E fficacy of Synthetic Z eolite to Reduce the T oxicity of

A flatoxin in Broiler Chicks[J].P oultry Science,2000,79(1):1~6.

[5] K ubena L F,et al.E ffects of a Hydrated S odium Calcium Alum inosili2

cate on G rowing Turkey P oults During A flatoxicosis[J].P oultry Sci2 ence,1991,70(8):1823~1830.

[6] Harvey R B,et al.Prevention of A flatoxicosis by Addition of Hydrated

S odium Calcium Alum inosilicate to the Diets of G rowing Barrows[J].

Am J Vet Res,1989,50(3):416~420.

[7] Schell T C,et al.E ffects of Feeding A flatoxin-contam inated Diets

with and W ithout Clay to W eanling and G rowing Pigs on Performance, Liver Function,and M ineral M etabolism[J].J Anim Sci,1993, 71(5):1209~1218.

[8] Schell T C,et al.E ffectiveness of Different T ypes of Clay for Reducing

the Detrimental E ffects of A flatoxin-contam inated Diets on Perfor2 mance and Serum Profiles of W eanling Pigs[J].J Anim Sci,1993, 71(5):1226~1231.

[9] Harvey R B,et al.Dim inution of A flatoxin T oxicity to G rowing Lambs

by Dietary Supplementation with Hydrated S odium Calcium Alum inosil2 icate[J].Am J Vet Res,1991,52(1):152~156.

[10] Mum pton F A,P H Fishman.The Application of Natural Z eolites in

Animal Science and Aquaculture[J].Journal of Animal Science,

1977,45(4):1188~1203.

[11] 李学垣.土壤化学及实验指导[M].北京:中国农业出版社,

1997.30~52.

[12] 朱利中,陈宝梁.有机膨润土在废水处理中的应用及发展

[J].环境科学进展,1998(6):53~61.

[13] 田钟荃.沸石去除饮用水源中有机污染物展望[J].中国给水

排水,1999(15):31~32.

[14] T aylor D R M ycotoxin Binders:What are They and what M akes them

W ork?[J].Feedstu ffs,1999(1):41~45.

[15] 吴平宵,廖宗文.农药在蒙脱石层间域中的环境化学行为[J].

环境科学进展,1999(7):70~77.

[16] 王晓蓉,吴顺年,等.有机粘土矿物对污染环境修复的研究进

展[J].环境化学,1997,16(1):1~13.

(责任编辑:苏 幔)

33

 粮食与饲料工业/2002年第5期 CEREA L&FEED I NDUSTRY/2002,No.5

霉菌毒素吸附剂的选择 (2)

霉菌毒素吸附剂的选择 辉瑞苏州动物保健品有限公司 摘自《饲料行业信息网》 国内对霉菌毒素、去毒方法研究较晚,系统性的认识还没有普及。尤其在近年国外不同公司的多个产品进入中国,各说各的好,甚至有故意混淆视听动机存在,更是把大家搞得糊里糊涂。笔者耳闻目睹的,比如某某产品宣称“美国FDA唯一批准的霉菌毒素吸附剂”;还有产品宣称“生物脱毒,可以把所有的霉菌毒素转化为无毒”;再有产品宣称“广谱霉菌毒素吸附剂”;甚至某公司将霉菌抑制剂作为“霉菌毒素解毒剂”来宣传,等等。本文在这里试图能理清一些头绪,帮助大家有一个正确的认识。 霉菌毒素吸附剂的历史演进 发达国家在70年代开始重视霉菌毒素对畜禽产业的危害,注重黄曲霉毒素,也包括其它霉菌毒素。经过20多年时间,尝试了多种去毒的方法,包括谷物霉菌毒素检测方法的完善;霉菌抑制剂的研究与应用;发酵法脱毒法;微生物失活霉菌毒素法;物理脱毒法;热失活法;放射性去毒法;氨化灭活法;吸附脱毒法等等。最后总结为对饲料原料中已经存在的霉菌毒素处理的方法为:无机物理吸附去毒法是最经济、最有效、最具有现实意义的方法。所以在1993年美国FDA首次批准2个以氢氧化硅铝酸钠钙为成分的霉菌毒素吸附剂产品上市,也就是世界上最早的霉菌毒素吸附剂产品。其中的一个就是当今的辉瑞在市场上销售的“霉卫宝”产品 目前市场上霉菌毒素吸附剂产品主要类型 粘土类(HSCAS)吸附剂 酵母细胞壁提取物 酶解毒剂 菌解毒剂 中草药(国产品) 目前市场上霉菌毒素吸附剂产品的去毒原理 粘土类(HSCAS)吸附剂 利用四面体-八面体-四面体(T-O-T)层间多空结构与表面形成的离子极性,强吸附同样具有离子极性的霉菌毒素,强大的吸附力来自于超大的表面积与静电吸附。这种吸附的完全性由两个因素决定,即粘土种类本身与霉菌毒素种类本身。粘土有几十种,不同种类的

