文档库 最新最全的文档下载
当前位置:文档库 › 高三物理天体运动的各种模型试题

高三物理天体运动的各种模型试题

高三物理天体运动的各种模型试题
高三物理天体运动的各种模型试题

08届高三物理天体运动的各种模型试题

(08年、4月)

一、追赶相逢类型

1-1、科学家在地球轨道外侧发现了一颗绕太阳运行的小行星,经过观测该小行星每隔t 时间与地球相遇一次,已知地球绕太阳公转半径是R ,周期是T ,设地球和小行星都是圆轨道,求小行星与地球的最近距离。

解:设小行星绕太阳周期为T /,T /

>T,地球和小行星没隔时间t 相遇一次,则有

/1t t T T -= /tT

T t T

=

- 设小行星绕太阳轨道半径为R /

,万有引力提供向心力有

/2///2/24Mm G m R R T

π= 同理对于地球绕太阳运动也有 2

224Mm G m R R T π= 由上面两式有 /3/232R T R T

= /

2/3()t R R t T =- 所以当地球和小行星最近时 /

2/3

()t d R R R R t T

=-=--

1-2、火星和地球绕太阳的运动可以近似看作为同一平面内同

方向的匀速圆周运动,已知火星的轨道半径m r 11

105.1?=火,地球的轨道半径m r 11100.1?=地,从如图所示的火星与地球相距最

近的时刻开始计时,估算火星再次与地球相距最近需多少地球年?(保留两位有效数字) 解:设行星质量m ,太阳质量为M ,行星与太阳的距离为r ,根据万有引力定律,

行星受太阳的万有引力2

r mM

G

F =(2分) 行星绕太阳做近似匀速圆周运动,根据牛顿第二定律有r m ma F 2

ω==(2分)

T πω2=(1分) 以上式子联立r T

m r m M G 2224π= 故322

4r GM T π=

(1分) 地球的周期1=地T 年,(1分) 32)(

)(

火地

火r r T T = 火星的周期地地

火火T t t T ?=3)(

(2分)

1)10

0.1105.1(3

11

11???=年=1.8年 (1分) 设经时间t 两星又一次距离最近,根据t ωθ=(2分) 则两星转过的角度之差πππθθ2)22(

=-=-t T T 火

地火地(2分) 年年地

火地火火

地3.21

8.11

8.1111=-?=

-=

-=

T T T T T T t (2分,答“2.2年”同样给分)

二、宇宙飞船类型(神舟五号类型)

2-1、随着我国“神舟五号”宇宙飞船的发射和回收成功。标志着我国的航天技术已达到世界先进水平。如图所示,质量为m 的飞船绕地球在圆轨道Ⅰ上运行时,半径为r 1,要进入半径为r 2的更高的圆轨道Ⅱ,必须先加速进入一个椭圆轨道Ⅲ,然后再进入圆轨道Ⅱ。已知飞船在圆轨道Ⅱ上运动速度大小为υ,在A 点通过发动机向后以速度大小为u (对地)喷出一定质量气体,使飞船速度增加到v ′进入椭圆轨道Ⅲ。(已知量为:m 、r 1、r 2、υ、v ′u )求:

⑴飞船在轨道I 上的速度和加速度大小。

⑵发动机喷出气体的质量△m 。 解:(1)在轨道I 上,有1

212

1r v m

r Mm G

= (2分) 解得:11r GM

v = (1分) 同理在轨道II 上2

r GM

v =

(1分) 由此得:121r r v v = (1分)

在轨道I 上向心加速度为a 1,则有 12

1

ma r Mm G

= (2分)

同理在轨道II 上向心加速度a=22r v ,则有 m r Mm G =22

22

r v (2分)

由此得22

1

21v r r a =

(1分)

(2)设喷出气体的质量为m ?,由动量守恒得

mu v m m mv ?-'?-=)(1 (3分) 得:m u

v r r v

v m +'-'=

?1

2

(2分)

B

2-2、2003年10月15日9时整,我国“神舟”五号载人飞船发射成功,飞船绕地球14圈后,于10月16日6时23分安全返回。若把“神舟”五号载人飞船的绕地运行看作是在同一轨道上的匀速圆周运动,已知地球半径为R ,地球表面重力加速度为g 。

设“神舟”五号载人飞船绕地球运行的周期为T 、地球表面的重力加速度为g 、地球半径为R ,用T 、g 、R 能求出哪些与“神舟”五号载人飞船有关的物理量?分别写出计算这些物理量的表达式(不必代入数据计算)。

解: 对飞船,万有引力作为圆周运动的向心力

22

)2(T mr r

Mm G π

==

②(2分) 在地球表面

mg R Mm

G

=2 ③ (2分)

可得“神舟”五号轨道半径

3

22

24πgT R r =

(或轨道周长=

l 2

22gT R π ④

此外还可求得“神舟”五号载人飞船的运行频率T f 1

=

“神舟”五号载人飞船的运行角速度

T π

ω2=

“神舟”五号载人飞船的运行线速度

3

22T g R v π= ⑦ “神舟”五号载人飞船的运行向心加速度(加速度、轨道处重力加速度)3

222T g

R T

a ππ

=

“神舟”五号载人飞船的离地面高度

R gT R h -=

3

22

24π ⑨

2-3、2003年10月15日,我国神舟五号载人飞船成功发射。标志着我国的航天事业发展到了很高的水平。飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道。已知地球半径为R ,地面处的重力加速度为g.求: (1)飞船在上述圆轨道上运行的速度v ; (2)飞船在上述圆轨道上运行的周期T. 解:(1)设地球质量为M ,飞船质量为m ,圆轨道的半径为r

由万有引力定律和牛顿第二定律r m r

Mm G 22υ= (3分)

在地面附近有mg R

Mm

G

=2 (3分) 由已知条件h R r += (2分) 求出h

R gR +=

2

υ(2分)

(2)由υπr

T 2= (3分) 求出2

3

)(2gR h R T +=π (3分)

2-4、国执行首次载人航天飞行的神州五号飞船于2003年10月15日在中国酒泉卫星发

射中心发射升空.飞船由长征-2F 运载火箭先送入近

地点为A 、远地点为B 的椭圆轨道,在B 点实施变轨后,再进入预定圆轨道,如图所示.已知飞船在预定

圆轨道上飞行n 圈所用时间为t ,近地点A 距地面高度为h 1,地球表面重力加速度为g ,地球半径为R ,求:

(1)飞船在近地点A 的加速度a A 为多大? (2)远地点B 距地面的高度h 2为多少?

