文档库 最新最全的文档下载
当前位置:文档库 › 拓扑优化经典99行程序解读

拓扑优化经典99行程序解读

拓扑优化经典99行程序解读
拓扑优化经典99行程序解读

3188-1-1.html

Sigmund教授所编写的top优化经典99行程序,可以说是我们拓扑优化研究的基础;

每一个新手入门都会要读懂这个程序,才能去扩展,去创新;

99行程序也有好多个版本,用于求解各种问题,如刚度设计、柔顺机构、热耦合问题,但基本思路大同小异;

本文拟对其中的一个版本进行解读,愿能对新手有点小小的帮助。

不详之处,还请论坛内高手多指点

读懂了该程序,只能说是略懂拓扑优化理论了,

我手里就有一些水平集源程序是成千上万行,虽然在99行的基础上成熟了很多,但依然还有很多的发展空间。

源程序如下:

%%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%%

%%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%%

function top(nelx,nely,volfrac,penal,rmin);

nelx=80;

nely=20;

volfrac=0.4;

penal=3;

rmin=2;

% INITIALIZE

x(1:nely,1:nelx) = volfrac;

loop = 0;

change = 1.;

% START ITERATION

while change > 0.01

loop = loop + 1;

xold = x;

% FE-ANAL YSIS

[U]=FE(nelx,nely,x,penal);

% OBJECTIVE FUNCTION AND SENSITIVITY ANAL YSIS

[KE] = lk;

c = 0.;

for ely = 1:nely

for elx = 1:nelx

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);

c = c + x(ely,elx)^penal*Ue'*KE*Ue;

dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue;

end

end

% FILTERING OF SENSITIVITIES

[dc] = check(nelx,nely,rmin,x,dc);

% DESIGN UPDA TE BY THE OPTIMALITY CRITERIA METHOD

[x] = OC(nelx,nely,x,volfrac,dc);

% PRINT RESULTS

change = max(max(abs(x-xold)));

disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...

' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...

' ch.: ' sprintf('%6.3f',change )])

% PLOT DENSITIES

colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);

end

%%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [xnew]=OC(nelx,nely,x,volfrac,dc)

l1 = 0; l2 = 100000; move = 0.2;

while (l2-l1 > 1e-4)

lmid = 0.5*(l2+l1);

xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));

if sum(sum(xnew)) - volfrac*nelx*nely > 0;

l1 = lmid;

else

l2 = lmid;

end

end

%%%%%%%%%% MESH-INDEPENDENCY FILTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dcn]=check(nelx,nely,rmin,x,dc)

dcn=zeros(nely,nelx);

for i = 1:nelx

for j = 1:nely

sum=0.0;

for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)

for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)

fac = rmin-sqrt((i-k)^2+(j-l)^2);

sum = sum+max(0,fac);

dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);

end

end

dcn(j,i) = dcn(j,i)/(x(j,i)*sum);

end

end

%%%%%%%%%%

FE-ANAL YSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%

function [U]=FE(nelx,nely,x,penal)

[KE] = lk;

K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));

F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);

for elx = 1:nelx

for ely = 1:nely

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];

K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;

end

end

% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)

F(2*(nelx/2+1)*(nely+1),1) = 1;

fixeddofs = [2*(nely/2+1),2*nelx*(nely+1)+2*(nely/2+1)];

alldofs = [1:2*(nely+1)*(nelx+1)];

freedofs = setdiff(alldofs,fixeddofs);

% SOLVING

U(freedofs, :)= K(freedofs,freedofs) \ F(freedofs,:);

U(fixeddofs,:)= 0; % 这两行复制后应换成英文字符,我这里为了防止生成QQ表

% 情修改了一下格式

%%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [KE]=lk

E = 1.;

nu = 0.3;

k=[ 1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...

-1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];

KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)

k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)

k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)

k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)

k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)

k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)

k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

程序执行方法:(just for matlab new users)

打开matlab,点开new M-file,将上述源程序复制粘贴到M-文件中,修改蓝色部分的格式,保存。按F5即可执行~~

程序个人解读(会针对大家的提问,高手们的解释,不断补充更新):

主程序部分:

包括:数据初始化;有限元分析;敏度分析,OC算法,结果显示

function top(nelx,nely,volfrac,penal,rmin);

nelx=80; % x轴方向的单元数

nely=20; % y轴方向单元数

volfrac=0.4; %体积比

penal=3; %材料插值的惩罚因子

rmin=2; %敏度过滤的半径

% INITIALIZE

x(1:nely,1:nelx) = volfrac; %x是设计变量

loop = 0; %存放迭代次数的变量

change = 1.; %每次迭代目标函数的改变值,用以判断何时收敛

% START ITERATION

while change > 0.01 %当两次连续目标函数迭代的差小于等于0.01时,结束迭代

loop = loop + 1; %迭代次数加1

xold = x; %把前一次的设计变量赋值给xold

% FE-ANAL YSIS

[U]=FE(nelx,nely,x,penal); %进行有限元分析

% OBJECTIVE FUNCTION AND SENSITIVITY ANAL YSIS

[KE] = lk; %单元刚度矩阵

c = 0.; %用来存放目标函数的变量.这里目标函数是刚度最大,也就是柔

%度最小

for ely = 1:nely

for elx = 1:nelx

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);