霉菌毒素的危害与防治

霉菌毒素的危害及防治措施 霉菌毒素被称为中国猪群健康的“第一杀手”,又被称为饲料中的“隐形杀手”,复合性霉菌毒素中毒症则被称为“底色病”,霉菌毒素对养殖业的危害可见一斑。然而危害虽大,损失虽重,霉菌毒素却未能引起相关人士的足够重视。又到了霉菌最易滋生的季节,笔者对霉菌毒素的危害及防治措施做了些整理,希望通过此文再次给养殖业敲响霉菌毒素的警钟。 1.霉菌毒素的种类及其污染现状 霉菌毒素是由真菌(霉菌)产生的具有毒性的次级代谢产物。主要的产毒素霉菌为曲霉属、镰刀菌属和青霉菌属,霉菌又可分为田间霉菌和贮藏霉菌。已知的霉菌毒素有数百种,多数没有得到充分研究。主要的致病霉菌毒素有:黄曲霉毒素(AF),玉米赤霉烯酮(ZON),赭曲霉毒素(OTA),呕吐霉素(DON),T-2毒素,烟曲霉毒素(FUM)。它们在动物体内可产生多种生理作用,如肝毒、肾毒、对中枢神经系统的作用以及类似雌激素效应,等等。 有害霉菌来源主要有饲料、垫料和环境。饲料从生长、收割、运输、加工、包装、贮存,直至进入食槽都可能使霉菌不断生长,尤其是当湿度饲料含水量合适的条件下。因此霉菌毒素污染一般具有群发性和无传染性,地域性和季节性。霉菌毒素中毒症状则具有隐蔽性和复杂性,多数情况下属于慢性霉菌毒素污染,症状轻微出现较慢且不典型, 而且引起的损害具有多样性,中毒症状也复杂多样。同一霉菌毒素对于不同动物造成的危害也不一样。例如,猪对DON非常敏感(1ppm),但是18ppm的DON并不影响来航鸡的增重。蛋鸡对DON的耐受程度更高。而且污染浓度不高时,检测也有难度。 霉菌毒素看不见摸不着,无嗅无味。即使那些看上去的“好”粮食,也可能存在霉菌毒素污染。FAO国际粮农组织报道:世界谷物中25%遭到霉菌毒素污染。09年的一个调查对国内244份饲料样品共进行了2023项次检测,完全没有检测出霉菌毒素的样品仅16份,占样品总数的6.6%,只检测到1种霉菌毒素的样品数35份,占样品总数14.3%,检测到2种或2种以上霉菌毒素的样品数193份,占79.1%,同时检测到含4种以上霉菌毒素的样品数135份,占样品总数的55.3%。同时检测到ZON、DON 和FUM B 的样品数147份,占总数的60.2%。而且据权威机构调查统计,不仅原料中存在10%-25%的霉菌污染,饲料加工过程中还存在25%-50%的霉菌污染,饲喂系统则存在50%-100%的霉菌污染,也就是说几乎所有的养殖场所投喂的均是遭到霉菌毒素污染了的饲料。 因为霉菌毒素中毒大多是慢性中毒,畜禽可能在表面上症状不明显也不典型,或虽然出现了症状但却被畜禽错综复杂的疾病所掩盖,所以,在临床上霉菌毒素的危害往往被人忽视,只有当中毒症状比较严重,出现了死亡的时候,才受到关注。应该提出的是近些年来,霉菌毒素对养殖业造成的危害变得越来越严重,说霉菌毒素是养殖业的隐形杀手,但现在看来,霉菌毒素的危害已越来越明显,特别是它和其它几种免疫抑制病引起的免疫抑制是我们养殖业疫病变得复杂的主要原因,养殖过程中出现的疾病或多或少都出现了霉菌毒素的影子,这就是霉菌毒素造成危害的有力证据! 2.霉菌毒素的协同作用 霉菌毒素还具有相互协同作用。几种霉菌毒素协同作用对动物健康和生产性能的副作用比一种霉菌毒素单独作用的副作用要大的多。由于协同作用的存在,实际生产条件下引起动物生产性能下降和中毒症的单一霉菌毒素的含量低于试验控制条件下引起同样毒性效应的剂量。所以即使饲料中每种毒素的含量都不超标,也会引起畜禽的霉菌毒素中毒。霉菌毒素间的互作可改变中毒的临床症状,导致一系列诊断特征不同于单独作用的症状之和。实际生产

霉菌毒素吸附剂的选择-—产品类型、作用机理、效果介绍

霉菌毒素吸附剂的选择—产品类型、作用机理、效果介绍 张学勤李富强 国内对霉菌毒素、去毒方法研究较晚, 系统性的认识尚未普及。尤其近年国外不同公司的多个产品进入中国, 往往从各自角度介绍自己的产品, 容易造成模糊认识。 1、霉菌毒素吸附剂的历史演进 发达国家在20 世纪70 年代开始重视霉菌毒素对畜禽产业的危害, 特别 关注黄曲霉毒素。经过20 多年时间, 尝试了多种去毒的方法, 包括谷物霉菌毒素检测方法的完善、霉菌抑制剂的研究与应用、发酵法脱毒法、微生物失活霉菌毒素法、物理脱毒法、热失活法、放射性去毒法、氨化灭活法、吸附脱毒法, 等等。最后总结为无机物理吸附去毒法是最经济、最有效、最具有现实意义的方法。所以1993 年美国FDA 首次批准 2 个以氢氧化硅铝酸钠钙为成分的霉菌毒素 吸附剂产品上市, 也就是世界上最早的霉菌毒素吸附剂产品。其中的一个就是当今的辉瑞在市场上销售的"霉卫宝"产品。 2、目前市场上霉菌毒素吸附剂产品主要类型 (1)黏土类(HSCAS)吸附剂; (2)酵母细胞壁提取物; (3)酶解毒剂; (4)菌解毒剂; (5)中草药(国产品)。 3、目前市场上霉菌毒素吸附剂产品的去毒原理 3.1 黏土类(HSCAS)吸附剂 利用四面体- 八面体- 四面体(T- O- T) 层间多空结构与表面形成的离子极性, 强吸附同样具有离子极性的霉菌毒素, 强大的吸附力来自于超大的表面积与静 电吸附。这种吸附的完全性由两个因素决定, 即黏土种类本身与霉菌毒素种类本身。黏土有几十种, 不同种类的黏土,其对霉菌毒素的吸附能力千差万别。 3.2 酵母细胞壁提取物 利用酵母细胞壁内的葡萄糖甘露聚糖的化学结构与同样属于有机类的霉菌毒素的亲和性,吸附霉菌毒素。类似于肥皂去油污的原理, 为表面亲和吸附。 3.3 酶解去毒剂

饲料:霉菌毒素的危害及蒙脱石的脱霉应用——饲料脱霉剂分析

霉菌毒素的危害及蒙脱石的脱霉应用 https://www.wendangku.net/doc/6a4837621.html,/G_ZYtuomeijing.html 韩秀山1,许家亮1,陈法荣2,王国中2,谌刚3,曾路3 摘要:霉菌毒素是仅次于二噁英对人类食物链造成巨大威胁的危险因素,防治霉菌毒素是一项迫在眉睫的问题,本文就霉菌毒素的产生、中毒机理、危害、防治等方面进行了阐述.,并介绍了蒙脱石在防治霉菌毒素中的应用,强调饲料中添加蒙脱石是必需的,蒙脱石是唯一的一种由人药演变为饲料添加剂的品种,对饲料脱霉效果极佳,并且安全绿色,是国际上首选推荐的霉菌毒素吸附剂。 关键词:霉菌毒素;危害;机理;饲料;养殖;吸附剂;蒙脱石 霉菌毒素是农作物或动物性蛋白因霉菌而产生的有毒代谢产物,目前人们已经发现了数百种霉菌毒素,这些毒素在动物体内有不同的毒性、代谢途径和靶器官。霉菌毒素造成的危害是一个全球性的问题,存在于几乎所有的饲料原料和人类食品原料中[1-4]。饲料中霉菌毒素的污染及其所造成的危害目前仍是养殖者易于忽略的问题,且容易与其它疾病产生混淆。2002年美国饲料年报中将霉菌毒素列为仅次于二噁英的对人类食物链造成巨大威胁的危险因素。据联合国粮农组织估计,全世界每年大约有5%~7%的粮食、饲料等农产品遭受霉菌的侵蚀。 1霉菌毒素的产生及中毒机理 1.1霉菌毒素的产生 饲料原料受霉菌感染较多的是农作物或动物性蛋白。 农作物的饲料主要包括玉米、小麦、大麦、稻谷、高粱、糠麸类和糟渣类等以及豆粕、棉籽粕、花生粕、葵花粕等。 一般而言,霉菌毒素主要是由4种霉菌属所产生:曲霉菌属(主要分泌黄曲霉毒素、赭曲霉毒素等)、青霉菌属(主要分泌桔霉素等)。麦角菌属(主要分泌麦角毒素)。梭菌属(主要分泌呕吐毒素、玉米赤霉烯酮、Fumonisin毒素等)。迄今为止已经有超过300种霉菌毒素被分离和鉴定出来,上述的几种毒素即为现今普遍认识的8种主要毒素。 一般把霉菌按其生活习性分为仓贮性霉菌和田间霉菌两种。仓贮性霉菌主要是指贮存的饲料或原料,在适宜的温度、湿度等条件下产生的霉菌,以曲霉菌属为主,该类霉菌最适生长温度为25-30℃左右,相对湿度为80%-90%,路曲霉例外,可在田间感染,低温下亦可繁殖;田间霉菌则是指青霉菌属、麦角菌属和梭霉菌属(镰刀菌属),此类霉菌属野外菌株,通常谷物在未采收前就已感染,最适生长温度为5-25℃,该类霉菌在低温环境中也会繁殖,也就是说在冬季此类霉菌