解答:(1)设地球质量为M ,飞船的质量为m ,在A 点受到的地球引力为

()

2

1Mm

F G

R h =+ 2分

地球表面的重力加速度

2M

g G

R = 2分

由牛顿第二定律得

()()

2

22

11A F GM gR a m R h R h ===++ 4分

(2)飞船在预定圆轨道飞行的周期

t

T n =

2分

由牛顿运动定律得

()

()

2

22

22Mm

G

m R h T R h π??=+ ?

??

+2

解得 2h R =4分

三、同步卫星

3-1、射地球同步卫星时,可认为先将卫星发射至距地面高度为h 1的圆形近地轨道上,

在卫星经过A 点时点火(喷气发动机工作)实施变轨进入椭圆轨道,椭圆轨道的近地点为A ,远地点为B 。在卫星沿椭圆轨道(远地点B 在同步轨道上),如图14所示。两次点火过程都使卫星沿切向方向加速,并且点火时间很短。已知同步卫星的运动周期为T ,地球的半径为R ,地球表面重力加速度为g ,求:

(1

)卫星在近地圆形轨道运行接近A 点时的加速度大小;

(2)卫星同步轨道距地面的高度。

解:(1)设地球质量为M ,卫星质量为m ,万有引力常量为G 、卫星在近地圆轨道运动

接近A 点时的加速度为x a ,根据牛顿第二定律A ma h R Mm

G

=+2

1)(4分

物体在地球表面上受到的万有引力等于重力mg R Mm

G

=2

4分

解得g h R R a A 2

12

)

(+=2分 (2)设同步轨道距地面高度h 2,根据牛顿第二定律有)(4)(222

21h R T

m h R Mm G +=+π6分

由上式解得:R T gR h -=3

2

2

224π

2分

3-2、右图为某报纸的一篇科技报道,你能发现其中的科学性问题吗?请通过必要的计算加以说明。下面的数据在你需要时可选用。

引力常量G =6.7×10-11N·m 2/kg 2

;地球表面重

力加速度g =10m/s 2;地球半径R =6.4×106

m ;地球

自转周期T =8.6×104

s ;地球公转周期T '=3.2×107s 。(π2=10;70~80的立方根约取4.2)

解:本报道中,地球同步卫星高度735公里的数据出错,以下的计算可以说明。 在地球同步轨道上,卫星受地球的万有引力提供卫星绕地球运转所需的向心力。设卫星的质量为m ,离地面高度为h ,有:)()2()(2

2h R T

m h R Mm G

+=+π

在地球表面上,质量为m 0的物体,受地球的万有引力等于物体的重力,有:

mg R Mm G =2

得 g R GM 2

= 由(1)(2)式可得 h gT R R -=3

2

2

24π

代入数据得km 103.6m 106.34

7

?=?=R (能说明差2个数量级即可)

四、科技前沿信息型

4-1、1997年8月26日在日本举行的国际学术大会上,德国Max Plank 学会的一个研究组宣布了他们的研究结果:银河系的中心可能存在一个大“黑洞”,“黑洞”是某些天体的最后演变结果。

(1)根据长期观测发现,距离某“黑洞”6.0×1012

m 的另一个星体(设其质量为m 2)以

2×106

m/s 的速度绕“黑洞”旋转,求该“黑洞”的质量m 1。(结果要求两位有效数字) (2)根据天体物理学知识,物体从某天体上的逃逸速度公式为R

Gm v 1

2=

,其中引力常量G=6.67×10-11

N ·m 2

·kg -2

,M 为天体质量,R 为天体半径,且已知逃逸的速度大于真空中光速的天体叫“黑洞”。请估算(1)中“黑洞”的可能最大半径。(结果只要求一位有效数字)

解:(1)r v m r

m Gm 222

21= (3分) ∴kg G r v m 35

21106.3?== (4分) (2)∵

C R

Gm >1

2 (3分) ∴212C Gm R < ∴m C

Gm R m 82

1

1052?==

(4分) 4-2、设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示。为了安全,返回舱与轨道舱对接时,必

须具有相同的速度。已知返回舱返回过程中需克服火星的引力做功

(1)R

W mgR r

=-

,返回舱与人的总质量为m ,火星表面的重力加速度为g ,火星的半径为R ,轨道舱到火星中心的距离为r ,不计火星表面大气对返回舱的阻力和火星自转的影响,则该宇航员乘坐的返回舱至少需要获得多少能量才能返回轨道舱?

解:返回舱与人在火星表面附近有:2

Mm

G

mg R = (2分)

设轨道舱的质量为m 0,速度大小为v ,则:2

002Mm v G m r r

= (2分)

解得宇航员乘坐返回舱与轨道舱对接时,具有的动能为2

2122k mgR E mv r

== (2分)

因为返回舱返回过程克服引力做功(1)R

W mgR r

=-

所以返回舱返回时至少需要能量(1)2k R

E E W mgR r

=+=-

(4分)

4-3、2004年,我国现代版的“嫦娥奔月”正式开演,力争2006年12月正式发射。媒体曾报道从卫星图片和美、苏(原苏联)两国勘测结果证明,在月球的永暗面存在着大量常年以固态形式蕴藏的水冰。

但根据天文观测,月球半径为R =1738km ,月球表面的重力加速度约为地球表面的重力加速度的1/6,月球表面在阳光照射下的温度可达127℃,此时水蒸气分子的平均速度达到

v 0=2000m/s 。试分析月球表面没有水的原因。(取地球表面的重力加速度g =9.8m/s 2

)(要求

至少两种方法)

解法1:假定月球表面有水,则这些水在127℃时达到的平均速度v 0=2000m/s 必须小于月球表面的第一宇宙速度,否则这些水将不会降落回月球表面,导致月球表面无水。取质量

为m 的某水分子,因为GMm /R 2=mv 12/R 2

,mg 月=GMm /R 2,g 月=g /6,所以代入数据解得v 1=1700m/s ,v 1<v 0,即这些水分子会象卫星一样绕月球转动而不落到月球表面,使月球表面无水。 解法2:设v 0=2000m/s 为月球的第一宇宙速度,计算水分子绕月球的运行半径R 1,如果R 1>R ,则月球表面无水。取质量为m 的某水分子,因为GMm /R 12=mv 02/R 12,mg 月=GMm /R 12,g 月

