文档库 最新最全的文档下载
当前位置:文档库 › 矩阵迹的性质与应用

矩阵迹的性质与应用

矩阵迹的性质与应用
矩阵迹的性质与应用

矩阵迹的若干个性质与应用

姓名:某某 指导老师:某某

摘 要:根据矩阵迹的定义,首先给出了矩阵迹的性质,然后依据方阵的F -范数定义Cauchy —Schwarz

不等式,给出了零矩阵,不相似矩阵,数幂矩阵,列矩阵,幂等矩阵及矩阵不等式的证法。矩阵的迹在解题中的应用给出了实例。

关键词:迹 矩阵 范数 特征值

1 引言

矩阵的迹及其应用是高等数学的重要内容,也是工程理论研究中的重要工具。本文在前人研究的基础上,首先介绍了矩阵迹的相关性质,然后给出了零矩阵,不相似矩阵,数幂矩阵,列矩阵,幂等矩阵及矩阵不等式的证法,最后对矩阵的应用给出实例。

2 预备知识

定义1 设

n

n ij C

a A ?∈=)(,则∑==n

i ii a trA 1

称为A 的迹。

定义2 设

n n ij C a A ?∈=)(,记与向量范数2X A 相容的A 的F 一范数为:

2

112

1

)(∑∑===n

i n

j ij F

a A

)1(00>?≠F A A

(2) C K A K KA F F ∈??=,

(3) n F F F

C B A B A B A ∈?+≤+,,

(4) n n F F F

C B A B A AB ?∈??≤,, (5) 22

X A

AX

F

?≤

引理:矩阵迹的性质: 1 trB trA B A tr ±=±)( 证明:设

(a ),()ij n n ij n n A B b ??==则1

1

1

(),(),()()i n i n i n

ii ii ii ii i i i tr A a tr B b tr A B a b ========±=±∑∑∑

又1

1

1

()()()i n i n i n

ii

ii

ii

ii i i i tr A tr B a b a

b ======±=

±=+∑∑∑

所以()()()tr A B tr A tr B ±=±得证 2 ()tr kA k trA =?(k 为任意常数) 证明:设()ij n n A a ?=则

()()()()()()

ii

ii

ii ii tr A a k tr A k a tr kA k a k a tr kA k tr A =∴?==?=∴=?∑∑∑∑ 由(1)与(2)知()()(),,tr mA nB m tr A n tr B m n C ±=?±?∈ 3 )()(BA tr AB tr =

证明:设 (a ),()ij n n ij n n A B b ??== 则()i j n n AB c ?=,其中1

k n

ij ik

kj k c a

b ===

?∑所以有()ij ji tr AB a b =?∑∑

()ij n n BA d ?=其中1

k n ij ik kj k d b a ===?∑,所以有()ij ji tr AB a b =?∑∑

()()tr AB tr BA ∴=得证

4 A tr trA '=

证明:矩阵取转置运算主对角线上的元素不变,所以等式很显然成立。 5 ji n i n

j ij

a a

A tr ∑∑===

112

)(

证明:令(3)中B A =即可得证。 6 ∑∑===

'n

i n

j ij

a

A A tr 11

2)(

证明:令(3)中'B A =即可得证。 7 ∑==

n

i i

trA 1

λ

(i λ是A 的特征值)

证明:由若当定理知100n A J λλ?? ?

=* ? ?*??

因为相似矩阵迹相等,所以∑==

n

i i

trA 1

λ

8 ∑==

n

i i

A tr 1

22

)(λ

证明:设矩阵A 的特征值为1,.......,n λλ 则矩阵2

A 的特征值为2

2

1,.......,n λλ

则由(7)即可得证

9 若~A B ,则trB trA =;特别,trA AT T tr =-)(1

(下面定理有证明)

10 若0≠A ,||||>0A ,则 0>trA

有了上面关于矩阵的迹定义及性质的介绍,下面我们通过举例来看其在解题中的应用。

3 解题中的应用

例1 设B A ,为同阶实对称矩阵,若B A -正定,则A 和B 不相似。 证:假设,A B 相似,则由性质9 知, trB trA = 再由性质1 得0)(=-=-trB trA B A tr

故由性质10 知B A - 不是正定阵,与已知矛盾!从而, A 和B 不相似。

例2 设n 阶矩阵A 的对角线上元素全是1,且其特征值为复数,求证||1A ≤ 证:设(1,2,...)i i n λ=为A 的全部特征值,且0,1,2,...,i i n λ≥=则有