饲料中常见霉菌毒素的中毒症及危害

饲料中常见霉菌毒素的中毒症及危害(综述) 易中华1 吴兴利2 (1 江西农业大学动物科技学院江西南昌330045 ;2 中国农业大学动物科技学院北京100094 ) 饲料霉变的典型特征是产生霉菌毒素,可造成高达10%的经济损失,是饲料工业和畜牧业 生产中不可忽视的问题。霉菌毒素不但对动物产生毒害作用,而且可通过食物链危及人类健康。动物对霉菌毒素的临床反应与其它化学毒物的反应相似,表现为急性、亚急性或慢性病症,并具 有剂量和时间依赖关系。急性中毒可产生毁灭性影响,而且由于可疑饲料在检测前就被采食,中毒难以诊断和治疗。由于大量化学结构不相关的霉菌毒素产自不同真菌,很难准确指出某特定疾病发作是何种毒素造成的。动物慢性中毒症可降低生产性能、降低体重和饲料转化效率、降低肉和蛋的产量、抑制免疫并增加疾病发生率、损害重要组织器官、扰乱繁殖性能,引起的经济负面影响是急性发病和死亡的几倍。饲料和食品中的霉菌毒素有致癌的潜在危险,还有一些微妙的未知毒性作用,这与全球关注的健康危机紧密相关。现将饲料中几种常见霉菌毒素的中毒症及危害介绍如下: 1 黄曲霉毒素(Aflatoxins ) Aspergillus flavus )的一种代谢产物,目前已发现黄黄曲霉毒素是黄曲霉( 曲霉毒素及其衍生物有20种,以毒素B1、B2、G1和G2的毒力最强,在紫外线照射下,B1、B2呈蓝紫色荧光,G1、G 2呈黄绿色荧光,它们都具有致癌作用,导致动物和人类肝损害和肝癌, 其中又以B1 的致癌性最强。当B1 进入机体后,在肝细胞内质网中的混合功能氧化酶的催化下,转变为环氧化黄曲霉毒素B1,再与DNA及RNA吉合,并发生变异,使正常肝细胞转化为癌细胞。 可见,黄曲霉毒素是一种肝毒性很强的毒素。黄曲霉毒素作用机理是影响细胞膜,抑制RNA合成并干扰某些酶的感应方式,中毒症状无特异表现,按症状的严重程度不同,临床可表现为发育迟缓、腹泻、肝肿大、肝出血、肝硬化、肝坏死、脂肪渗透、胆道增生等。其毒性因剂量、中毒持续时间、动物种类、品种、饲粮或营养状况等因素不同而不同(见图 1 )。家畜对黄曲霉毒素的 易感性其顺序是:小鸭>小猪>犊牛>肥育猪>成年牛>绵羊。 图 1 黄曲霉毒素攻毒递增剂量与豚鼠肝脏变化。上排最左边豚鼠未接毒,下排最右边豚鼠接毒剂量最大。注意到,豚鼠肝的苍白色随黄曲霉毒素剂量的增加而增加。 黄曲霉毒素摄入剂量过大时可致死,亚致死量可产生慢性毒性,长期摄入低剂量黄曲霉毒素可致癌(Sin nhuber 等,1977;Wogan和Newberne,1967)。一般情况下,动物年龄越小,其敏感性越高;雌性动物比雄性动物具有更强的耐受性;营养状况越差越容易发病;怀孕母畜比未怀孕母畜更容易产生反应。黄曲霉毒素已引起人们对公共卫生问题的强烈关注,因为黄曲霉毒素广 泛存在于被污染的花生、玉米、大豆、油类等食物中,是人类致癌的潜在因子。虹鳟鱼是早期研究黄曲霉毒素的试验动物,它们对黄曲霉毒素很敏感,其半数致死量按等比例混合黄曲霉毒素B1和G1计算为0.5?1.0 mg/kg(Lee等,1991)。饲粮中黄曲霉毒素的肝细胞恶性瘤致病几率高达8.0 x 10-8。虹鳟鱼在早期发育阶段对性疾病很敏感。将鱼苗或胚胎浸在黄曲霉毒素含量为0.5 mg/kg 的水中半小时,9 个月后30%?40%的鱼患有肝细胞癌(Sinnhuber 等,1977)。根据Lee 等(1991)综述黄曲霉毒素在对鱼的毒性,黄曲霉毒素导致加利福尼亚州鱼苗孵化场黄曲霉毒素中毒症流行,并很可能是鱼肝癌流行的原因。据调查,受黄曲霉毒素污染的棉籽粕是发病的原因。虹鳟鱼采食含黄曲霉毒素的饲料后,逐渐发展为肝癌(Sin nhuber 等,1977)黄曲霉毒素的中毒症在哺乳仔猪、生长猪、育肥猪和种猪上有报道。临床和病理症状包括:体增重减速,饲料转换效率下降,中毒性肝炎,肾病变,全身出血(Hoerr 和Andrea ,1983 ;Miller 等,1981 ,1982)。黄曲霉毒素对猪的毒性作用因年龄、饲粮、含量和中毒持续时间等的变化而 变化。猪从断奶至上市,饲粮黄曲霉毒素耐受量为0.3 mg/kg(Monegue 等,1977)。猪饲喂了毒素含量

霉菌毒素吸附剂的选用

霉菌毒素吸附剂的选用 一、有效的霉菌毒素吸附剂应该具备的特点: 1、证实该产品在体内(in vivo)和体外一样有效; 2、其有效添加水平要尽可能的低; 3、在很宽的pH范围内都具有稳定性。因为只有这样才能保证肠道中的霉菌毒素始终被吸附剂吸附,并排出体外。 4、能够有效吸附多种霉菌毒素。 5、亲和力高,能够吸收低剂量的霉菌毒素; 6、吸附容量大,能够吸附高剂量的霉菌毒素; 7、起效快,必需在霉菌毒素被肠道吸收之前发挥作用。 二、霉菌毒素吸附剂的作用方式 物理吸附:通过范德华力和氢键与霉菌毒素结合,结合力相对较弱; 化学吸附:通过离子键或共价键与霉菌毒素结合,结合力强; 三、霉菌毒素吸附剂的种类 霉菌毒素吸附剂可分为无机吸附剂和有机吸附剂。无机吸附剂主要有沸石类、斑脱土、漂白土、水合硅铝酸钙钠(HSCAS)、硅藻土及其它各种粘土。有机吸附剂主要有小麦麸、燕麦壳、苜蓿纤维、酵母细胞壁提取物、纤维素、半纤维素、果胶和含葡甘露聚糖的酵母产品。 四、霉菌毒素吸附剂的主要缺陷 1、仅对有限的几种霉菌毒素有良好的吸附作用 霉菌毒素吸附剂通常可有效地吸附具有极性的霉菌毒素,如黄曲霉毒素,因为这类霉菌毒素的化学结构允许吸附剂通过分子间作用力、离子键或共价键与之有效地结合。但是对单端孢霉烯类毒素之类的霉菌毒素,霉菌毒素吸附剂的结合效率通常都非常的低,甚至不结合。不同类型霉菌毒素吸附剂对霉菌毒素的吸附效果见表1。 表1不同类型霉菌毒素吸附剂对霉菌毒素的吸附效果(摘自)