=g /6,所以R 1=v 02/g 月=2.449×106

m ,R 1>R ,即以2000m/s 的速度运行的水分子不在月球表面,也即月球表面无水。

解法3:假定月球表面有水,则这些水所受到的月球的引力必须足以提供水蒸气分子在月球表面所受到的向心力,即应满足:mg 月>GMm /R 2,当v =v 0=2000m/s 时,g 月>v 02/R =2.30m/s 2,

而现在月球表面的重力加速度仅为g /6=1.63m/s 2

,所以水分子在月球表面所受的重力不足以提供2000m/s 所对应的向心力,也即月球表面无水。

解法4:假定有水,则这些水所受到的月球的引力必须足以提供水蒸气分子在月球表面

所受到的向心力,即应满足:mg 月>GMm /R 2,,即应有g 月R >v 2

而实际上:g 月R =2.84×106m 2/s 2,v 02=4×106m 2/s 2,所以v 02>g 月R 即以2000m/s 的速度运行的水分子不能存在于月球表面,也即月球表面无水。

4-4、物体沿质量为M 、半径为R 星球的表面做匀速圆周运动所需的速度v 1叫做该星球第一宇宙速度;只要物体在该星球表面具有足够大的速度v 2,就可以脱离该星球的万有引力而飞离星球(即到达到距星球无穷远处),这个速度叫做该星球第二宇宙速度。理论上可以证明122v v =

。一旦该星球第二宇宙速度的大小超过了光速C=3.0×108m ,则该星球上的

任何物体(包括光子)都无法摆脱该星球的引力,于是它就将与外界断绝了一切物质和信息的交流。从宇宙的其他部分看来,它就像是消失了一样,这就是所谓的“黑洞”。

试分析一颗质量为M =2.0×1031

kg 的恒星,当它的半径坍塌为多大时就会成为一个“黑

洞”?(计算时取引力常量G =6.7×10-11N m 2/kg 2

,答案保留一位有效数字.)

解:

R

v m R GMm 2

12= 又知 122v v = 令 v 2=C 由以上三式得m C GM R 4

2

831112103)

100.3(100.2107.622?=?????==- 4-5、在美英联军发动的对伊拉克的战争中,美国使用了先进的侦察卫星.据报道,美国

有多颗最先进的KH -1、KH -2“锁眼”系列照相侦察卫星可以通过西亚地区上空,“锁眼”系列照相侦察卫星绕地球沿椭圆轨道运动,近地点为265 km (指卫星与地面的最近距离),

远地点为650 km (指卫星与地面的最远距离),质量为13.6×103kg ~18.2×103

kg 。这些照相侦察卫星上装有先进的CCD 数字照相机,能够分辨出地面上0.l m 大小的目标,并自动地将照片传给地面接收站及指挥中心。

由开普勒定律知道:如果卫星绕地球做圆周运动的圆轨道半径与椭圆轨道的半长轴相等,那么卫星沿圆轨道的周期就与其沿椭圆轨道运动的周期相等。请你由上述数据估算这些“锁眼”系列照相侦察卫星绕地球运动的周期和卫星在远地点处的运动速率。地球的半径 R =6 400 km ,g 取10 m/s 2。(保留两位有效数字)

解:设远地点距地面h l ,近地点距地面h 2,根据题意可知,卫星绕地球做匀速圆周运动

的半径5.68572

)

2(21=++=

R h h r km ① (6分)

设卫星绕地球运动的周期为T ,根据万有引力定律和牛顿第二定律,有

2

2ωmr r Mm G

= ② (2分)又 T

πω2=③ (2分) 物体在地球表面的重力等于万有引力,则mg R Mm

G =2④ (2分)

由②③④式可得g

r R r T ?=

π2 (2分)代入数据可得3

106.5?=T s (2分) 远在点到地面h 1,设卫星在远在点的速率为v 则2

1)(h R GMm +=m 12

h R v + ⑤

④、⑤联立得 1

h R g

R

v +=代入数据得 v = 7.6 km/s

4-6、一个Internet 网站报道,最近南亚某国发射了一颗人造环月卫星,卫星的质量为1000kg ,环绕月球周期为60min.张明同学对该新闻的真实性感到怀疑.他认为该国的航天技术不可能近期发射出环月卫星;该网站公布的数据似乎也有问题.他准备对该数据进行验证.但他记不清万有引力恒量的数值,且手边又没有资料可查找,只记得月球半径约为地球半径

的1/4,地球半径约为6.4×106

m ,月球表面的重力加速度约为地球表面重力加速度的1/6,

地球表面重力加速度取10m/s 2

.

假定将环月卫星的运动视为匀速圆周运动,请根据上述数据判断该报道的真伪,并写出推导判断的过程(3,5.26≈≈π)

解:设卫星绕月球表面运行周期为T 1,卫星绕地球表面运行周期为T 2,月球和地球表面重力加速度分别为g 1和g 2,月球和地球半径分别为r 1和r 2 1211)/2(r T m mg π= ① 2222)/2(r T m mg π= ② ①/②得 )/()/(/2121221r r T T g g = ③

由②得 )(108.4232

22

S g r T ?==π 代入③得 s s T 360060001>=

可见不可能发射周期小于6000s 的环月卫星。 4-7、目前人们广泛采用GPS 全球定位系统导航,这个系统空间星座部分共需要24颗卫星绕地球运转,工作卫星分布在6个圆形轨道面内,每时每刻任何一个地区的地平线上空至少保持4颗卫星传递信息。其对时钟要求精度很高,科学家们采用了原子钟作为计时参照(如:铯原子钟定义的1秒是铯—133原子基态的两个超精细能级之间跃迁所对应的辐射的9192631770个周期所持续的时间,其计时十分精确,10万年内误差不大于1秒),这样导航定位误差可控制在1~2米之内,甚是高明!这种卫星绕地球运行的周期T 为12小时,地球半径用R 表示,地球表面的重力加速度用g 表示,电磁波传播速度用C 表示。 (1)这种卫星与地球同步卫星相比较,其轨道高度是高还是低? (2)这种卫星将电磁信号传于其某时刻地面上的正对点时,所用时间t=?(说明:卫星、地面上该点、地心三点共线,结果用题中所给字母表示) 解:1)这种卫星比地球同步卫星的轨道高度低。4分