1212

||...,()...n n A tr A λλλλλλ==++ 又A 的主对角线上的元素全是1,知()tr A n =

12...()

1n

tr A n

n

λλλ++≤=

= 所以

12||...1n A λλλ=≤。

例3 已知n 阶方阵A ,若对所有的n 阶方阵X 有 0)(=AX tr ,则0=A 。

证: 设0≠A ,则有某0≠km a 。作矩阵)(ij x X =,使1=mk x ,),(),(k m j i ≠时,0=ij x 。

则矩阵AX 主对角线上的元素

?

??≠===∑=k l k

l a x a C km n

s sl ls ll ,0,1

0)(1

≠==

∑=km n

l ll

a C

AX tr 。与已知矛盾!故0=A

例4 设n n ij a A ?=)(,A 的特征多项式为 0111b b b A E n n n ++++=---λλλλ ,则trA b n -=-1。

证 因为

?

?

????

?

?????---------=

-nn n n n n a a a a a a a a a A E λλλλ

21

2222111211 A a a a n n nn n det )1()(12211-+++++-=- λλ

所以

trA a a a b nn n -=+++-=-)(22111 。

例5 设A , B , C 都是n n ? 矩阵,且CA AC = , CB BC = , BA AB C -=,则存在不大于n 的自然数m ,使得0=m

C 。 证:

先证0=k

trC . (k 为任意自然数)

1-=k k C C A B C B C A BA AB k k )()()(11---=- (1)

由(1) 和性质1、3 得:)(

[]()[]

011

=-=--A B C tr B C A tr trC k k k

再证C 的特证值都等于0。

设C 的特征值为.,,21n λλλ 则存在可逆矩阵T ,使

T T C n ??

??

??????*=-λλ01

1

所以),2,1,0(,011 =????

???

?

?

?*=-k T T C k n k

k λλ

从而 ),2,1(021 =+++==k trC k

n

k

k

k

λλλ (2)

不失一般性,设C 的互异的非零特征值为s λλλ,,21 ,且重数分别为s r r r ,,21 。 则(2) 式变为: ),2,1(02211 =+++=k r r r k

s

s k

k

λλλ

取前S 个等式,因为范德蒙行列式01221

1≠???

??

????

???s s s

s s λλλλλλ

,因此021====s r r r 。即非零

特征值都是0 重,故C 的特征全为0 。

再证0=m

C

。 由于C 的每个若当块都形如

.,,2,101010t i J i

i n n i =?

???

??

???

???=? 因此

T J J T C k ??

??

?

?????=- 11

令: {}t n n n m ,21,max =,则011=???

??

????

?=-T J J T C m t m m

例6 满足P P =2

的矩阵P 叫做幂等阵,试证:幂等矩阵的迹与秩相等。 证:设n 阶阵P 为幂阵,且P 的秩()r P R =,则P 的特征值是0 或1 ,且P 具有

n 个线性无关的特证向量,因而, P 与对角阵相似。

故必有满秩阵T 存在,使1

00

1

1-???????

??

?

?????

?

???

?=T

T P

上式右端的对角阵的秩等于

p 的秩r ,即该矩阵中的对角元素(P 特征值)有r 个为1 ,

r n -个为0 。故由性质7 知

r trP =++++=0011

例7 设有n 阶实对称矩阵A ,若0≥A ,则有0≥trA 。 证:因为0≥A ,所以A 半正定,故存在n 阶矩阵

u 其中),,(1in i i

q q a =是第i 个行向量()n i ,,2,1 =,使得Q Q A '=

于是()02

≥=

'=F Q Q Q tr trA 。

又因为n ? 维列向量,),,(1n

n R x x X ∈'= 有

()()22QX QX QX QX Q X AX X ='

=''='

于是 ()()??

??

??????=??????????++++=X a X a x q x q x q x q QX n n nn n n n ,,1111111

由Cauchy - Schwarz 不等式知,()2

2

,X

a X a i i ≤

所以()2

2222

122122

,X Q

X a X a QX

F

n i i n

i i =??