2、体外有效并不能保证体内有效 由于体内试验是在特定的非常简单的条件下进行的,因此体外试验并不能代表消化道中的情况。比如体外试验并没有考虑消化参数(如pH)变化、与饲料或消化酶分泌的相互作用,因而可能得出错误的结论。当霉菌毒素与吸附剂之间以较弱的非共价键结合时,环境条件的改变可能导致霉菌毒素被重新释放。 3、部分霉菌毒素吸附剂并不是专一性地吸附霉菌毒素 部分霉菌毒素吸附剂,如活性碳还会与日粮中维生素、矿物元素或药物结合。如此一来将会限制其吸附霉菌毒素效率,并且会影响动物的生产性能。 4、小结 霉菌毒素吸附剂对霉菌毒素的作用仍然有限(表2),对一些不能被有效吸附的霉菌毒素还需要通过开发新的途径进行处理。 表2防霉剂和霉菌毒素吸附剂的作用效果

常见霉菌毒素的种类及危害分析

常见霉菌毒素的种类及危害分析 霉菌毒素是一些霉菌在基质上生长繁殖过程中产生的有毒次级代谢产物。霉菌产毒仅限于少数产毒霉菌的部分菌株。不同的霉菌可产生同一种霉菌毒素,而一种霉菌可产生几种霉菌毒素。 霉菌根据生长条件划分为田间霉菌和仓储霉菌两种。田间霉菌是指镰孢菌属、青霉菌属和麦角菌属等野外菌株,这类霉菌通常是谷物在生长过程中就已感染。仓储霉菌主要是指饲料或原料在储存过程中产生的霉菌,以曲霉菌属为主。 黄曲霉毒素 黄曲霉毒素主要是曲霉菌产生的,其他曲菌、放线菌、镰孢霉菌和青霉菌也能产生黄曲霉毒素。所有动物均对黄曲霉毒素敏感,不过不同动物的敏感性差异较大。在家畜中以仔猪最为敏感。低浓度的黄曲霉毒素污染导致采食量下降、饲料转化率降低和引起机体的免疫抑制。母猪饲喂黄曲霉毒素污染严重的饲料,毒素会通过母乳传播而造成仔猪生长迟缓甚至死亡。此外,黄曲霉毒素还会干扰肝脏的解毒功能以及损害免疫系统。 赭曲霉毒素 赭曲霉毒素是由赭曲霉菌等所产生的一种毒素,分为A、B两种类型。赭曲霉毒素A的毒性较大,主要侵害猪的肾脏和肝脏。赭曲霉毒素可以造成猪的精神沉郁,食欲减退,体重下降,消化功能紊乱,肠炎,甚至腹泻,脱水多尿,伴随蛋白尿和糖尿。妊娠母畜子宫黏膜出血,往往发生流产。中毒后的病理变化以肾脏为主,可见肾脏肥大,呈灰白色,表面凹凸不平,有小泡,肾实质坏死,肾皮质间隙细胞纤维化;近曲小管功能退化,肾小管通透性变差,浓缩能力下降。 呕吐毒素 呕吐毒素属于单端孢霉烯族化合物,主要由禾谷镰刀菌、尖孢镰刀菌、串珠镰刀菌等镰刀菌产生。其危害主要是造成猪只的呕吐,同时降低采食量。呕吐毒素也属于一种很强的免疫抑制剂,它在猪体内可以抑制蛋白质的合成,对快速生长的组织(如皮肤和黏膜)和免疫器官均可产生影响,降低猪群的抵抗力。 玉米赤霉烯酮 玉米赤霉烯酮(F2毒素)由禾谷镰孢霉菌产生,是具有类似雌激素作用的霉菌毒素,临床症状因感染剂量和年龄不同而异。玉米赤霉烯酮对猪影响最大的部位是生殖系统。较低的浓度会诱发女性化现象,较高浓度会干扰排卵、受孕、植入及胚胎的发育。可造成后备母猪或小母猪出现假发情和阴道脱垂或脱肛。该毒素会造成怀孕母猪的流产和死胎、初生仔猪出现八字腿及外阴部肿胀。 T-2毒素

霉菌毒素去毒18种方法

霉菌毒素去毒18种方法 1 山苍子油去毒法 按每100 kg发霉饲料用山苍子油10 mL的比例,将油装入瓶中,用三层布扎紧瓶口,然后把油瓶埋入饲料中,密封7天后就可去毒。 2清水浸洗法 适合于籽实饲料的去毒处理,分为两种形式。一是将霉变颗粒和水按一定比例混合、搅拌、静止、浸泡一段时间后,用抹布擦拭颗粒,捞出在通风处晾干o 第二种方法是将籽实饲料磨成1.5—4.5 mm的颗粒,然后加3~4倍的水,搅拌、静止、浸泡30 min左右。这样反复2~3 次,有毒成分或菌体代谢物因比重小于水而浮于水面,然后可将其滤去。 3 蔗糖液去毒法 将霉变后的饼类饲料如花生饼、糠饼、菜子饼,加工打碎,用1%的蔗糖溶液浸泡10—14 h,然后用清水冲洗,放在晒场晒干,即可达到去毒的目的。 4氨水去毒法 用氨水或氨气处理霉变饲料,可以使饲料中黄曲霉素的含量减少90%—95%。按每lkg霉变饲料中加入氨水12.5—17.5 g,大容器中拌均匀后,用塑料布将容器口封严,置于室温下,3—7 d即可达到去毒的目的o此法适宜对糠麸类饲料进行去毒处理。大豆粉的去毒方法:在相对湿度为50%的情况下,在大豆粉中添加2%的尿素作为尿素酶原,密封10 h,可以破坏70%以上的黄曲霉素。 5 粘土或沸石处理 硅铝酸盐能选择性地与黄曲霉毒素Bi结合,在水溶液中,它对该毒素的吸附率达80%以上。常用的方法是在饲料中添加0.5%的粘土或沸石,既能促进畜禽的生长发育,又能除去霉菌毒素。 6发酵中和去毒法 将发霉的饲料用清水湿润,拌匀,含水量达50%—60%,做成堆,让其自然发酵24 h,然后加草木灰2%拌匀,中和2h后,装于袋中,用水冲洗,滤去草木灰水,倒出后加糠麸1倍,在室温下发酵7h,去毒效果可达90% 以上。 7 石灰水去毒法 将霉变饲料放入10%的纯净石灰水中浸泡3天,再用清水洗净,晒干后即可去毒,去毒率为90%—99%。 8 小苏打去毒法 将50 kg霉变饲料倒进锅内,加1%小苏打液100 kg,先用猛火煮沸,然后再用微火煮到颗粒裂开后半小时停火冷却,捞出后用清水反复冲净即可饲喂。 9 蒸煮去毒法 将发霉饲料放入锅中,加水煮沸30 min或蒸煮1h,然后用清水清洗几次,去掉水分即可去毒饲用。 10机械去毒法 轻度发霉的玉米和小麦,大部分毒素分布在胚芽和种皮内,只要通过机械加工,将胚芽和麸皮去掉,即可达到去毒目的。 11 人工筛选去毒法 利用机械或人工的方法先对饲料进行筛选,剔除霉变饲料,然后将未霉变的饲料进一步干燥,以达到去毒防霉的目的。主要适用于秸秆、颗粒饲料的去毒。12焙烤加热去毒法