(2)万有引力提供向心力r T m r Mm G 2

224π=所以32

2

4πGMT

r = 4分

又因为地面附近2

R

GMm

mg =

2分 卫星距地面高度R r h -=④2分

所以时间t=(1c

c h =)43

2

2

2R T gR -π⑤ 4分

4-8、2004年1月4日美国“勇气”号火星车在火星表面成功登陆,登陆时间选择在6 万年来火星距地球最近的一次,火星与地球之间的距离仅有5580万千米,火星车在登陆前绕火星做圆周运动,距火星表面高度为H ,火星半径为R ,绕行N 圈的时间为t 。求:

(1)若地球、火星绕太阳公转为匀速圆周运动,其周期分别为T 地、T 火,试比较它的大小;

(2)求火星的平均密度(用R 、H 、N 、t 、万有引力常星G 表示);

(3)火星车登陆后不断地向地球发送所拍摄的照片,地球上接收到的第一张照片大约是火星车多少秒前拍摄的。

解:1)设环绕天体质量为m ,中心天体质量为M 。即4分

2分 故 T 火>T 曲 2分

(2)设火星车质量为m 设火星质量为M

4分

2分

2分

(3)宇宙间用电磁波传输信息:C=3×108

m/s

t≈s/v=(5580×107)/(3×108

)=186s 4分,是在186秒前拍摄的。

4-9、地球可近视为一个R=6400km 的球体,在地面附近的重力加速度g=9.8m/s 2

,试估算地球的平均密度ρ。

在古时候,人们通常认为地球是扁平的。想象地球真的不是一个球体,而是一个厚度为H 的无限大的盘子,如果想体验与真正地球表面一样的重力加速度,那么H 的值是多大? 提示:①假定两种模型地球的密度一样大;

②如果是电荷均匀分布的无限大的这种圆盘(单位面积上的电荷量为ξ),圆盘外的电

场强度为E=2πk ξH (k 为静电力恒量);

③由电场和重力场类比,它们的对应物理量是:E →g ,G →k ,m →q ;ρ→ξ; ④G=6.67×10-11

N ·m 2/kg 2

解:1)33/105.54334m kg GR

g

GR g ?===

πρρπ (2)H G g r G g ρπρπ234===球球,km R H 42673

2

==

五、双星类型

5-1、现根据对某一双星系统的光学测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动。万有引力常量为G 。求: (1)试计算该双星系统的运动周期T 。

(2)若实验上观测到运动周期为T’,且T T N N '()::=>11,为了解释两者的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的物质——暗物质,作为一种简化的模型,我们假定在以这两个星体连线为直径的球体内均匀分布着这种暗物质,而不考虑其他暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。

解:(1)由万有引力提供向心力有:

GM L M L T

222

224=··π ①(4分) ∴=T L

L

GM

π2(4分) (2)设暗物的密度为ρ,质量为m ,则m L L =?? ???=ρππρ··4326

3

3

(2分)

由万有引力提供向心力有:GM L GMm L M L T 222

2

2224+?? ?

??=··π' ②(2分)

由①②得:M M m T T N

+=?? ???=412

'(2分)

又m L =πρ·36

代入上式解得:ρπ=-3123

()/N M L (2分)

5-2、如图为宇宙中有一个恒星系的示意图。A 为星系的一颗行星,它绕中央恒星O 运行的轨近似为圆。天文学家观测得到A 行星运动的轨道半径为0R 、周期为0T 。

经长期观测发现,A 行星实际运动的轨道与圆轨道总存在一些偏离,且周期性地每隔0t 时间发生一次最大的偏离。天文

学家认为形成这种现象的原因可能是A 行星外侧还存在着一颗未知的行星B (假设其运行轨道与A 在同一水平面内,且与A 的绕行方向相同),它对A 行星的万有引力引起A 轨道的偏离。根据上述现象及假设,你能对未知行星B 的运动得到哪些定量的预测?

解: A 行星发生最大偏离时,A 、B 行星与恒星在同一直线上且位于恒星同一侧。设行星B 的运行周期为T 、半径为R ,则有

ππ

π222000=-t T t T ,所以0

000T t T t T -= 由开普勒第三定律得,23

203

0T R T R =,所以32

0200)(T t t R R -=

六、与光学综合型

6-1、计划发射一颗距离地面高度为地球半径R 0的圆形轨道地球卫星,卫星轨道平面与

赤道片面重合,已知地球表面重力加速度为g. (1)求出卫星绕地心运动周期T (2)设地球自转周期T 0,该卫星绕地旋转方向与地球自转方向相同,则在赤道上一点的人能连续看到该卫星的时间是多少? 解:(1)

2

02

204(2)(2)22GMm m R R T

T π==

(2)设人在B 1位置刚好看见卫星出现在A 1位置,最后 在B 2位置看到卫星从A 2位置消失,OA 1=2OB 1 有∠A 1OB 1=∠A 2OB 2=π/3

从B 1到B 2时间为t

则有

00

022233()

t t T T

TT t T T πππ+==

=

-

A 2

6-2、天文学上,太阳的半径、体积、质量和密度都是常用的物理量,利用小孔成像原理和万有引力定律,可以简捷地估算出太阳的密度。

在地面上某处,取一个长l =80cm 的圆筒,在其一端封上厚纸,中间扎直径为1mm 的圆孔,另一端封上一张画有同心圆的薄白纸,最小圆的半径为2.0mm ,相邻同心圆的半径相差0.5mm ,当作测量尺度,再用目镜(放大镜)进行观察。把小孔正对着太阳,调整圆筒的方向,使在另一端的薄白纸上可以看到一个圆形光斑,这就是太阳的实像,为了使观察效果明显,可在圆筒的观测端蒙上遮光布,形成暗室。若测得光斑的半径为

mm r 7.30=,试根据

以上数据估算太阳的密度(2211/1067.6kg m N G ??=-,一年约为s T 7102.3?=)。

解:设太阳质量为M ,半径为R ,体积为V ,平均密度为ρ,地球质量为m ,日地距离为r ,由万有引力定律和牛顿运动定律可知r T m r GMm 2

2

)2(π= ①(4分)

ρ

π334

R M = ②(2分)

由图中的几何关系可近似得到0r l

R r =

③(2分)

①②③联立解得3

02)(3r l G T πρ=④(3分)代入数据得:33/104.1m kg ?≈ρ⑤(1分)

6-3、某颗同步卫星正下方的地球表面上有一观察者,用天文望远镜观察到被太阳光照射的该同步卫星。试问秋分这一天(太阳光直射赤道)从日落时起经过多长时间,观察者恰好看不见该卫星。已知地球半径为R ,地球表面处重力加速度为g ,地球自转周期为T 。不考虑大气对光的折射