? ??≤=∑∑==

即()()X X trA X

trA X

Q QX F

'==≤22

22

222

从而()()EX trA X X X trA AX X '='≤'

故有()A E trA ≥

例7 设A 为一个n 阶矩阵,A 的主对角线上所有元素的和称为A 的迹,记作trA .证明:如果对任意的n 阶方阵X ,都有()0tr AX =,则0A = 证:

设()ij A a =,取X A '=,则

211

11

()||0n n n n

ik ik ik i k i k tr A A a a a ===='?=?==∑∑∑∑

所以0,,1,2,,ik a i k n == . 即

0A =

例8 证明:不可能有n 阶方阵,A B 满足

AB BA E -=

证:设

1111n n nn a a A a a ?? ?= ? ??? ,1111

n n nn b b B b b ?? ?= ? ?

??

为任二n 阶方阵,则AB 主对角线上的元素为

1122

1

1

1

,,,n

n

n

i i i i ni in i i i a b a

b a b ===∑∑∑

它们的和为

11

n n

ji ij

i j a

b ==∑∑

同样,BA 的主对角线上元素的和为

11221

1

1

11

11

n

n n

j

j j j nj jn

j j j n

n

n

n

ij ji ji ij

i j i j b

a b a b a b a a b =======+++==∑∑∑∑∑∑∑

亦即AB 与BA 的主对角线上元素的和相等,从而AB BA -的主对角线上元素的和为零.但是,单位方阵E 的主对角线上元素的和为0,n ≠因此

AB BA E -≠

4 下面介绍一些有关矩阵迹的定理

定理1 Cauchy-Schwarz 公式: 设,A B 都是n 阶矩阵,则有

证明:设12[,,......,]T

n a a a a =,12[,,......,]T

n b b b b =

则由向量的内积定义式[],cos a b a b θ=,其中θ为a 与b 的夹角

21/2

21/21

[][]n

i i i

i i a b a

b ==∑∑∑。

推广到矩阵的迹的形式,即为1/2

1/2

()[()][()]T

T

T

tr A B tr A A tr B B ≤ 定理2 schur 不等式

设设A 是n 阶矩阵,则有2()()T

tr A tr A A ≤

证明:因为2

22

()()()()T T T T T T A A A A A A A A A AA A ??-=--=--+??

又因为T A A -是反对称矩阵,故有

22

()0()()

T T

tr A A tr A tr A A -≤∴≤

定理3 设,A B 为n 阶对称矩阵,则有221

()()2

tr AB tr A B ≤+ 证明:由Cauchy-Schwarz 公式可知

2

1/221/2

()[()][()]

tr AB tr A tr B ≤

又2

1/2

2

1/2

221[()][()]()2

tr A tr B tr A B ??≤

+?? 即得

221

()()2

tr AB tr A B ≤+

定理4 设,,A B C 都是n 阶实对称矩阵,则有

()()()()()()tr ABC tr ACB tr BAC tr BCA tr CAB tr CBA =====

证明:

,,A B C 都是n 阶实对称矩阵,又由引理2可得

()()()()T T T T tr ABC tr ABC tr C B A tr CBA ===

又由引理3可得

()()()tr ABC tr BAC tr CAB ==

同时有

()()()tr CBA tr BAC tr ACB ==

即可得结论。

定理5 设n 阶矩阵A 的所有特征值都是实数,且2

0trA >,若A 恰有k 个特征值,则

2

2

()trA k trA

≤ 证明:设A 的n 个特征值为12,,,n λλλ 。因为2

0trA >,由引理1 知0k >

2A 的特征值为22212,,,n λλλ 不为零,而其余的特征值222120k k n λλλ++====

考察以下平方和

2

1

()k

i i M a

λ==-∑ 其中1a

trA k

= ,显然0,M ≥且120k M λλλλ

=?==== 由于

2

221

()0k

i i trA M k trA k k λλ

==-=-≥∑ 于是,有

2

2

()trA k trA ≤

定理6 设,A B 都是n 阶实对称矩阵,则有

222()()tr AB tr A B ≤

证明:由于,A B 都是n 阶实对称矩阵,且由Schur 不等式和引理3,可得

2222

()()()()()()T T T tr AB tr AB AB tr B A AB tr BA B tr A B ??≤≤==??

定理7 设,A B 都是n 阶实对称矩阵,且正定或半正定,则有

()|()()|tr AB tr A tr B ≤

证明:由cauchy-schwarz 公式,且,A B 都是n 阶实对称矩阵,使得

21/221/2()[()][()]tr AB tr A tr B ≤

设A 的特征值为.,,21n λλλ B 的特征值为12,,.....,n μμμ显然,A B 的特征值均大于0

又由定理4知,对A 存在n 阶正交矩阵p 使得1100n P AP λλ-?? ?