解决霉菌毒素吸附的可行方法

解决霉菌毒素吸附的可行方法 梅里登动物保健公司的Matt Pearce、Inga Shahin博士和 Daniel Palcu报告开发了一种新的霉菌毒素吸附剂,此霉菌毒素可将霉菌毒素吸附到非常稳定的中性复合物上但不吸收养分,同时能使生产致病霉菌毒素的真菌有机体失活或将之消灭。 前言 随着上世纪后50年散装和集装箱海运费的增长,现代食品和饲料分配系统开始成为一个全球实体。这对消费者的选择和利用率产生了重大的积极影响,但由此产生的食源性毒素也存在消极后果,这些毒素随着运输和储藏的延长以及在粮食生长和收获期间出现。 食品法典委员会(CODEX)于1961年至1963年首次由粮食及农业组织(FAO)和世界卫生组织(WHO)建立。食品法典委员会的目的是产生食品标准以及食品安全国际标准建议,并保护消费者健康。食品法典委员会采用广泛的业内和科学认证组织的审慎科学建议建立的风险管理工具来确保食品安全和质量标准。鼓励世界贸易组织成员将国家饲料法规等同于国际公认的标准。食品法典包含有助于降低真菌次生代谢产物霉菌毒素的风险的建议和饲料管理技术。然而,假设饲料及其前体物经过一段时间间隔、大气湿度和温度进行储藏和运输,不可能完全从动物和人类食品链中去除这种霉菌毒素。现代饲料分配网络需要涵盖商业方法以保证饲料含有最小量对动物健康和生产有害的霉菌毒素。 本文报告了有关新的霉菌毒素吸附剂的开发,该吸附剂能将霉菌毒素吸附到非常稳定的中性化合物上但不吸收养分,同时使生产致病霉菌毒素的真菌有机体失活或将之消灭, 霉菌毒素在动物产品上引起的问题 0产品:气候条件 (温度、湿度)粮食种类 昆虫表现

作物密度肥料等 收获:作物成熟度水分含量农业污染 储藏:水分 昆虫控制保存等 分配:运输条件加工等 霉菌毒素是一个由某一真菌,尤其是黑曲霉、镰刀菌、青霉菌、麦角菌和链格孢属产生的多家族毒素。食品中的霉菌毒素可导致人和动物产生巨大问题。消费霉菌毒素污染的日粮会导致急性或长期慢性病,进而导致畸形、癌症或免疫抑制作用。食入霉菌毒素污染的动物饲料的直接后果:采食量降低、拒绝采食、饲料转化率低、体增重降低、疾病发生率增加(由于免疫抑制)以及繁殖能力降低(Fink-Gremmels 和Malekinejad, 2007; Morgavi和Riley, 2007; Pestka, 2007; Voss和Haschek, 2007),这些都会带来经济损失(Huwig等, 2001; Wu, 2004; Wu, 2006)。最常见的霉菌毒素是黄曲霉毒素、赭曲霉毒素A、单端孢霉烯、玉米赤霉烯酮及伏马菌素。唯一的实用解决方法 如今农产品的全球化已深入我们的社会结构中,其已经成为芝加哥交易所(GBOT)交易的一个重要组成部分。CBOT精于商品贸易和农产品的未来销售。动物饲料市场已经全球化,其多样性和规模具有生产技术优势也有其劣势。一个重要的劣势就是生产地点和消费市场之间的距离较远,从而产品流通相应地依赖运输环节,而在运输途中会遭遇不同的小气候。农产品在包装技术上不能保证产品最后能保持足够的商业价值,其可能会遭遇诸如温度和空气湿度的变化。这样霉菌毒素就存在可趁之机,从而发挥其有害作用,在这些作物栽培和收获阶段霉菌毒素也可能会产生。因此,如果无法避免霉菌毒素,唯一的实用解决方法是使用高活性的霉菌毒素吸附剂。 广谱菌霉菌毒素吸附剂应包括诸如安全特性、易购性、营养上对动物有益,而且可

霉菌与霉菌毒素的危害.总结

在养殖生产实践中,人们对霉菌危害的认知多限于已经形成的明显病症。例如:禽的曲霉菌病、白色念珠菌病等;另一方面,人们对霉菌滋生和霉菌毒素传播的条件的认知,又多限于是高温高湿地区或高温高湿季节。实际上,霉菌及毒素的危害远比人们通常的认知要严重的多,霉菌的扩散与污染也远比人们通常的认知要广泛的多。有人说,我们这个地区从未发生过一例霉菌病或是霉菌毒素中毒症。那只是说没有出现明显的典型症候或者是出现了而被误指成别的症候了。 霉菌是一种多细胞真菌微生物,通过种子与孢子繁殖生长。霉菌及霉菌孢子广泛存在于自然界如土壤、草、饲料、谷物原粮、养殖环境、动物体表。霉菌孢子还可以随风或灰尘飘散到各处,在适宜的环境中可大量繁殖,引起污染传播。 一般认为,曲霉菌属中的烟曲霉菌是常见致病力最强的主要病原。其他如黄曲霉菌、黑曲霉菌、杂色曲菌等均有强弱不等的致病性。曲霉菌孢子对外界的抵抗力很强,在干热120度或煮沸5分钟才能杀灭,对化学品也有较强抵抗力,如2.5%福尔马林、水杨酸、碘酊等,需经1~3小时才能将其灭活。那种认为霉菌可以自生自灭的说法是不对的。 曲霉菌主要侵害畜禽的呼吸器官,在禽类中主要侵害鸡、鸭、鹅、火鸡、鹌鹑、鸽等,以幼禽多发,常见急性群发,发病率和死亡率较高。成年禽多为散发。病变特征为肺及气囊炎症和小结节为主,故又称曲霉菌性肺炎。在临床病例中,病禽的一些症状时常被经验不足的兽医误指成其他病。例如:烟曲霉菌致病后,病禽头颈伸直呈沙哑的水泡声呼吸、甩鼻、打喷嚏、眼部潮红肿胀、溃疡,眼鼻分泌物增多,下痢、扭颈、共济失调,成年禽呈慢性经过性发育不良、消瘦、贫血、停产、呆立、少食、羽毛粗乱,还有剖检中的脏器肉芽肿、腺胃肿胀等。受黄曲霉菌侵害的幼禽和成禽表现为少食、叨料、腹泻或稀便混血、双翅下垂、脱毛、消瘦、鸡冠苍白、产蛋下降、种蛋孵化率降低等。因此,强调鉴别诊断上要注意与雏鸡白痢、支原体、大肠杆菌病、雏鸡脑脊髓炎、雏鸡新城疫等的区别,确有必要。又如白色念珠菌病又称霉菌性口腔炎,俗称鹅口疮。患病鸡、鸭、鹅表现为精神不振、少食、消瘦、羽毛脏乱、嗉囊胀满,挤压有痛感,下痢,雏鸭还会有急促喘气,叫声嘶哑等症,确诊此病特别要注意病禽口腔、食道,看是否有灰白色假膜和溃疡,多数还会有眼睑、口角出现痂皮,呈白色丘疹样,后蔓延成片。 曲霉菌病的主要传播媒介是被污染的垫料和饲料。因此,饲养管理不善是本病暴发的主要诱因,这不仅包括了高温高湿地区和季节,也包括了育雏室内昼夜温差大、阴暗潮湿、通风不良、雏群拥挤、营养不良等局部小环境因素。即使在低温低湿的外部环境中,局部小环境差仍能引发本病。又如:孵化室及种蛋库根据需要在冬季多保持适宜的温湿度又不通风,形成阴暗、潮湿、发霉的环境。霉菌孢子很容易穿过蛋壳侵入而致胚胎感染死亡或是幼雏出壳不久死亡,也可能在出雏过程中,幼雏吸入霉菌孢子而感染发病,这有时被误认为是支原体经蛋传播的发病。还有的如烟曲霉性肉芽肿,则是因畜禽饲料中长期添加土霉素等使肠道正常菌群受到破坏,真菌趁虚而入引起。 霉菌的危害除了直接引发患病外,更主要的是产生隐形杀手—霉菌毒素。霉菌毒素是次生代的真菌代谢物,它是一个复杂的概念,是包括许多霉菌所产生的