解:M 表示球的质量,m 表示同步卫星的质量,r 表示同表卫星距地心的距离。

对同步卫星:r T m r Mm G 2224π= 32

2

GMT

r = 4分 对地表面上一物体:mg R

Mm G

=2 GM=gR 2

3分 由图得:θcos 4=R 3分 又由图:

π

θ

2T

t

=

3分 32

24cos 2gT

R ar T t ππ== 3分 6-4、晴天晚上,人能看见卫星的条件是卫星被太阳照着且在人的视野之内。一个可看

成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动。春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能看到它,之后极快地

变暗而看不到了。已知地球的半径

m 104.6R 6

?=地,地面上的重力加速度为2

s /m 10,估算:(答案要求精确

到两位有效数字)

(1)卫星轨道离地面的高度。 (2)卫星的速度大小。

解:从北极沿地轴往下看的地球俯视图如图所示,设卫星离地高h ,Q 点日落后8小时时能看到它反射的阳光。日落8小时Q 点转过的角度设为θ

(1)?=??=

θ120360248

轨道高地

地R 2cos R

h -θ=m

104.6160cos 1104.666?=-???=)(

(2)因为卫星轨道半径

地R 2h r r =+=

根据万有引力定律,引力与距离的平方成反比

卫星轨道处的重力加速度2

r s /m 5.2g 41

g ==地

r v m

mg 2

r = r 'g v =s /m 107.5104.625.236?=???=(s /m 106.53

?同样给分)

七、综合应用

7-1、一宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量M ,做如下的实验,取一根细线穿过光滑的细直管,细线一端栓一质量为m 的砝码,另一端连在一固定的测力计上,手握细线直管抡动砝码,使它在竖直平面内做完整的圆周运动,停止抡动细直管。砝码可继续在同一竖直平面内做完整的圆周运动。

如图5所示,此时观察测力计得到当砝码运动到圆周的最低点和最高点两位置时,测力计得到当砝码运动到圆周的最低点和最高点两位置时,测力计的读数差为ΔF 。

已知引力常量为G ,试根据题中所提供的条件和测量结果,求:

(1)该星球表面重力加速度;

(2)该星球的质量M 。

解:(1)设最高点

r v m

m g T 21'

1=+ (2分) 最低点r v m mg T 2

2'

2=-(2分) 机械能守恒2

2

2121221mv mgr mv =+ (3分)

'

126T F mg T =-=? (1分)

m F

g 6'?=

(1分)

(2)

m F mg R Mm G 6'

2?=

= (3分) ∴mg FR M 62?= (3分)

7-2、宇宙员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部最低点静止一质量为m 的小球(可视为质点)如图所示,当施加给小球一瞬间水平冲量I 时,刚好能使小球在竖直面内做完整圆周运动.已知圆弧轨道半径为r ,月球的半径为R ,万有引力常量为G.

若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?轨道半径为2R 的环月卫星周期为多大?

解:设月球表面重力加速度为g ,月球质量为M. 在圆孤最低点对小球有:I=mv 0……①(2分)

∵球刚好完成圆周运动,∴小球在最高点有r

v m mg 2

=…………②(2分)

从最低点至最高低点有:22

02

121)2(mv mv r mg -=

……③(2分) 由①②③可得r

m I g 22

5=(2分)

∵在月球发射卫星的最小速度为月球第一宇宙速度

∴Rr mr

I

gR R GM v 55min ===

(2分) 当环月卫星轨道半径为2R 时,有

R T m R GMm 2)2()2(2

2

?=π……④(2分)

GM

R T 3)2(2π

=∴……⑤(2分)将黄金代换式GM=gR 2

代入⑤式(2分) Rr I m

gR R T 104)2(22

3ππ==得(2分)

7-3、宇航员在某一星球上以速度v 0竖直向上抛出一小球,经过时间t ,

小球又落回到原抛出点,然后他用一根长为l 的细绳把一个质量为m 的小球悬挂在o 点,使小球处于静止状态。如图所示,现在最低点给小球一

个水平向右的冲量I ,使小球能在竖直平面内运动,若小球在运动的过程中始终对细绳有力的作用,则冲量I 满足什么条件? 解:设星球表面附近的重力加速度为g ,由竖直上抛运动公式:g

v t 02=

得t v g

20=。

①当小球摆到与悬点等高处时,细绳刚好松弛,小球对细绳无力作用,则小球在最低点

的最小速度为min v ,由机械能守恒定律得:min 2

2

1mv mgl =

由动量定理得:min min mv I =。

②当小球做完整的圆周运动时,设最高点的速度为'v ,由l

v m mg 2

'=有 gl v =',若

经过最高点细绳刚好松弛,小球对细绳无力作用,则小球在最低点的最大速度为max v 。则由机械能守恒定律和动量定理有:

2max 2'2

1

221mv mgl mv +=,max max mv I = 。 t l v m

I 010>和t

l

v I 0<

7-4、2004年1月4日和1月25日,美国“勇气”号和“机遇”号火星车分别登陆火星,同时欧洲的“火星快车”探测器也在环火星轨道上开展了大量科学探测活动。科学家们根据探测器返回的数据进行分析,推测火星表面存在大气,且大气压约为地球表面大气压的

1/200,火星直径约为地球的一半,地球的平均密度ρ地=5.5×103kg/m 3

,火星的平均密度ρ

火=4.0×103kg/m 3

请根据以上数据估算火星大气质量是地球大气质量的多少倍?(地球和火星表面大气层的厚度均远远小于球体的半径,结果保留两位有效数字) 解:在星球表面物体受到的重力等于万有引力:2

R Mm

G mg =

在星球表面:2R

M

G

g = 4分

地地地地

地R G R R G

R M G

g πρπρ34342

3

2

=== ① 2分

火火火

火火R G R R G

R

M G

g πρπρ34342

3

2===② 2分 由①②得:

4

11

==火地火地火地R R g g ρρ③ 2分 星球表面大气层的厚度均远远小于星球半径,即大气压强可以表示为:

2

4R mg P π=,得g

R P m 2

4π=④ 4分 3

2

2

104.3-?==火

地地火地火地

火g g R R P P m m 4分

7-5、利用航天飞机,可将物资运送到空间站,也可以维修空间站出现的故障。为完成某种空间探测任务,在空间站上发射的探测器通过向后喷气而获得反冲力使其启动。已知探测器的质量为M ,每秒钟喷出的气体质量为m ,为了简化问题,设喷射时探测器对气体做功的功率为P ,在不长的时间t 内探测器的质量变化较小,可以忽略不计。求喷气t 秒后探测器获得的动能是多少?