c = c + x(ely,elx)^penal*Ue'*KE*Ue; %计算目标函数的值(即柔度

%是多少) dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue; % 灵敏度分析的结果这一行

%和上一行可参考论文中的公式

end

end

% FILTERING OF SENSITIVITIES

[dc] = check(nelx,nely,rmin,x,dc); %灵敏度过滤,为了边界光顺一点

% DESIGN UPDA TE BY THE OPTIMALITY CRITERIA METHOD

[x] = OC(nelx,nely,x,volfrac,dc); %优化准则法更新设计变量

% PRINT RESULTS

change = max(max(abs(x-xold))); %计算目标函数的改变量

disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...

' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...

' ch.: ' sprintf('%6.3f',change )]) %屏幕上显示迭代信息

% PLOT DENSITIES

colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6); %优化结果的图形显示(个人认为这种图形显示方法很不好,太简单了。比较方便的图形显示应该是:

每一次迭代同时显示优化结果、目标函数曲线,然后自动保存每一次的结果)

end

OC算法子程序:

function [xnew]=OC(nelx,nely,x,volfrac,dc)

l1 = 0; l2 = 100000; move = 0.2; %l1,l2用于体积约束的拉格朗日乘子

while (l2-l1 > 1e-4)

lmid = 0.5*(l2+l1);

xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid))))); %这里是OC算法的核心所在,具体含义可参考论文中的公式

if sum(sum(xnew)) - volfrac*nelx*nely > 0; %采用了二乘法更新拉格朗日乘子l1 = lmid;

else

l2 = lmid;

end

end

敏度过滤技术子程序:

function [dcn]=check(nelx,nely,rmin,x,dc)

dcn=zeros(nely,nelx);

for i = 1:nelx

for j = 1:nely

sum=0.0;

for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)

for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)

fac = rmin-sqrt((i-k)^2+(j-l)^2);

sum = sum+max(0,fac);

dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);

end

end

dcn(j,i) = dcn(j,i)/(x(j,i)*sum);

end

end

这一段就不多解释了,只是为了光顺边界的,现在二重敏度过滤技术用得更多一点了。理论部分可参考罗震博士的毕业论文

看不懂的代码在matlab命令窗口输入:help XXX(即你看不懂的那个关键词,比如这里的floor)

有限元求解子程序

function [U]=FE(nelx,nely,x,penal)

[KE] = lk; %单元刚度矩阵

K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); %总体刚度矩阵的稀疏矩阵

F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1); %力矩阵的稀疏矩阵

for elx = 1:nelx

for ely = 1:nely

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; %这里的Y轴是反向的,但是不影响最后的结果,详情请见二楼TYNGOD这位高手的解释,感谢TYNGOD。

K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE; %将单元刚度矩阵组装成总的刚度矩阵

end

end

% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)

F(2*(nelx/2+1)*(nely+1),1) = 1; %初始的集中力

fixeddofs = [2*(nely/2+1),2*nelx*(nely+1)+2*(nely/2+1)]; %固定结点

alldofs = [1:2*(nely+1)*(nelx+1)]; %所有结点

freedofs = setdiff(alldofs,fixeddofs); %自由节点

% SOLVING

U(freedofs,:)= K(freedofs,freedofs) \ F(freedofs,:); %有限元求解:位移场

U(fixeddofs,:)= 0; %固定节点位移为0

单元刚度矩阵的子程序:

function [KE]=lk

E = 1.;

nu = 0.3;

k=[ 1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...

-1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];

KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)

k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)

k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)

k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)

k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)

k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)

k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];

这里不解释,自己可查有限元理论。个人认为这里的单元刚度求解不是很好。

最后是我的运行结果:

优化结果:

如果不看论文,只看我这个程序,是读不懂的。建议新手先大概了解一下拓扑优化的基本知识。

请大家注意Sigmund教授发表的代码中,定义坐标轴的Y轴方向为坚直向下,与通常我们熟悉的Y轴竖直向上为正是相反的。从文中和代码中都可以证实,说明如下:

文中指出:The variables n1 and n2 denote upper left and right element node numbers in global node numbers。也就是说n1和n2两个节点分别是四边形单元的左上角点和右上角点。如下图所示,

n1++++++++++++++n2

| |

| |

| |

| |

n4++++++++++++++n3 ( n1 -> n2 -> n3 -> n4 )

也就是说,Sigmund指定单元四个节点的顺序为顺时针,分别为:左上,右上,右下,左下四个节点。(通常我们是从左下节点开始逆时针方向定义节点编号的)所示单元的自由度分别有:

edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]

所以,我们可以证实单元内四个节点的编号(n1, n2, n3, n4)有如下的关系:

n1+1=n4;

n2+1=n3;

n1+(nely+1)=n2; ( nely 为结构网格划分后竖向的单元数目)

所以说明,Sigmund教授定义的节点编号是竖直向下编号的,则Y轴是竖直向下为正,其原点为结构的左上角点。

但对于这种刚度优化问题,这个定义是不会影响柔顺度数值的。此问题已得到学者证实!!