Λ== ?

???

所以22

1

1

2

1

2

221

1

()()()()()()n

n

i

i i i tr A tr P P P P tr P P tr tr λ

μ---===ΛΛ=Λ=Λ=

≤=Λ∑∑

由此得 1

22

()|()|tr A tr A ??≤??,12

2

|()||()|tr B tr B ≤ 故有

1

122

2

2

()()()|()||()|tr AB tr A tr B tr A tr B ????≤≤?????

()|()()|tr AB tr A tr B ≤?

参考文献

[1]丁学仁. 工程中的矩阵理论[M].天津:天津大学出版社,1988 [2]党诵诗. 矩阵论及其在测绘中的应用[M].北京:测绘出版社,1980 [3]陈公宁. 矩阵理论与应用[M].北京:高等教育出版社,1990

[4]牛华伟,张厚超.关于矩阵迹的性质与应用[J].宁波职业技术学院学报,2009年4月 [5]宋占奎.矩阵的迹在解题中的应用[J].陕西工学院学报,2001年3月

Matrix trace of several properties and application

Author :Cao min Supervisor:Dai linsong

Abstract : On the basis of the definition of matrix traces ,this paper discusses their characteristics at first and then according to the norm of the F of square matrix and Cauchy - Schwarz

Inequality gives how to prove the zero matrix, unsimilar matrix ,number cloth matrix , column matrix idempotent matrix and non - equality matrix. The application examples of the matrixt races in solving problems was given..

Key words : traces ;matrix ;norm ;characteristic value

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1 i 1 tr(A)a ====λ∑∑,etrA=exp(trA)

性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y]

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY 毕业论文(设计) 题目幂等矩阵的性质及应用 英文题目Properties and Application of Idempotent Matrix 院系理学院 专业数学与应用数学 姓名邱望华 年级A0411 指导教师王侃民 二零零八年五月

幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。 [关键词] 幂等矩阵,性质,幂等性,线性组合

The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices. [Key Words] the idempotent, the nature, the idempotence, linear combination

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1tr(P AP)tr(A)-=;

5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B) 这里等号成立的充要条件是A=cB,c 为一常数。特别当A 和B 为实对称阵或Hermit 矩阵时 0≤|t r(AB)|≤ 定理:设A 和B 为两个n 阶Hermite 阵,且A≥0,

正投影及其性质

29.1 投影 第2课时正投影 【学习目标】 (一)知识技能: 1.进一步了解投影的有关概念。 2.能根据正投影的性质画出简单平面图形的正投影。 (二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。 (三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。 (四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。 【学习重点】 能根据正投影的性质画出简单平面图形的正投影。 【学习难点】 归纳正投影的性质,正确画出简单平面图形的正投影。 【学习准备】手电筒、三角尺、作图工具等。 【学习过程】 【知识回顾】 正投影的概念:投影线于投影面产生的投影叫正投影。 【自主探究】 活动1 出示探究1 如图29.1—7中,把一根直的细铁丝(记为线段AB)放在三个不同位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面: (3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。 三种情形下铁丝的正投影各是什么形状? (1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB A1B1; (2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB A2B2; (3)当线段AB垂直于投影面P时,它的正投影是。 设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。 活动2 如图,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面。 三种情形下纸板的正投影各是什么形状?

M矩阵的性质、定理及证明

M 矩阵的性质、定理及证明 一、M 矩阵的概念 定义1 设n n ij a A ?=)(,且0≤ij a ,j i ≠,01≥-A ,称A 为M 矩阵。 定义2 设n n ij a A ?=)(,且0≥ij a ,若1-A 为M 矩阵,则称A 为逆M 矩阵。 引理1 如果n n ij a A ?=)(,且0≤ij a ,j i ≠,A 为M 矩阵的充要条件是A 可做三角分解,R L A ?=,其中L 为下三角阵,R 为上三角阵,L 和R 的主对角元都是正值。 二、M 矩阵的判定定理与证明 定理1 若n n ij a A ?=)(为M 矩阵,则R L A ?=,其中下三角阵L 和上三角阵R 的主对角线元素为正,且其余元素为非正值。 证明 若A 为M 阵,则当j i ≠,0≤ij a ;j i =,0>ij a 。由引理1,A 可做三角分解R L A ?=。设 ????????????=nn n n l l l l l l L 21222111000 , ? ???? ? ??????=nn n n r r r r r r R 00 022211211 则?????? ??????+++++=nn nn n n n n n n n r l r l r l r l r l l r l r l r l r l r l r l r l A 1122 21211112212122221221112111112111111, 故0,,1111211≤n r l r l 。 因011>l ,故0,,112≤n r r ;因,0,0,,111111121>≤r r l r l n 故0,,121≤n r r ;因 022321231≤+r l r l ,故02221≤r l ,从而021≤l ;因023221321≤+r l r l ,故023≤r 。类