铝硅酸盐类吸附剂对霉菌毒素的选择性吸附机制及其应用

收稿日期:2001-12-31 作者简介:齐德生(1965-),男,副教授,主要从事饲料卫生和抗营养因子研究。 铝硅酸盐类吸附剂对霉菌毒素的 选择性吸附机制及其应用 齐德生 副教授 齐德生,于炎湖 (华中农业大学饲料卫生与饲料毒物实验室,湖北武汉 430070) 摘 要:对铝硅酸盐类霉菌毒素吸附剂对霉菌毒素的脱毒效果及脱毒机制进行了讨论,并探讨了其在实际应用中可能存在的问题及今后的研究方向。关键词:饲料;铝硅酸盐;霉菌毒素;脱毒;机理 中图分类号:S 816.71 文献标识码:A 文章编号:1003-6202(2002)05-0031-03 E fficiency and Mech anism of Aluminosilicate in R educing the Toxicity of Mycotoxins ABSTRACT The detoxification efficiency and mechanism of aluminosilicate for mycotoxins were reviewed ,and the problems could be encountered in actural application and the research orientation in future were als o discussed.KE YWOR DS feed ;aluminosilicate ;mycotoxin ;detoxification ;mechanism 饲料及饲料原料霉变并由此造成的霉菌毒素污染问题是一个全球性问题,对畜牧业生产和人类健康构成了巨大危害。尽管人们采取了各种防霉措施,但由于饲料作物在田间、收获、储藏、加工等诸多环节均可受到霉菌感染。因此,防霉工作很难完全有效,饲料受霉菌毒素污染的现象十分普遍,由此造成的畜禽死亡、生产力下降、繁殖机能障碍等畜禽霉菌毒素中毒事件屡有发生。同时,霉菌毒素还可在畜禽产品中残留,为人类健康带来极大的安全隐患。因此,对霉变饲料,寻求一种经济有效并适合在大规模饲料生产中应用的去毒措施十分必要。 我国大部分地区,特别是长江以南地区,夏季高温潮湿,饲料霉变及受霉菌毒素污染的现象非常普遍。据我们调查研究发现,南方地区配合饲料受黄曲霉毒素B 1污染率达 23.5%。由于环境应激,霉菌毒素之间的联合作用及饲料营 养不全等因素的存在,饲料中低含量的霉菌毒素即可对动物造成危害。研究表明,当饲料中黄曲霉毒素(包括黄曲霉毒素B 1,B 2,G 1,G 2)含量为14.0μg/kg (低于美国鸡饲料黄曲霉毒素允许量20μg/kg 的卫生标准)时即可对肉仔鸡生产性能造成严重影响。因此,凡受霉菌毒素污染的饲料,尽管其含量可能很低,也会对动物健康和生产性能造成潜在危害,对其采取适当的脱毒处理是必要的。同时,在我国目前经济条件下,对受霉菌毒素轻度污染的饲料采取合理的脱毒处理,对提高饲料资源的可利用性具有一定的实际价值。近年来,铝硅酸盐类霉菌毒素吸附剂受到人们广泛重视,国内外畜牧兽医科技工作者对其吸附机制及应用效果进行了较深入的 研究,现综述如下。 1 铝硅酸盐矿物对抗霉菌毒素的实验效果 所谓铝硅酸盐(Aluminosilicate ,简称AS )是指含有Al 2O 3 和S iO 2的的物质,如沸石、膨润土、高岭土等都属于铝硅酸盐矿物。沸石及层状铝硅酸盐矿物(如膨润土、高岭土等)因具有较大的比表面积和离子吸附与交换能力,因此受到研究者的重视。 研究表明,膨润土能阻止T -2毒素在大鼠小肠内吸收,增加其从粪便中排出。因而,饲料中添加质量分数为5%的膨润土可消除由T -2毒素引起的动物生长抑制和拒饲现象[1]。 某些水合铝硅酸钠钙对黄曲霉毒素B 1具有较高的吸附效率和吸附稳定性,在动物体内可能通过与之形成螯合物或降低其生物有效性而减轻其对小鸡的毒性。在日粮中添加 0.5%的水合铝硅酸钠钙(Hydrated S odium Calcium Aluminosili 2cate ,简称HSC AS )可显著减轻黄曲霉毒素B 1(日粮中为7.5mg/kg )对来航蛋鸡及肉仔鸡的毒害作用[2]。在日粮中 添加0.5%的HSC AS 可降低黄曲霉毒素(含量为3.5mg/kg )对雄性肉仔鸡的毒性作用,但不能减轻T -2毒素 (8.0mg/kg )的毒性[3]。在日粮中添加1%的沸石可消除黄曲 霉毒素B 1(日粮中含量为2.5mg/kg )对雄性肉仔鸡生产性能的不利影响[4]。有研究表明,日粮中添加0.5%的HSC AS 可减轻低水平黄曲霉毒素(0.5mg/kg )对火鸡体增重及血象的不利影响,但不能减缓高水平的黄曲霉毒素(含量1mg/kg )的不 1 3 粮食与饲料工业/2002年第5期 CEREA L &FEED I NDUSTRY /2002,No.5