北航拓扑优化程序学习报告

拓扑优化的 99行程序学习报告4月19日2011 《结构优化设计》课程学习报告 任课教师:李书

一、前言: 在最近的结构优化设计课程上学习了O.Sigmund的《A 99 line topology optimization code written in Matlab》一文,对拓扑优化的理论原理与实际的计算机程序实现都有了一定的理解,文章主要是通过拓扑优化的原理来实现对简单结构的静力学问题的优化求解,而编写的代码仅有99行,包括36行的主程序,12行的OC优化准则代码,16行的网格过滤代码和35行的有限元分析代码。 自1988 年丹麦学者Bendsoe与美国学者Kikuchi提出基于均匀化方法的结构拓扑优化设计基本理论以来,均匀化方法应用到具有周期性结构的材料分析中,近几年该方法已经成为分析夹杂、纤维增强复合材料、混凝土材料等效模量,以及材料的细观结构拓扑优化常用的手段之一。其基本思想是在组成拓扑结构的材料中引入微结构,优化过程中以微结构的几何尺寸作为设计变量,以微结构的消长实现其增删,并产生介于由中间尺寸微结构组成的复合材料,从而实现了结构拓扑优化模型与尺寸优化模型的统一。文章就是通过均匀化的基础,结合拓扑结构优化的工程实际,以计算机模拟的方法将拓扑优化的一般过程呈现出来,有助于初涉拓扑优化的读者对拓扑优化有个基础的认识。 二、拓扑优化问题描述 为了简化问题的描述,文中假设设计域是简单的矩形形式,且在进行有限元离散的时候采用正方形单元对其进行离散。这样不仅便于进行单元离散和单元编号,也利于对结构进行几何外形的描述。 一般说来,基于指数逼近法的拓扑优化最小化的问题可作如下描述: 文中采用的对结构材料属性的描述是所谓的“指数逼近法”或者称为SIMP 逼近法,即(Solid Isotropic Material with Penalization带惩罚因子的各项同性材料模型法),该方法是拓扑优化中常用的变密度材料插值模型中最具代表性的一种。

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0 ,,0min ,g x x v g x x v f x v ?=??≤?? ?? && 式中,x -系统的状态变量;12g g 、-一等式和不等式的结束方程;(),f x v -目标函数; v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得 出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。 基于ANSYS 的优化拓扑的一般过程 (进行内容排版修改) 在ANSYS 中,进行优化拓扑,一般分为6个步骤。具体流程见图5-1:

拓扑优化经典99行程序解读

3188-1-1.html Sigmund教授所编写的top优化经典99行程序,可以说是我们拓扑优化研究的基础; 每一个新手入门都会要读懂这个程序,才能去扩展,去创新; 99行程序也有好多个版本,用于求解各种问题,如刚度设计、柔顺机构、热耦合问题,但基本思路大同小异; 本文拟对其中的一个版本进行解读,愿能对新手有点小小的帮助。 不详之处,还请论坛内高手多指点 读懂了该程序,只能说是略懂拓扑优化理论了, 我手里就有一些水平集源程序是成千上万行,虽然在99行的基础上成熟了很多,但依然还有很多的发展空间。 源程序如下: %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%% %%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%% function top(nelx,nely,volfrac,penal,rmin); nelx=80; nely=20; volfrac=0.4; penal=3; rmin=2; % INITIALIZE x(1:nely,1:nelx) = volfrac; loop = 0; change = 1.; % START ITERATION while change > 0.01 loop = loop + 1; xold = x; % FE-ANAL YSIS [U]=FE(nelx,nely,x,penal); % OBJECTIVE FUNCTION AND SENSITIVITY ANAL YSIS [KE] = lk; c = 0.; for ely = 1:nely for elx = 1:nelx n1 = (nely+1)*(elx-1)+ely; n2 = (nely+1)* elx +ely; Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); c = c + x(ely,elx)^penal*Ue'*KE*Ue; dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue; end end