中科院矩阵分析与应用大作业

中科院矩阵分析与应用大作业 实现LU分解 QR分解 Householder reduction、Givens reduction Matlab 代码: function [] =juzhendazuoye A=input('请输入一个矩阵A='); x=input('请输入序号 1 LU分解 2 Gram-Schmidt分解 3 Householder reduction 4 Givens reduction:' ); if(x==1) %%*************LU分解*****************%% disp('PA=LU') m=size(A,1); % m等于矩阵A的行数 n=size(A,2); % n等于矩阵A的列数 if(m==n) % 判断矩阵A是不是方阵 % 如果矩阵A不是方阵那么就输出“error” U=A; % 把矩阵A赋值给矩阵U L=zeros(n); % 先将L设为单位阵 P=eye(n); % 首先将交换矩阵P设为单位矩阵 for j=1:n-1 for i=j+1:n if (U(j,j)~=0) %判断主元元素是否不为0 L(i,j)=U(i,j)/U(j,j); U(i,:)=U(i,:)-U(j,:)*U(i,j)/U(j,j); % U(j,j)为主元元素 else a=j+1; % 令a等于j+1 while((U(a,j)==0)&&(a

浅谈幂等矩阵的性质

万方数据

万方数据

浅谈幂等矩阵的性质 作者:侯君芳, 黄丽莉 作者单位:郑州旅游职业学院,河南郑州,450009 刊名: 科技风 英文刊名:TECHNOLOGY TREND 年,卷(期):2009,""(13) 被引用次数:0次 相似文献(6条) 1.期刊论文高灵芝幂等矩阵秩试题求解及其结论的推广-中国科教创新导刊2008,""(31) 本文从高等代数课本中的一道习题入手,从不同的角度给出这道习题的不同解法,并把其结论进行了推广. 2.期刊论文邹本强.ZOU Ben-qiang特殊矩阵的特征值性质-重庆职业技术学院学报2006,15(5) 在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的性质时给出了矩阵特征值的定义,但对矩阵特征值的性质研究很少,对特殊矩阵的特征值性质的研究更少,而特殊矩阵的特征值对研究特殊矩阵有很重要的意义.我们在研究矩阵及学习有关数学知识时,经常要讨论一些特殊矩阵的性质.为此,本文围绕幂等矩阵、反幂等矩阵、对合矩阵、反对合矩阵、幂零矩阵、正交矩阵、对角矩阵、可逆矩阵等特殊矩阵给出了其主要性质并加以证明,为广大读者学习矩阵时提供参考. 3.期刊论文孙莉.陈传良.王品超分块矩阵的理论应用-曲阜师范大学学报(自然科学版)2002,28(1) 分块矩阵的理论在高等代数中有着广泛的应用,用这一理论解决问题简明而清晰,该文是本理论的具体应用. 4.期刊论文杨忠鹏.陈梅香.林国钦.Yang Zhongpeng.Chen Meixiang.Lin Guoqin关于三幂等矩阵的秩特征的研究-数学研究2008,41(3) 本文对已有的关于三幂等矩阵秩的等式作了进一步研究,指出其中有些可以作为判定三幂等矩阵的充要条件,即三幂等矩阵的秩特征等式.本文还证明了有无穷多种三幂等矩阵的秩特征等式形式. 5.期刊论文杨忠鹏.陈梅香.YANG Zhong-peng.CHEN Mei-xiang关于矩阵秩等式研究的注记-莆田学院学报2008,15(5) 最近一些文献应用自反广义逆和广义Schur补得到了一些重要的矩阵秩的恒等式.对这些结果,给出了只用分块初等变换的简单证法;作为应用对 k(k=2,3,4)幂等矩阵的秩等式作进一步讨论,还给出了打洞技巧在求秩上应用的例子. 6.期刊论文林志兴.杨忠鹏.LIN Zhi-xing.YANG Zhong-peng与给定矩阵A的可交换子环C(A)的一些探讨-莆田学院学报2010,17(2) 收集整理现在常用的高等代数与线性代数材料中与给定矩阵A可交换的矩阵所构成的全矩阵空间pn×n的子空间C(A)的习题.指出C(A)的交换性及用 A的多项式表示问题同C(A)的维数与n有密切关系,得到n(n≥3)阶幂等矩阵A或对合矩阵A的C(A)都是不可交换的结论. 本文链接:https://www.wendangku.net/doc/648574749.html,/Periodical_kjf200913005.aspx 授权使用:洛阳工学院(河南科技大学)(wflskd),授权号:d7e0c32f-0155-4388-9ee0-9dde00edfb00 下载时间:2010年8月26日