解:由221

mtv Pt =

③ 得m

P

v 2= 又mtv v M =' ④ 得M

mPt v M E m

P M mt v k 22

212=

'==

'

【物理】物理直线运动练习题及答案含解析

【物理】物理直线运动练习题及答案含解析 一、高中物理精讲专题测试直线运动 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.跳伞运动员做低空跳伞表演,当直升机悬停在离地面224m 高时,运动员离开飞机作自由落体运动,运动了5s 后,打开降落伞,展伞后运动员减速下降至地面,若运动员落地速度为5m/s ,取210/g m s =,求运动员匀减速下降过程的加速度大小和时间. 【答案】212.5?m/s a =; 3.6t s = 【解析】 运动员做自由落体运动的位移为221110512522 h gt m m ==??= 打开降落伞时的速度为:1105/50/v gt m s m s ==?= 匀减速下降过程有:22122()v v a H h -=- 将v 2=5 m/s 、H =224 m 代入上式,求得:a=12.5m/s 2 减速运动的时间为:12505 3.6?12.5 v v t s s a --=== 3.某汽车在高速公路上行驶的速度为108km/h ,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s 2,假设司机的反应时间为0.50s ,汽车制动过程中做匀变速直线运动。求: (1)汽车制动8s 后的速度是多少 (2)汽车至少要前行多远才能停下来? 【答案】(1)0(2)105m 【解析】 【详解】 (1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065 t v v t s s a ---= ==,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ; 汽车的制动距离为:023******* t v v x t m m ++?= == . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】 解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动. 4.如图所示,一圆管放在水平地面上,长为L=0.5m ,圆管的上表面离天花板距离

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

(完整版)天体运动总结

天体运动 总结 一、处理天体运动的基本思路 1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mm r 2=ma ,其中a =v 2r =ω2r =(2π T )2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G Mm R 2=m g ,gR2=GM ,该公式通常被称为黄金代 换式.该式可称为“人间”公式. 合起来称为“天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(R 3 T 2=k ) 1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小. 3.开普勒第三定律的表达式为a 3 T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 2.表达式a 3 T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太 阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关. 四、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力. (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律. (3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.

高中物理直线运动试题经典及解析

高中物理直线运动试题经典及解析 一、高中物理精讲专题测试直线运动 1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m . (1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间. (2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222 m/s 0.67m/s 3 B a =≈ 【解析】 【详解】 (1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at 联立可得:t =10 s A 车的位移为:x A =v A t= 200 m B 车的位移为: x B = 2 12 at =100 m 因为x B +x 0=175 m

高一物理天体运动方面练习题

物理测试 1、 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA :TB=1:8;则轨道半径之比和运动速率之比分别为( ) A 、RA :RB=4:1 vA :vB=1:2 B、RA :RB=4:1 vA :vB=2:1 C、RA :RB=1:4 vA :vB=1:2 D、RA :RB=1:4 vA :vB=2:1 2、如图,在一个半径为R、质量为M的均匀球体中,紧贴着球的边缘挖去一个半径为R/2的球星空穴后,剩余的 阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大? 3、两个球形的行星A、B各有一个卫星a和b,卫星的圆轨迹接近各行星的表面。如果两行星质量之比为MA/MB=p,两个行星半径之比RA/RB=q,则两卫星周期之比TA/TB为______ 4、一颗人在地球卫星以初速度v发射后,可绕地球做匀速圆周运动,若使发射速度为2v,该卫星可能( ) A、绕地球做匀速圆周运动,周期变大 B、绕地球运动,轨道变为椭圆 C、不绕地球运动,轨道变为椭圆 D、挣脱太阳引力的束缚,飞到太阳系以外的宇宙 5、如图,有A、B两颗行星绕同一颗恒星做圆周运动,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 (1)至少经过多长时间,两行星再次相距最近? (2)至少经过多长时间,两行星相距最远? 6、已知地球的质量为M,地球的半径为R,地球的自传周期为T,地球表面的重力加速度为g,无线电信号的传播 速度为C,如果你用卫星电话通过地球卫星中的转发器发的无线电信号与对方通话,则在你讲完话后要听到对 方的回话,所需要的最短时间为( ) A、322244πT gR c ? B 、322242πT gR c ? C 、)4(43222R T gR c -?π D 、)4(23222R T gR c -?π 7、在天体演变过程中,红色巨星发生爆炸后,可以形成中子星,中子星具有极高的密度。 (1)若已知某中子星的密度为ρ,该中子星的卫星绕它作圆周运动,试求该中子星运行的最小周期。

高中物理天体运动超经典

天体运动(经典版) 一、开普勒运动定律 1、开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上. 2、开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等. 3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二、万有引力定律 1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的 乘积成正比,跟它们的距离的平方成反比. 2、公式:F =G 22 1r m m ,其中2211/1067.6kg m N G ??=-,称为为有引力恒量。 3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于 物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离. 注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一, 式中引力恒量G 的物理意义:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 4、万有引力与重力的关系:合力与分力的关系。 三、卫星的受力和绕行参数(角速度、周期与高度) 1、由()()22 mM v G m r h r h =++,得()GM v r h =+,∴当h↑,v↓ 2、由G () 2h r mM +=mω2(r+h ),得ω=()3h r GM +,∴当h↑,ω↓ 3、由G () 2h r mM +()224m r h T π=+,得T=()GM h r 324+π ∴当h↑,T↑ 注:(1)卫星进入轨道前加速过程,卫星上物体超重. (2)卫星进入轨道后正常运转时,卫星上物体完全失重. 4、三种宇宙速度 (1)第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。也是人 造卫星绕地球做匀速圆周运动的最大速度。 计算:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做 圆周运动的向心力.() 21v mg m r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s 第一宇宙速度是在地面附近(h <<r ),卫星绕地球做匀速圆周运动的最大速度. (2)第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速

重点高中物理天体运动知识

重点高中物理天体运动 知识 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'=2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量

卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D 项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得 由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为() A. B.