基于拓扑优化的车身结构研究---经典

基于拓扑优化的车身结构研究 瞿元王洪斌张林波吴沈荣 奇瑞汽车股份有限公司,安徽芜湖,241009 摘要:随着CAE技术的发展,虚拟仿真技术在汽车开发中的作用也愈来愈显著。而前期工程阶段,如何布置出合理的车身骨架架构,一直是个相对空白的地带,也是整车正向开发过程中绕不过的坎。尽管研发工程师根据经验,参照现有车型的结构特点,也能进行车身骨架架构的设定,但总是缺乏有效手段直观地反映不同车型结构布置的特点。本文用拓扑优化的方法,从结构基本特征的角度来审视这一问题,并运用该方法对某SUV车身结构进行研究,获得一些直观性的结论。 关键词:车身,前期工程,拓扑优化 1引言 随着对整车研发过程认识的加深,以及对正向开发过程的探索,在车型开发前期,对车身结构做出更合理的规划显得愈来愈重要。常规的研发思路之一是通过参考已有车型的结构,经过适当的修改,形成新的结构,并用于新车型中。但是对于原始车型的设计思路、结构布置的原因等缺乏系统的理解,或者理解不深,往往在更改过程中产生新的问题。为了部分解决上述问题,本文从结构拓扑优化的角度,对某SUV 车型车身结构的总体布置进行初步探讨,以期加深对结构布置的理解。 2研究方法概述 合理化的车身结构,是满足整车基本性能的重要保障。为了能够实现结构的最优布置,文献[1]使用了拓扑优化工具来布置车身结构。其基本思路是从造型以及车内空间布置出发,建立车身空间的基础网格模型,然后根据一定的工况要求,对基础网格进行拓扑分析,并根据拓扑结果建立梁、板壳模型,并进行多项性能的优化,从而实现车身结构的正向开发。本文借助于该思想,建立研究对象的结构空间包络,并对该包络进行拓扑分析,然后将仿真结果与原始结构进行比较,寻找车身结构中的关键点,推测初始结构可能的布置思想,从而加深对该研究思路的理解。其基本过程如下图所示:

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

如何利用ANSYS进行拓扑优化

如何利用ANSYS进行拓扑优化 前言 就目前而言,利用有限元进行优化主要分成两个阶段: (1)进行拓扑优化,明确零件最佳的外形、刚度、体积,或者合理的固有频率,主要目的是确定优化的方向; (2)进行尺寸优化,主要目的是确定优化后的的零件具体尺寸值,通常是在完成拓扑优化之后,再执行尺寸优化。 在ANSYS中,利用拓扑优化,可以完成以下两个目的: (1)在特定载荷和约束的条件下,确定零件的最佳外形,或者最小的体积(或者质量); (2)利用拓扑优化,使零件达到需要的固有频率,避免在使用过程中产生共振等不利影响。 本文主要就在ANSYS环境中如何执行拓扑优化进行说明。

1、利用ANSYS进行拓扑优化的过程 在ANSYS中,执行优化,通常分为以下6个步骤: 、定义需要求解的结构问题 对于结构进行优化分析,定义结构的物理特性必不可少,例如,需要定义结构的杨氏模量、泊松比(其值在~之间)、密度等相关的结构特性方面的信息,以供结构计算能够正常执行下去。

、选择合理的优化单元类型 在ANSYS中,不是所有的单元类型都可以执行优化的,必须满足如下的规定: (1)2D平面单元:PLANE82单元和PLANE183单元; (2)3D实体单元:SOLID92单元和SOLID95单元; (3)壳单元:SHELL93单元。 上述单元的特性在帮助文件中有详细的说明,同时对于2D单元,应使用平面应力或者轴对称的单元选项。 、指定优化和非优化的区域 在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:…… …… Et,1,solid92 Et,2,solid92 …… Type,1 Vsel,s,num,,1,2 Vmesh,all …… Type,2 Vsel,s,num,,3 Vmesh,all ……

连续体结构拓扑优化方法及存在问题分析

编号:SY-AQ-00556 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 连续体结构拓扑优化方法及存 在问题分析 Topology optimization method of continuum structure and analysis of existing problems