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

浅谈幂等矩阵的性质

2009年7月(上 ) [摘要]幂等矩阵的种常规的正定性,虽然在几何学,物理学以及概率论等学科中都得到了重要的应用,但随着数学本身以及应用矩阵的 其他学科的发展,越来越不能满足人们的需要,现代经济数学等众多学科中的重要作用,使矩阵的次正定性研究不仅在理论上,而且在应用上都是有意义的。[关键词]幂等矩阵;高等代数;线性变换浅谈幂等矩阵的性质 侯君芳 黄丽莉 (郑州旅游职业学院,河南郑州 450009) 在高等代数的研究中,矩阵占有重要的地位,线性变换中的许多问题都是通过矩阵来解决的。幂等矩阵是一类特殊的矩阵,本篇文章探讨的就是幂等矩阵的性质,研究过程中运用的特殊符号说明如下:A T 矩阵A 的转置,A H 矩阵A 的共轭转置R (A )矩阵A 的值域,N (A )矩阵A 的核空间。 幂等矩阵 定义[1]设A ∈C n ×n ,若A 2=A 则称A 是幂等矩阵。定理1若P 是幂等矩阵,则 1)P T ,P H ,E-P T ,E-P H 是幂等矩阵。2)P (E-P)=(E-P )P=03)Px=x 的充要条件是x ∈R (P ) 证明:1)P 2=P =>(P T )2=(P 2)T =P T =>P T 为幂等矩阵P 2=P =>(P H )2=(P 2)H =P H =>P H 为幂等矩阵 (E-P )2=(E-P )(E-P )=E 2-EP-PE+P 2=E-2P+P 2=E-P 故E-P 为幂等矩阵 (E-P T )2=(E-P T )( E-P T )=E 2-EP T -P T E+(P T )2 =E-P T 故E-P T 为幂等矩阵 (E-P H )2=(E-P H )( E-P H )=E 2-EP H -P H E+(P H )2=E-P H 故E-P H 为幂等矩阵 2)P (E-P )=PE-P 2=P-P 2=0(E-P )P=EP-P 2=P-P 2=0故P (E-P )=(E-P )P=0 3)设x 满足Px=x ,则x ∈R (P )。反之,若x ∈R (P ),则必存在y ∈C n ,使得Py=x ,于是,Px=P (Py )=Py 结论的几何意义是P 的特征值为1的特征子空间就是P 的值域。定理2秩为r 的n 阶。矩阵P 是幂等矩阵的充要条件是存在C ∈C n ×n 使得 C -1PC= Er 0(1) 证明:必要性:设J 是P 的Jordan 标准形,C ∈C n ×n ,且 C -1PC=J=J 1J 2··J i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i s ,J i = λi 1λi 1··λi i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i n i ×n i J i 是Jordan 块。由于P 2=P ,则J 2i =J i (i=1,2,3…s )。欲使J i 2=J i ,必须n i =1。因此J 是对角阵。又由P 2=P 。知λi =0或1,故r=rankJ=trP 。 充分性:由 Er 02 =Er 0知P 2 =P 。推论[1]rankP=trP 证明:由上题的(1)知幂等矩阵的特征值非1即0。且r=rankP 又有式(1)知 trP=λ1+λ2+…+λN =r 其中λ1,λ2…λN 是P 的n 个特 征值 矩阵的性质通常从以下几方面来研究:矩阵的秩,矩阵的相似对角化,矩阵的特征值对于幂等矩阵我们也从这几方面入手,讨论其具有的性质。 性质1若A 为n ×n 矩阵且A 2=A ,则A 相似于一对角阵 Er 证明:取一线性空间V (n 维)及一组基ε1,ε2…εn 定义一线性变换A :V →V ,A α=A α则A (ε1,ε2,…εn )=(ε1,ε2…εn )A 。由A 2=A ,则A 2=A 。A α∈A ∩A -1(0),设α=A β,β∈V ,A α=A 2β=β=α。又A α=0,则α=0,则AV+A -1(0)为直和。所以V=A +A -1(0)。在子空间AV 中取基η1η2…ηr ,在子空间A -1(0)取基ηr+1ηr+2…ηn ,则向量组η1,η2…ηr ηr+1…ηn 就是V 的一组基。