猪场常见霉菌毒素的危害及其控制策略

猪场常见霉菌毒素的危害及其控制策略 ?点击次数: 726 ?日期:2014-04-08 10:11 ?编辑:admin ?来源:中国畜牧兽医报 ?评论 霉菌毒素是一些霉菌在基质上生长繁殖过程中产生的有毒次级代谢产物。霉菌产毒仅限于少数产毒霉菌的部分菌株。不同的霉菌可产生同一种霉菌毒素,而一种霉菌可产生几种霉菌毒素。 霉菌根据生长条件划分为田间霉菌和仓储霉菌两种。田间霉菌是指镰孢菌属、青霉菌属和麦角菌属等野外菌株,这类霉菌通常是谷物在生长过程中就已感染。仓储霉菌主要是指饲料或原料在储存过程中产生的霉菌,以曲霉菌属为主。 常见霉菌毒素的种类及危害黄曲霉毒素 黄曲霉毒素主要是曲霉菌产生的,其他曲菌、放线菌、镰孢霉菌和青霉菌也能产生黄曲霉毒素。所有动物均对黄曲霉毒素敏感,不过不同动物的敏感性差异较大。在家畜中以仔猪最为敏感。低浓度的黄曲霉毒素污染导致采食量下降、饲料转化率降低和引起机体的免疫抑制。母猪饲喂黄曲霉毒素污染严重的饲料,毒素会通过母乳传播而造成仔猪生长迟缓甚至死亡。此外,黄曲霉毒素还会干扰肝脏的解毒功能以及损害免疫系统。 赭曲霉毒素 赭曲霉毒素是由赭曲霉菌等所产生的一种毒素,分为A、B两种类型。赭曲霉毒素A的毒性较大,主要侵害猪的肾脏和肝脏。赭曲霉毒素可以造成猪的精神沉郁,食欲减退,体重下降,消化功能紊乱,肠炎,甚至腹泻,脱水多尿,伴随蛋白尿和糖尿。妊娠母畜子宫黏膜出血,往往发生流产。中毒后的病理变化以肾脏为主,可见肾脏肥大,呈灰白色,表面凹凸不平,有小泡,肾实质坏死,肾皮质间隙细胞纤维化;近曲小管功能退化,肾小管通透性变差,浓缩能力下降。 呕吐毒素 呕吐毒素属于单端孢霉烯族化合物,主要由禾谷镰刀菌、尖孢镰刀菌、串珠镰刀菌等镰刀菌产生。其危害主要是造成猪只的呕吐,同时降低采食量。呕吐毒素也属于一种很强的免疫抑制剂,它在猪体内可以抑制蛋白质的合成,对快速生长的组织(如皮肤和黏膜)和免疫器官均可产生影响,降低猪群的抵抗力。 玉米赤霉烯酮 玉米赤霉烯酮(F2毒素)由禾谷镰孢霉菌产生,是具有类似雌激素作用的霉菌毒素,临床症状因感染剂量和年龄不同而异。玉米赤霉烯酮对猪影响最大的部位是生殖系统。较低

霉菌毒素吸附剂的研究现状与进展

霉菌毒素吸附剂的研究现状与进展 作者:陈峰 上海交通大学生命科学技术学院 有多种物质可以用于霉菌毒素的吸附,许多研究者对它们的吸附能力、吸附特异性和吸附机理进行了研究。这些通过物理吸附作用来脱毒的物质是通过释放自由能(ΔG)来提供吸附所需能量的。最重要的吸附特征是这些吸附剂的物理结构,这包括它的总电荷量、电荷的分布、孔隙的大小及可用的表面积(比表面积)。同样的,要被吸附的毒素分子的极性、可溶性、分子大小、分子形状、电荷分布等特征在吸附过程中也是至关重要的。相对于体外吸附试验而言,体内试验(喂养试验)中吸附剂对霉菌毒素的吸附量难以测定和计算。这样,各吸附剂的吸附效能只能通过动物的表现来反应,如体重的增加、料肉比、死亡率,血液、组织或器官中毒素的浓度等指标。体外试验往往不能反映出这些吸附剂的吸附选择性,一旦它们加入谷物或饲料中,某些营养成份也可被它们吸附,而这些营养成份在基质中的浓度远高于其中的毒素浓度,结果吸附剂被营养成份饱和而不能吸附毒素。因此,体外试验与体内试验结果有可能会出现相反的结果(Garcia et al, 2003)。 目前用于物理吸附的物质主要是铝硅酸盐类的毒素吸附剂(Huwig et al, 2001),活性碳也可用于棒曲霉毒素(Mutlu and Gokmen, 1998)和赭曲霉毒素A(Galvano, 1998)的吸附,有不少研究者也利用酵母细胞壁成份来吸附霉菌毒素(Yiannikouris et al, 2003)。 活性炭是一种具有高比表面积的多孔不溶性粉末状物质,它的比表面积可以达到500-3500 m2/g。在体外试验中,活性炭对霉菌毒素可以表现出较好的吸附脱毒作用(Galvano, 1997; Galvano, 1998; Bauer, 1994);但在体内试验(喂养)中,不同的研究结果给出了不同的结论(Hatch et al, 1982; Edrington et al, 1996, 1997; Bauer, 1994),这可能是由于活性炭的选择吸附能力较差,被饲料中的某些营养成份所饱和而失出了对毒素的吸附力。活性炭对土霉素具有很强的吸附能力(Alegakis et al, 2000),这也表明它的选择吸附能力较差。

霉菌毒素吸附剂产品宣传重点

霉菌毒素吸附剂产品宣传重点 FIS 公司简介(意大利赛弗霉菌毒素吸附剂)产品优势 FIS 公司位于意大利米兰南部的罗迪市,成立于1980年,是欧洲最早从事霉菌毒素吸附剂研究和生产的公司之一,从1983年开始批量生产霉菌毒素吸附剂的生产。目前霉菌毒素吸附剂的产量10000吨,产品在欧洲,非洲,南美,澳大利亚享有很高的美誉度。FIS 公司的技术总监LUISA ZANELLI博士是欧洲最具权威的霉菌毒素问题的专家。 FIS是全欧洲唯一一家以霉菌毒素吸附剂为主营业务的公司,FIS公司20年的专一性造就了产品的特殊性及稳定性。2012公司与北京立信科技有限公司签订协议,赛弗霉菌毒素吸附剂正式进入中国市场。 FIS 塞弗宣传重点 a)工厂的专业性:FIS 从1983年开始,以霉菌毒素吸附剂为主产品。在霉菌毒素研究方面,FIS是欧洲最领先的。而其他公司,霉菌毒素吸附剂仅仅是一个很小的产品,投入的研发力量很小,所以在专业性比不上FIS b)服务灵活性: FIS 因其专业性,可以根据不同区域,不同气候条件以及料日粮配方,为客户打造量身定做的产品。这一点欧美的其他公司基本上无法做到。 c)复合型产品:FIS是世界上第一个生产复合型霉菌毒素吸附剂的公司,我们塞弗产品含有六种吸附材料。复合型的产品一直是各个霉菌毒素吸附剂厂家研究的方向,FIS在这方面走在了最前面。需要注意的是复合型霉菌毒素吸附剂并不是将各种潜在吸附剂产品简单混合在一起,关于技术在于各种成分的比例及其之间的协同作用。 d)吸附性能的广谱型:不同的吸附材料均具有吸附选择性,FIS将不同的吸附材料复配在一起,达到吸附光谱的效果。复配是一项极先进的技术,而不是仅仅将几个吸附材料混合。目前市面上还没有出现真正复配的产品。 e)吸附的紧密度:FIS 产品吸附霉菌毒素之后,不会随PH的的改变而改变。市面上的绝大部分产品均存在适用PH值范围窄的缺陷。FIS 产品的工作范围PH2-8,动物胃部的PH为3