连续体结构拓扑优化方法及存在问 题分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结

机械结构拓扑优化设计研究现状及其发展趋势

机械结构拓扑优化设计研究现状及其发展趋势 发表时间:2018-12-27T16:17:28.400Z 来源:《河南电力》2018年13期作者:谢进芳 [导读] 机械产品应用范围相对较广,为确保机械产品在我国日常生活及企业从生产中得到有效应用,实施优化设计十分必要。 (广东科立工业技术股份有限公司广东省佛山市 528000) 摘要:随着现代科学技术的发展,市场产品竞争也越来越激烈,产品品种的换代速度加快,产品的复杂性在不断增加。所以产品生产正在以小批量、多品种的生产方式取代过去的单一品种大批量生产方式。而这种生产方式,肯定会缩短产品的生产周期,产品的成本也会降低,产品提高市场的占有率和竞争力也会提高。所以在机械结构设计中采用优化设计是满足市场竞争的需要。 关键词:机械结构拓扑;现状;发展趋势 引言 机械产品应用范围相对较广,为确保机械产品在我国日常生活及企业从生产中得到有效应用,实施优化设计十分必要。目前我国已经针对机械结构优化设计进行了研究,并取得一定成果,主要表现在船舶行业、焊工航天以及汽车行业等。机械结构的优化设计可有效提高其产品性能并增加其自身市场竞争力,对其市场发展起重要作用。 1.机械结构优化设计 随着科学技术的发展,机械产品更新换代的速度越来越快。过去,机械产品主要是大批量生产,产品相对单一。目前采用的是小批量加工方式,以保证产品的多样性。为了保证生产企业的利润,必须在保证质量的前提下,缩短生产周期,降低生产成本。优化设计能够达到上述目标,在一定程度上缩短了生产时间,降低了成本,有效地抢占了市场。机械结构优化设计已广泛应用于造船、运输、航空航天、冶金、纺织、建筑等领域。 机械结构优化设计流程主要包括:(1)针对所优化机械产品尽心目标函数优化设计,可确保机械产品相关技术指标符合优化要求。(2)设计机械产品优化函数变量,变量设计包括机械产品长度、厚度以及弧度等相关结构参数。(3)对机械产品优化设计约束条件进行设定,对计算过程中各项变量浮动范围进行限定。(4)通过以上步骤得出多种优化设计方案,分别对不同方案进行评价,根据机械结构优化设计需求选择最佳方案实施。 2.机械结构拓扑优化设计常用方法 (1)均匀化方法 常用的连续结构拓扑优化设计方法主要有均匀化方法、变密度方法、水平集方法以及进化结构优化方法等。 均匀化方法属于材料描述方式,基本思想是将微结构模型引入结构拓扑优化设计领域,以微结构的单胞尺寸参数为设计变量,根据单胞尺寸的变化实现微结构的增删,优化实体与孔的分布形成带孔洞的板,达到结构拓扑优化的目的。优化过程:①设计区域的划分;②确定设计变量;③进行拓扑优化设计;④以不同的微结构形式的分布显示连续结构的形状和拓扑状态。 图1 微结构单胞示意图 微结构的划分形式通常有空孔、实体和开孔 3种,空孔是指没有材料的微结构,其孔的尺寸为 1;实体是指具有各向同性材料的微结构,其孔的尺寸为 0;开孔是指具有正交各向异性材料的微结构,其孔的尺寸介于 0~1 且可变化。设计区域划分为空孔、实体和开孔的微结构形式。简单的二维微结构单胞示意图如图 1 所示。微结构上孔的尺寸和方位角是设计变量,其中孔的尺寸是微结构材料主方向,它可以由坐标转换矩阵体现在材料的有效弹性模量上,通过微结构的密度与有效弹性模量之间的关系曲线,把设计变量与结构各处的形态联结起来。在结构拓扑优化设计过程中,微结构中孔的尺寸和在 0~1 的变化区域就可使各微结构在空孔与实体之间变化,这样就可用连续变量对结构优化设计问题进行描述。 均匀化结构拓扑优化方法涉及的设计变量非常多,用的较多的优化算法是准则优化算法。 (2)变密度方法 变密度方法式是引入一种假想的密度在 0~1可变的材料,采用材料的密度作为优化设计变量,实现结构的拓扑变化;材料弹性模量等物理参数与材料密度间的关系也是人为假定的;这样不但将结构的拓扑优化问题转换为材料的最优分布问题,还可使优化结果尽可能具有非 0 即 1 的密度分布。变密度结构拓扑优化方法与采用尺寸变量相比,它更能反映拓扑优化的本质特征。因此,在实际工程的结构优化设计中大多采用变密度方法来解决结构优化问题。变密度结构拓扑优化方法常用的插值模型是固体各向同性惩罚微结构模型(SIMP)。由于变密度结构拓扑优化方法更能反映拓扑优化的本质特征,且概念简单、设计变量数目少,简化了计算求解过程,因此,变密度结构拓扑优化方法成为目前最常用的、也是用的最多的结构优化设计方法。 3.机械结构优化的应用趋势 随着优化方法的不断发展和完善,结构优化设计也逐渐发展起来。近年来,在结构优化算法方面,由于结构优化设计中变量较多,结构优化设计往往采用接近实际情况的复杂结构模型来模拟一些大型结构系统。因此,新的准则优化方法备受关注,但如何为一些特殊结构

连续体结构拓扑优化方法及存在问题分析(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 连续体结构拓扑优化方法及存在问题分析(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

连续体结构拓扑优化方法及存在问题分析 (最新版) 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结构

拓扑优化技术

拓扑优化技术 第1节基本知识 一、拓扑优化的概念 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。 与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。 拓扑优化的目标—目标函数—是在满足结构的约束(V)情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量( i)给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL,TOPO命令来绘出。 ANSYS提供的拓扑优化技术主要用于确定系统的最佳几何形状,其原理是系统材料发挥最大利用率,同时确保系统的整体刚度(静力分析)、自振频率(模态分析)在满足工程要求的条件下获得极大或极小值。 拓扑优化应用场合:线性静力分析和模态分析。 拓扑优化原理:满足结构体积缩减量的条件下使目标函数结构柔量能量(the enery of structure compliance—SCOMP)的极小化。结构柔量能量极小化就是要求结构刚度的最大化。 例如,给定V=60表示在给定载荷并满足最大刚度准则要求的情况下省去60%的材料。图19-1表示满足约束和载荷要求的拓扑优化结果。图19-1a表示载荷和边界条件,图19-b 表示以密度云图形式绘制的拓扑结果。 图19-1 体积减少60%的拓扑优化示例 二、拓扑优化的基本过程 拓扑优化的基本步骤如下:

1.定义结构问题定义材料弹性模量、泊松系数、材料密度。 2.选择单元类型拓扑优化功能中的模型只能采用下列单元类型: ● 二维实体单元:Plane2和Plane82,用于平面应力问题和轴对称问题。 ● 三维实体单元:Solid92、Solid95。 ● 壳单元:SHELL93。 3.指定优化和不优化区域ANSYS只对单元类型编号为1的单元网格部分进行拓扑优 化,而对单元类型编号大于1的单元网格部分不进行拓扑优化,因此,拓扑优化时要确保进行拓扑优化区域单元类型编号为1,而不进行拓扑优化区域单元类型编号大于1即可。 4.定义并控制载荷工况或频率提取可以在单个载荷工况和多个载荷工况下做拓扑优化,单载荷工况是最简便的。 要在几个独立的载荷工况中得到优化结果时,必须用到写载荷工况和求解功能。在定义完每个载荷工况后,要用LSWRITE命令将数据写入文件,然后用LSSOLVE命令求解载荷工况的集合。 5.定义和控制优化过程拓扑优化过程包括定义优化参数和进行拓扑优化两个部分。用户可以用两种方式运行拓扑优化:控制并执行每一次迭代或自动进行多次迭代。 ANSYS有三个命令定义和执行拓扑优化:TOPDEF,TOPEXE和TOPITER。TOPDEF 命令定义要省去材料的量,要处理载荷工况的数目,收敛的公差;TOPEXE命令执行一次优化迭代;TOPITER命令执行多次优化迭代。 (1)定义优化参数首先要定义优化参数。用户要定义要省去材料的百分比,要处理载荷工况的数目,收敛的公差。 命令:TOPDEF GUI:Main Menu>Solution>Solve>Topological opt 注:本步所定义的内容并不存入ANSYS数据库中,因此在下一个拓扑优化中要重新使用TOPDEF命令。 (2)执行单次迭代定义好优化参数以后,可以执行一次迭代。迭代后用户可以查看收敛情况并绘出或列出当前的拓扑优化结果。可以继续做迭代直到满足要求为止。如果是在GUI方式下执行,在Topological Optimization 对话框(ITER域)中选择一次迭代。 命令:TOPEXE GUI:Main Menu>Solution>Solve>Topological opt TOPEXE的主要优点是用户可以设计自己的迭代宏进行自动优化循环和绘图。在下一节,可以看到TOPITER命令是一个ANSYS的宏,用来执行多次优化迭代。 (3)自动执行多次迭代 在定义好优化参数以后,用户可以自动执行多次迭代。在迭代完成以后,可以查看收敛情况并绘出或列出当前拓扑形状。如果需要的话,可以继续执行求解和迭代。TOPITER 命令实际是一个ANSYS的宏,可以拷贝和定制。

拓扑优化

一种新的优化方法——拓扑优化。是一种以多种使用条件为目标优化参数的优化方式,可以提高零件的真正使用效益,更加准确的反映了设计的优化过程。 优化设计可以在很大程度上改善和提高铸造件、锻造件和冲压件的性能,并减轻产品重量。然而,优化设计特别是拓扑优化很少应用在实际工程中。一方面是因为工程问题的复杂性和高度非线性,拓扑优化技术目前还无法实现这些系统优化问题,但更重要的是一门新的技术和方法很难取代人们已经习惯多年的思维模式和工作方式。 工程设计人员需要有更系统、更科学的设计思想和方法,以达到提高产品开发效率、节约原材料、降低成本及提高产品质量的目的,结构优化设计则是实现这些目的较佳手段[1]。由于设计变量类型的不同,结构优化设计可以分为由易到难的四个不同层次:尺寸优化、形状优化、形貌优化和拓扑布局优化。由于拓扑优化设计的难度较大,被公认为是当前结构优化领域内最具有挑战性的课题之一。但是在工程应用中,拓扑优化可以提供概念性设计方案,取得的经济效益比尺寸优化、形状优化更大,因此,拓扑优化技术对工程设计人员更具吸引力,已经成为当今结构优化设计研究的一个热点。 发动机运转期间,主轴承座承受多种载荷,这些载荷包括:螺栓预紧载荷、轴瓦过盈载荷及曲轴动载荷等。目前,主轴承座的主要评价指标是结构的强度、刚度是否满足设计需求。在明确主轴承座承载情况和设计要求的前提下,作者对某大马力发动机原有主轴承座进行了最大爆发压力工况下的有限元分析。分析模型及主轴承座轴瓦径向变形量见图1(a)、图1 (b)和图1(c)。通过主轴承座的强度分析和动态疲劳安全系数分析可以得知:主轴承座的动态疲劳安全系数为1.843,远远大于安全系数阀值1,所以主轴承座的强度足以满足设计需求。而从图1(b)可以得知轴瓦在变形后水平方向径向减小0.0739mm ,已经接近曲轴、轴瓦径向间隙最小值0.079mm,这容易导致曲轴与轴瓦间缺少油膜润滑,形成干摩擦,最终导致曲轴磨损加剧,发动机动载荷增加,甚至机毁人亡的悲剧;另外从图1(c)可以得知轴瓦在变形后上下方向径向增加0.0971mm ,小于轴瓦径向变形许可值0.147mm 。所以,根据有限元分析结果可以判断:主轴承座在水平方向的刚度不足够,应该改进现有结构,提高其刚度性能。