又A η1=η1,A η2=η2…A ηr =ηr 且A ηr+1=0,A ηr+2=0…A ηn =0,A (η1,η2…ηn )=(η1,η2…ηn )Er 所以А相似于Er 性质2若А为n ×n 幂等矩阵,且R ( A 2 )=R (A )则有以下结论成立 1)Ax=0与A 2x=0同解 2)对于任意自然数P ,均有R (A p )=R (A ) 证明:设R (A )=r 显然Ax=0的解均为A 2x=0的解;设有一基础解系η1,η2…ηn-r 则此基础解系也为A 2x=0的解,并且线性无关,而 R (A 2 ) =r ,所以η1,η2…ηn-r 也为A 2x=0的基础解系,那么Ax=0与A 2x=0同解 若α为A 2x=0的解,则A 2α=0= >A 3α=0,则α为A 3E=0的解,反之,若α为A 3x=0的解,则A 3α=0即A 2A α=0,说明向量A α=0为方程组A 2x=0的解,由(1)则A α为Ax=0的解,则有A 2α=0,即α也为A 2x=0的解,所以A 2x=0与A 3x=0同解。因此,照 此方法类推,则必有R ( A p ))=R (A )。性质3若A 为n 阶方程,且R (A )+(E-A )=n ,则A 2=A 证明:设V 为n 维线性空间,其基ε1,ε2...εn 定义下述线性变换A :V →V ,A (ε1,ε2...εn )=(ε1,ε2...εn )A (E-A )(ε1,ε2...εn )=(ε1,ε2...εn )(E-A ),dim (AV )=R (A ),dim [(E-A )]=R (E-A )由题设,则dimAV+dim (E-A )=n (1) A α∈V ,α=A α+(α-A α)∈AV+(E-A )V ,则V=AV+ (E-A )V 则V=AV +(E-A )V 。下证A 2=A ,其实A α∈V ,有A 2α-A α=A (A-E )α∈AV ∩(E-A )α={0}。因此A 2α=A ,则 A 2=A ,从而A 2=A 。 下面通过三个例题说明幂等矩阵的性质与应用 例1设A 为n ×n 矩阵,且R (A )=r ,证明:A 2=A 当且仅当A=CB ,其中C 为n ×r 矩阵,秩为r ,B 为r ×n 矩阵,秩也为r ,且有BC=E r 。 证明:必要性:由于A 2=A ,由性质(1)则A 必(下转第13页)6

矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

幂零矩阵迹的特征

幂零矩阵迹的特征 严文(061114228) (孝感学院数学与统计学院湖北孝感 432000) 摘要:2009年全国大学生数学竞赛题(第3题):设V是复数域上向量空间, -=,那么f的所有特征值均为0,并且,f g是V上的线性变换,且满足fg gf f g和f之间存在相同的特征向量(对应的特征值不一定相等).我们把它转换为矩阵,在矩阵中讨论特殊情况即AB BA =,求证A和B有公共特征向量,并且求出A和B的公共特征向量. 关键词:幂零矩阵;迹;特征值;特征向量 Features of Nilpotent matrix trace Y AN Wen (Department of Mathematics and Statistics,Xiaogan university,Xiaogan,Hubei 432000,China) Abstract:2009 National College Mathematics Competition Problems (3th item):Based vector space V is the complex field,,f g are the linear transformation, and satisfies fg gf f -=, Then all the eigenvalues of f are 0, Between f and g there are the same feature vector (not necessarily equal the corresponding eigenvalue). We convert it to matrix and discussed in the special circumstances that BA AB=, V erify:A and B have public feature vectors, and eigenvectors obtained the public. Key words:Nilpotent matrix; Trace;Eigenvalue;Eigenvector.