(整理)、霉菌毒素和危害

霉菌毒素是某些霉菌产生的有毒二次代谢产物,普遍存在于管理不好的饲料原料中,毒素在谷物田间生长、收获、饲料加工、仓储及运输过程皆可产生。 一、霉菌毒素和危害 在猪场现实管理过程中,霉菌毒素的危害常被忽略。在很多时候当猪群发病后,患病猪经多种药物治疗效果不佳,死亡率上升。检疫机构的化验结果往往包括附红细胞体、猪瘟、蓝耳病、圆环病毒者等疾病。我们不能否认这些疫病的存在,但检测项目中一般都没有包括霉菌毒素,因而规模化猪场的管理者和技术人员都没有把霉菌毒素问题考虑在内,猪群发病后经治疗无效,请教多个专家意见,多个机构检测,药物换了一种又一种,还增加了疫苗注射的种类的频率,结果死亡率还是居高不下。几经周折最后终于明白是霉菌毒素惹的祸。 目前饲料检测到的毒素已超过350种,对猪危害最大的有:黄曲霉毒素、玉米赤霉烯酮(F-2毒素)、呕吐毒素、赭曲霉毒素。 饲料中各种霉菌毒素之间有协同作用,几种霉菌毒素协同作用对动物健康和生产性能的副作用比任何一种霉菌毒素单独作用的副作用都要大,而饲料原料和全价料中经常同时存在几种霉菌毒素,使猪群中毒时临床症状更为复杂,特别是当有细菌性因素和病毒性因素存在的情况下尤为突出,因而在临床上多种霉菌毒素和细菌、病毒混合感染引起猪群中毒的诊断变得更为困难。 二、猪只霉菌毒素中毒的主要症状 猪群发生玉米赤霉烯酮中毒最明显的症状是:母猪外阴持续性红肿。这是判断是否为玉米赤霉烯酮引起的重要依据。这种红肿症状常被误认为是母猪发情,但出现症状的母猪却不接受公猪爬跨配种。 猪群采食含有黄曲霉毒素、呕吐毒素、T-2毒素、玉米赤霉烯酮、赭曲霉毒素其中的一种或多种毒素的饲料时,经常表现为食欲下降或不采食饲料,持续性体温升高,全身皮肤出现红点,阴囊部皮肤呈水浸样病变,病猪犬坐,咳嗽,气喘,包皮红肿,关节肿胀,

霉菌毒素的危害及其降解方法简述

饲料中霉菌毒素的污染及其所造成的危害仍是养殖者易于忽略的问题,且容易与其他疾病产生混淆。目前全世界饲料谷物中出现霉菌毒素的比例高达25%以上,除了对畜牧产业造成显著的经济损失外,部分霉菌毒素还具有致癌性或致畸胎性,可经由食用肉或乳汁传至人类。在中国,对饲料及饲料原料进行了采样调查霉菌毒素的污染情况,结果发现检测的6种霉菌毒素(黄曲霉毒素、T-2毒素、呕吐毒素、玉米赤霉烯酮、赭曲霉毒素、烟曲霉毒素)在被检饲料和饲料原料中均普遍存在。全价料中霉菌毒素的检出率明显高于单一能量饲料和蛋白饲料,检出率均在90%以上,黄曲霉毒素、T-2毒素、呕吐毒素和玉米赤霉烯酮的检出率高达100%,其中呕吐毒素、玉米赤霉烯酮、烟曲霉毒素、赭曲霉毒素均有不同程度的超标,而蛋白饲料中霉菌毒素的污染也不容忽视。在被检饲料和原料中,黄曲霉毒素并非主要的霉菌毒素,呕吐毒素、烟曲霉毒素和玉米赤霉烯酮的污染最为严重,而由多种饲料原料配制的全价料将会大大增加全价料受多种霉菌毒素污染的危险。养殖者应采取合理的措施来预防霉菌毒素的污染,以保护动物正常的健康、生产及食品安全。目前饲料工业和养殖业的着重点是抑霉、杀霉,饲料及其饲料原料无肉眼可见的霉变即可,然而霉菌毒素是肉眼看不见的,它的产生至今仍是全世界畜禽及谷类饲料安全无时不存在的自然威胁,它的来源、生成及其特性导致了一系列的困扰,比如,饲料配方不变,饲料品质却出现时好时差的情况;免疫程序不变,疫苗按时接种,可是畜禽抗体水平上不去;畜禽的生产性能下降、易感性提高、疾病频频发生等等一系列的问题。以上介绍了几种常见的霉菌毒素对畜禽造成的危害,然而通常情况下,饲料中几种霉菌毒素同时存在,霉菌毒素间的协同作用对动物健康和生产性能的作用比任何一种霉菌毒素单独作用的危害都要大,而且霉菌毒素不仅仅存在于饲料,或只破坏动物的生产性能。实际上,许多饲料中的霉菌毒素还能转移到动物的肉、蛋和奶产品中,直接威胁到人类的健康。本文从霉菌毒素的来源、危害、防治方法等方面进行阐述,以供饲料行业,乃至畜牧行业同仁参考。 1霉菌的产生和毒素的来源 霉菌是一种多细胞微生物,其繁衍下一代是以种子或孢子的形式。霉菌孢子普遍存在于土壤和一些腐烂植物。土壤中的霉菌孢子经由空气、水及昆虫传播到植物上,一旦孢子接触到破裂的种子,迅速萌发,便可明显看见发霉的现象。这些霉菌繁衍起来会产生更多的孢子去感染其他种子。在田间,植物受霉菌感染的因素很多,包括土壤的水分、播种期、收割期、轮作期、施肥、植物的品种、植病的发生、杂草、鸟类及害虫等。当作物收割后,通常会带有某些霉菌,在干燥的过程中,霉菌会受到破坏,所以不易察觉,然而许多霉菌孢子会存活下来,并且在贮存期间、制作饲料的过程中开始萌发生长。 一般把霉菌按其生活习性分为仓贮性霉菌和田间霉菌两种。仓贮性霉菌主要是指贮存的饲料或原料,在适宜的温度、湿度等条件下产生的霉菌,以 霉菌毒素的危害及其降解方法简述 翁晓辉王敏杜红方 (广东省饲料添加剂生物工程技术研究开发中心) QUALITY AND SAFETY质量与安全 31 饲料广角·

相关文档