连续体结构拓扑优化方法评述_夏天翔

第2卷第1期2011年2月航空工程进展 A DV A N CES IN A ERON A U T ICA L SCIEN CE A N D EN GIN EERIN G Vo l 12N o 11Feb 1 2011 收稿日期:2010-12-01; 修回日期:2011-01-20基金项目:教育部长江学者创新团队项目(Irt0906)通信作者:姚卫星,w xyao@https://www.wendangku.net/doc/6516571307.html, 文章编号:1674-8190(2011)01-001-12 连续体结构拓扑优化方法评述 夏天翔,姚卫星 (南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京 210016) 摘 要:连续体结构拓扑优化在优化中能产生新的构型,对实现自动化智能结构设计具有重要意义。目前,连续体结构拓扑优化方法主要有:均匀化方法、变厚度法、变密度法、渐进结构优化方法、水平集法、独立连续映射方法。本文首先系统回顾了以上方法的发展历程,介绍了它们的研究现状。其次,通过对比以上拓扑优化方法对若干典型算例的优化结果,表明以上方法都有较好的减重效果。最后,对以上方法进行了总结,列出了它们的优缺点和发展方向。 关键词:拓扑优化;均匀化方法;变厚度法;变密度法;渐进结构优化方法;水平集法;独立连续映射方法中图分类号:V 211.7 文献标识码:A A Survey of Topology Optimization of Continuum Stru cture Xia Tianx iang ,Yao Weix ing (K ey L abor ator y of F undamental Science fo r N atio nal Defense -adv anced Design T echno lo gy of F lig ht V ehicle,Nanjing U niver sity o f A eronautics and A st ronautics,N anjing 210016,China) Abstract:A s the to po log y optim izat ion o f continuum structure can pr oduce new config ur atio ns during the optim-i zatio n,it is significant for automatic str ucture design.A t present,the most commo nly used t opolo gy o ptimiza -t ion methods of continuum st ructur e ar e:the ho mog enization method,var iable t hickness method,v ariable dens-i t y metho d,evo lutio nar y str uctur al o pt imizatio n met ho d,lev el set metho d,independent co ntinuous mapping method.Firstly,the develo pment pro cesses of above metho ds ar e sy stematically review ed,their cur rent r e -sear ch is br iefly intro duced in this paper.T hen,these methods ar e com par ed and discussed t hr ough a number of typical ex amples.T he typical ex amples show that all of above methods have gr eat abilities to r educe w eig ht.F-i nally ,the adv ant ag es,disadv ant ag es and dev elo pment directio ns of abov e metho ds ar e discussed. Key words:to po lo gy o ptimization;homog enizat ion metho d;va riable thickness method;var iable density method;evolutionar y structure optimization metho d;lev el set method;independent continuo us mapping method 0 引言 按照设计变量的不同,结构优化可分为以下三个层次:尺寸优化、形状优化和拓扑优化。结构拓 扑优化能在给定的外载荷和边界条件下,通过改变结构拓扑使结构在满足约束的前提下性能达到最优。与尺寸优化、形状优化相比,结构拓扑优化的经济效果更为明显,在优化中能产生新的构型,是 结构实现自动化智能设计所必不可少的。 按照优化对象的性质,拓扑优化可分为离散体拓扑优化和连续体拓扑优化两种。连续体拓扑优化与离散体拓扑优化相比,在应用范围更广的同 时,模型描述困难,设计变量多,计算量大。在过去很长一段时间里,连续体拓扑优化发展得十分缓慢,直到1988年Bendso e 等人[1] 提出均匀化方法之后,它才得到了迅速发展。目前,国内外学者对结构拓扑优化问题已经进行了大量研究[2-9]。目前最常用的连续体拓扑优化方法有均匀化方法、变厚 度法、变密度法、渐进结构优化方法(ESO)、水平集法(Level set)、独立连续映射方法(ICM)等。从拓

结构拓扑优化的发展现状及未来说课讲解

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化

原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓扑优化的本质特征。通常,单元密度与弹性模量之间的关系采用人为给出的