投影法的基本性质

一、投影法的基本性質 在一定的投影條件下,求得空間投影面上的投影的方法,稱為投影法。 投影法分為中心投影法和平行投影法 1.中心投影法 空間形體各頂點引出的投射線都通過投影中心。投射線都相交於一點投影法,稱為中心投影法,所得的投影稱為中心投影。在中心投影法中,將形體平行移動靠近或遠离投影面時,其投影就會變小或變大,且一般不能反映空間形體表面的真實形狀和大小,作圖又比較復雜,所以中心投影法在機械工程中很少采用。 2.平行投影法 將投影中心移至無限遠處時,則投射線成為互相平行。這种投射線互相平行的投影法,稱為平行投影法,所得的投影稱為平行投影。在平行投影法中,投射線相對投影面的方向稱為投影方向。當空間形體平行移動時,其投影的形狀和大小都不會改變。平行投影法按投影方向的不同又分為斜投影法各正投影法 a.斜投影法投影方向傾斜於投影面時稱為斜投影法,由此法所得的投影稱為斜投影。 b.正投影法投影方向垂直於投影面時稱為正投影法,由此法所得的投影稱為正投影。 平行投影的基本性質 (1)同類性

一般情況下,直線的投影仍是直線,平面圖形的投影仍是原圖形的類似形(多邊形的投影仍為同邊數的多邊形)。 (2)真形性 當直線或平面平行於投影面時,其投影反映原線段的實長或平面圖形的真形。(3)積聚性 當直線或平面平行於投影方向時,直線的投影積聚成點,平面的投影積聚成直線。這種性質稱為積聚性,其投影稱為積聚性的投影 (4)從屬性 若點在直線上,則點的投影仍在該直線的投影上。 (5)平行性 若兩直線平行,則其投影仍相互平行。 (6)定比性 直線上兩線段長度之比或兩平行線段長度之比,分別等於其長度之比。 二、軸測投影圖和正投影圖 1.軸測投影圖按平行投影法把空間形體連同確定其空間位置的直角坐標 系一並投影到一個適當位置的投影面上,使其投影能現時反映形體三度 的空間形狀。這種投影法稱為軸測投影法,所得的投影圖稱為軸測投影圖, 簡稱軸測圖。 這种圖有較好的直觀性,容易看懂,但形體表面的形狀在投影圖上變形,致命

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p×q, B q×p, 则|I p+AB|=|I q+BA| 证明一:参照课本194页,例4.3. 证明二:利用AB和BA有相同的非零特征值的性质; 从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义: n n ii i i1i1 tr(A)a == ==λ ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B) λ+μ=λ+μ,线性性质;

2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)

正文部分

幂等矩阵的性质 数学与应用数学专业2009级王素云 摘要:本文对幂等矩阵的一些性质进行归纳总结及推广, 并将幂等矩阵与其他特殊矩阵进行了比较. 给出幂等矩阵的概念. 讨论幂等矩阵的主要性质, 并将其进行推广. 然后研究了幂等矩阵的等价性命题, 以及幂等矩阵的线性组合的相关性质. 再结合对合矩阵和投影矩阵更深入的研究幂等矩阵的性质, 分别讨论了幂等矩阵与对合矩阵, 幂等矩阵与投影矩阵的关系. 关键字: 幂等矩阵; 性质; 对合矩阵; 投影矩阵; 广义逆矩阵 Properties of Idempotent Matrix Suyun Wang, Grade 2009, Mathematics and Applied Mathematics Abstract In this paper, some properties of the idempotent matrix are summarized and extended, and idempotent matrices are compared with other special matrix. The concept of idempotent matrices are given. The main properties of the idempotent matrix are discussed and promoted . Then, the equivalent propositions of idempotent matrix and the nature of the linear combinations of idempotent matrices are studied. The involution matrix and the projection matrix are used to discuss the nature of the idempotent matrices much deeper. The relationship between the idempotent matrix and involution matrix, the idempotent matrix and the projection matrix are discussed. Key Words the idempotent; the nature; involution matrix; the projection matrix; generalized inverse matrix

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题 进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal

相关文档