浅析建筑设计的拓扑优化及空间创作

浅析建筑设计的拓扑优化及空间创作 发表时间:2018-07-12T15:29:37.120Z 来源:《建筑学研究前沿》2018年第6期作者:胡大超[导读] 涌现了很多建筑结构都非常的异类化,这一类型的结构出现后大大提高了建筑设计者的工作要求。 滁州市建筑勘察设计院安徽滁州 239000 摘要:我国建筑行业随着经济的快速发展发生了比较明显的变化,目前,涌现了很多建筑结构都非常的异类化,这一类型的结构出现后大大提高了建筑设计者的工作要求。如果在建筑结构设计越来越高标准的情况下,还继续沿用传统概念设计来进行结构布置和选型,是绝不可能保质保量的完成这项设计工作的。并且拓扑优化设计得了广泛的运用。关键词:建筑设计;拓扑优化;空间创作 前言本文中的重点研究和传统的设计概念有所不同,拓扑优化设计方法能够简化结垢质量并且能够设计出更为合适合理的受力结构。很多人都是用过连续体拓扑优化的方法来对不同边界条件的桥梁结构进行优化设计,并取得了非常完美的结果[1]。 1.拓扑优化的概念拓扑在自然界中是一种很常见的现象,它能够在环境限制下将自然元素对物质的分配达到最优的状态。这将对于工程学以及建筑学的发展来说都有着很重要的启发。设计师在建筑设计中对拓扑优化的应用从结构设计到结构和形态设计的结合,体现了数字化时代的特色,在以后的运用中,拓扑优化将会更加深入和广泛。 2.连续体拓扑优化在结构设计中的特点目前,建筑结构优化领域随着社会的迅速发展也加强了自身的改革和创新,现如今,能够达到造价降低和结构性的优化目的将成为概念设计基础上对结构进行的改动。但是这种优化方法并不能对整体结构的布置有所优化,只能针对结构的表面进行,从而使得优化空间受到了限制,尤其是一些很复杂的、另类的结构,设计人员完全无法对结构的布置做出非常准确的评判,一般都会借助已有的模型来比对选择。但是如果使用连续体拓扑优化的方法就能够解决这一难题,并且能够更有力的保证了结构设计的合理性。建筑结构设计必须要保证每一个参数都要精准无误,拓扑优化的目的就是能够优化一定得物质分布和已经给定的边界条件的找形,它能够将整个空间的硬度和密度连续改变。 3.拓扑优化的研究目的以及意义建筑用来表达情感的语言方式和手段是形式,建筑被利用并被其发展的根本属性是空间,现代的建筑创作都以及普遍统一化,缺乏创新,随着时代的变化,传统化的欧氏几何思维下的建筑创作以及无法满足当代人们的审美和使用要求了,因此建筑设计者们开始寻找新的创作思维和方法。拓扑优化是一种全新的几何学和思维方式使用到建筑创作之中的,就此出现了一批创新型的建筑。在建筑创作上面它具有非欧几何特色的连续光滑表面的建筑形态,拓扑网络思维在建筑的应用中以及在有限的空间内都在追寻着无限的空间变化以及连续的可能性。拓扑优化是建筑学发展的一个非常重要的方向,鉴于当代建筑中的拓扑优化思维运用,要从数学和建筑学两个方面来研究拓扑优化对当代的建筑形态设计理念和方法的影响[2]。从理论和实践之中来全方位的认识拓扑优化在建筑创作中的重要性。工程设计追求的原则有一点就是实用性,为了能够保证建筑经济型的稳定,结构设计师就要从材料方面进行问题的思考。拓扑优化其实就是借助计算机的技术优势来实现最后的设计目标。并且能够在已定的空间区域中自动做出相应计算,将建筑结构的布置能够在最合适的范围内呈现,有效的避免了重复返工的事件出现[3]。 4.拓扑优化的研究方法拓扑学和建筑学是两个不同概念的学科,拓扑学是数学分支有着强力的逻辑思维,是一门注重运用推理和解决问题的逻辑性学科,但是建筑学是艺术和技术,具有很强的目的性,是一门注重手段和结果的学科。把拓扑优化运用在建筑创作中,能够直接的借鉴拓扑学相关的概念和思维情况。因为两者存在很大的差异,所以采用的研究方法有两种: 4.1图像化的研究方法因为图像能够最直接的表现和论述,尤其是建筑学科,因为建筑作为一个视觉文化,所以图像的存在是非常重要的。 4.2跨学科的研究方法现如今各个学科之间都是以网络状的形态交织在一起的,并非仅仅是简单的线性联系了。学科之间的影响和促进能够起到很大的作用。 近几年,在计算机强大功能的辅助下,建筑设计开始大量运用曲线形的建筑,从结构主义建筑中的硬边硬角几何中解放出来了[4]。这些建筑的形态产生理论基础多半来自于拓扑几何学等非欧几何和当代复杂性科学,拓扑学经常被运用到建筑设计的突变、折叠、非线性以及扭曲的形态中。拓扑优化对此次建筑创作新趋势的影响先是体现在了建筑造型上。在建筑设计中将几何形状相似的几何体看作是同一个拓扑优化的变形体,并且将这个理念应用在了建筑设计之中。建筑设计者将弯曲或者折叠作为建筑的变形动作,或者就是为创作较为复杂的建筑形象的来源。拓扑优化和其他学科的相互结合也对建筑设计者的创作过程产生了很大的影响和启发。比如:拓扑优化和地形学相互结合,地形学就会经常运用到拓扑优化变形模拟自然和人工地貌。这些技术都可以对建筑师模拟形体较为复杂的建筑有很大的帮助。拓扑优化和较为复杂的学科结合运用把各个学科之间的严格界限打破了,提供了很重要的科学理论和多学科的设计思维作为建筑新形态发展的重要贡献。 5.建筑结构拓扑优化的实现因为建筑结构的优化设计在整个工程建设中有着很大的作用,所以要采取最为有效的优化方法才能够实现最佳的效果。拓扑优化能够为结构设计人员彻底突破传统概念设计的制约,能够从结构的层面找到更多的灵感进行创造。结语

相关文档
相关文档 最新文档