高中物理直线运动练习题

直线运动 1.一辆汽车以速度v匀速行驶了全程的一半,然后匀减速行驶了后一半,恰好静止,则全程的平均速度为 2. 如图所示,小球P被悬挂在距地面高为H处,有一水平放置的枪指向小球射击,枪口A 与P距离为S,如果在射击时小球同时下落,若要击中小球,子弹的初速度至少应是(空气阻力不计) 3.关于一对作用力和反作用力在同一段时间内做的总功W和总冲量I,下列说法正确的是: A.W一定为零 B.W一定不为零 C.I一定为零 D.I可能不为零 4.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动。设水对他的阻力大小恒为F,在他减速下降H的过程中,下列说法正确的是:A.他的动能减少了FH B.他的重力势能增加了mgH C.他的机械能减少了(F-mg)H D.他的机械能减少了FH 5.铁饼运动员奋力将质量为m的铁饼以初速度抛出,与水平面成α角,铁饼到达的最大高度为h,不计空气阻力和抛出点的高度,运动员抛铁饼过程对铁饼做的功可以表示为:①② ③④,以上4个表达式中正确的有: A.只有①③ B.只有①② C.只有③ D.只有①④ 6..竖直面内固定一个内部光滑的圆管,管的半径为r,管内有个直径和管的内径相差不多的小球(看成质点),质量为m,在管内做圆周运动。小球到达最高点时,对管壁的压力大小为3mg,则小球在经过最高点时的速度大小为: A. B. C. D.2 7. 小船静止在岸边,船的左端站有一个小孩,他从船的左端向右端走去,走到船的右端时发现右端离岸边的距离为L。不计水对船的阻力。关于L的大小,下列说法正确的是:A.小孩走得越快,L越大B.小孩走得越快,L越小C.L的大小与小孩走的快慢没有关系D.不知道小孩是匀速走还是变速走,无法判定 8.水平面上竖立一根轻弹簧,其下端固定在地面上。弹簧正上方有一个正方体金属盒,盒内有一个直径略小于正方体边长的光滑金属球。金属盒自由下落(保持平动),在A位置接触弹簧,在B位置速度最大,在C位置速度减为零。设在AB段和BC段金属球对金属盒的弹力分别为F1和F2,关于F1、F2的方向和大小,下列说法正确的是:A. F1向下,F2向上BF1向下,F2向下C.在AB段F1逐渐减小D. 在BC段F2逐渐减小9.科学家们使两个带正电的重离子被加速后沿同一条直线相向运动而发生猛烈碰撞,试图用此模拟宇宙大爆炸初的情境。为了使碰撞前的动能尽可能多地转化为内能,关键是设法使这两个重离子在碰撞前的瞬间具有: A.相同的速率 B.相同大小的动量 C.相同的动能 D.相同的质量 10.一根质量为m,长度为L的电缆盘放在水平面上(不计其厚度),用手拉住其一端,以F=0.7mg的竖直向上的恒力向上拉,电缆的另一端刚离开地面时的速度大小为:(不考虑电缆的微小摆动)A.0 B. C. D.另一端不可能离开地面 11.我国的国土范围在东西方向上大致分布在东经700到东经1350之间,所以我国发射的同步通信卫星一般定点在赤道上空3.6万公里,东经1000附近。假设某颗通信卫星计划定点在赤道上空东经1040的位置。经测量刚进入轨道时位于赤道上空3.6万公里,东经1030处。为了把它调整到1040处,可以短时间启动星上的小型喷气发动机调整卫星的高度,改变其周期,使其“漂移”到预定经度后,再短时间启动发动机调整卫星的高度,实现定点。两次调整高度的方向依次是:A. 向下、向上 B. 向上、向下 C. 向上、向上 D.向下、向下13. 两个物体a和b,质量分别为ma和mb,ma>mb,它们以相同的初动量开始沿地面滑行,

天体运动_规律

确定研究对象解题 -----高中物理必修2第六章万有引力与航天的题型归纳 高中物理必修2第六章万有引力与航天是第五章曲线运动在天体运动学的运用与升华,本章知识点较多,研究对象多,导致学生掌握困难。在教学中,笔者发现只要指导好学生认清楚题目的研究对象,就能突破学生在学习,解题中无从下手或者下手就错的现象。 本章按照研究对象分类可以分为以下几类:a,放在极地的物体;b,赤道上的物体;c,近地卫星(过赤道的,过极地的,一般的);d,同步卫星;e,一般卫星(月亮);f,双星a,放在极地的物体 放在极地的物体只受万有引力和地面的支持力,它的受力如图所示,它的运动状态相对于地球来说是静止的,所以受力平衡。有因为物体所受的重力就 是物体对地面的压力所有又有 即 把本公式化简就可以得到万能代换公式 b,放在赤道的物体 放在赤道的物体,跟地面保持相对静止,但是它随地球一起自转,所以它做匀速圆周运动,受力如图所示,它受到的合外力应该提供向心力。 有 其中,所以 说重力只是万有引力的一个分力,另外一个分力就是用来提供向心力了。在不是赤道和极地的位置,万有引力是指向球心的,而所需要的向心力指向圆心(并不重合),所以我们说重力是竖直向下的,而不能说重力也是指向球心的。考虑实际情况,在地球上,因为向心加速度过小只有a=0.034m/s2,所以有时候可以忽略不计。但是在有些自转比较快的星球上,这个向心加速度就不可以忽略了。 c,近地卫星 近地卫星首先是一个卫星,那么它肯定在做匀速圆周运动, 而且万有引力提供向心力。 有公式 这个公式最重要的一点,因为近地卫星它的高度很低所以可以忽略,那么近地卫星的轨道半径就等于地球的半径。它的运动轨迹的圆心是地球的球心,所以它可能好几种情况,一是在赤道上空,二是过极地,三是一般的情况。又因为万能公式,所以又可以得到

【物理】物理直线运动练习题20篇

【物理】物理直线运动练习题20篇 一、高中物理精讲专题测试直线运动 1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、 CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。求 (1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。 【答案】(1)3sin 4 F mg θ=(2)43d L = 【解析】 【详解】 (1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-?= 以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律: sin cos F mg mg ma θμθ+-?= 已知tan μθ= 联立可得:3 sin 4 F mg θ= (2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有: 21 4sin 6cos 32)4v 2 mg L mg L L L m θμθ?-??++= ?( 可得:v 3sin gL θ= 由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动; 第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:

高中物理天体运动专题练习

2014—2015学年高三复习———《天体运动》练习 1(2014年海淀零模)“神舟十号”飞船绕地球的运行可视为匀速圆周运动,其轨道高度距离地面约340km,则关于飞船的运行,下列说法中正确的是() A.飞船处于平衡状态 B.地球对飞船的万有引力提供飞船运行的向心力 C.飞船运行的速度大于第一宇宙速度 D.飞船运行的加速度大于地球表面的重力加速度 2(2014东城零模)“探路者”号宇宙飞船在宇宙深处飞行的过程中,发现A、B两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是() A. 两颗卫星的线速度一定相等 B. 天体A、B的质量一定不相等 C. 天体A 、B的密度一定相等 D. 天体A 、B表面的重力加速度一定不相等 3(2014顺义二模)地球赤道上有一相对于地面静止的物体A,所受的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1;绕地球表面附近做匀速圆周运动的人造地球卫星B (离地面的高度忽略)所受的向心力为F2,向心加速度为a2,线速度为v2,角速度为ω2;地球同步卫星C所受的向心力为F3,向心加速度为a3,线速度为v3,角速度为ω3。若上述的A、B、C三个物体的质量相等,地球表面重力加速度为g,第一宇宙速度为v,则() A.F1=F2>F3 B.a1=a2=g>a3 C.ω1=ω3<ω2 D. v1=v2=v>v3 4(2014昌平二模)“马航MH370”客机失联后,我国已紧急调动多颗卫星,利用高分辨率对地成像、可见光拍照等技术对搜寻失联客机提供支持。关于环绕地球运动的卫星,下列说法正确的是() A.低轨卫星(环绕半径远小于地球同步卫星的环绕半径)都是相对地球运动的,其环绕速率可能大于7.9km/s B.地球同步卫星相对地球是静止的,可以固定对一个区域拍照,但由于它距地面较远,照片的分辨率会差一些 C.低轨卫星和地球同步卫星,可能具有相同的速率 D.低轨卫星和地球同步卫星,可能具有相同的周期 5(2014丰台二模)“嫦娥三号”探测器已成功在月球表面预选着陆区实现软着陆,“嫦娥三号”着陆前在月球表面附近绕月球做匀速圆周运动,经测量得其周期为T。已知引力常量为G,根据这些数据可以估算出() A.月球的质量B.月球的半径 C.月球的平均密度D.月球表面的重力加速度 6(2014顺义二模)地球赤道上有一相对于地面静止的物体A, 所受的向心力为F1,向心加速度为a1,线速度为v1,角速度 为ω1;绕地球表面附近做匀速圆周运动的人造地球卫星B(离 地面的高度忽略)所受的向心力为F2,向心加速度为a2,线速 度为v2,角速度为ω2;地球同步卫星C所受的向心力为F3,

高三-物理天体运动

专题 天体运动的“四个热点”问题 双星或多星模型 1.双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。如图1所示。 (2)特点 ①各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2 ③两颗星的半径与它们之间的距离关系为r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1 。 【例1】(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( ) A.质量之积 B.质量之和 C.速率之和 D.各自的自转角速度 2.为探测引力波,中山大学领衔的“天琴计划”将向太空发射三颗完全相同的卫星(SC1、SC2、SC3)构成一个等边三角形阵列,地球恰处于三角形的中心,卫星将在以地球为中心、离地面高度约10万公里的轨道上运行,针对确定的引力波源进行引力波探测。如图所示,这三颗卫星在太空中的分列图类似乐器竖琴,故命名为“天琴计划”。已知地球同步卫星距离地面的高度约为 3.6万公里,以下说法正确的是( ) A.若知道引力常量G 及三颗卫星绕地球的运动周期T ,则可估算出地球的密度 B.三颗卫星具有相同大小的加速度 C.三颗卫星绕地球运动的周期一定大于地球的自转周期 D.从每颗卫星可以观察到地球上大于13的表面

(精)解决天体运动问题的方法

解决天体运动问题的方法 一、基本模型 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 二、基本规律 1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。所需向心力由中心天体对它的万有引力提供。设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由 牛顿第二定律及万有引力定律有:。这就是分析与求解天体运行问题的基本关系式,由 于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示 为:或。 2.在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M,半径为R,其表面的重力加速度 为g,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加 速度g与的相互替代,因此称为“黄金代换”。 3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最 大,所需向心力最大。对于赤道上的物体,由万有引力定律及牛顿第二定律 有:,式中N为天体表面对物体的支持力。如果天体自转角速度过大,赤道上的 物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天 体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由 及可计算出天体不瓦解的最小密度。 三、常见题型 1.估算天体质量问题

由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周 期,可估算出被绕天体的质量。 例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。若还知道引力常量和月球半径,仅利用以上条件不能求出的是 A.月球表面的重力加速度B.月球对卫星的吸引力 C.卫星绕月运行的速度D.卫星绕月运行的加速度 解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。 对于卫星的绕月运行,由万有引力定律及牛顿第二定律有:,由此式可 求知月球的质量M。由“黄金代换”有:,由这两式可求知月面重力加速度g。由线速度 的定义式有:,由此式可求知卫星绕月运行的速度。由万有引力定律及牛顿第二定律 有:,由此式可求知绕月运行的加速度。由万有引力定律有:,由于不知也不可求知卫星质量m,因此,不能求出月球对卫星的吸引力。故,本题选B。 2.估算天体密度问题 若已知天体的近“地”卫星(卫星轨道半径等于天体半径)的运行周期,可以估算出天体的密度。 例2.天文学家新发现了太阳系外的一颗行星。这颗行星的体积是地球的4.7倍,质量是地球的25倍。已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为 A.1.8×103kg/m3 B.5.6×103kg/m3 C.1.1×104kg/m3 D.2.9×104kg/m3 解析:对于近地卫星饶地球的运动有:,而,代入已知数据解得: ρ=2.9×104kg/m3。本题选D 3.运行轨道参数问题 对于做圆周运动的天体,若已知它的轨道半径,可以计算它的运行线速度、角速度、周期等运行参数,并且可以看出,这些参数取决于轨道半径。 例3.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100陪。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有 A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比 C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比

高一物理直线运动单元测试题

高一物理同步测试—直线运动 (考试时间:90分钟,总分:100分) 一、选择题:(每题4分,共40分) 1.下列情况中的物体,哪些可以看作质点? A .研究从北京开往上海的一列火车的运行速度 B .研究汽车后轮上一点运动情况的车轮 C .体育教练员研究百米赛跑运动员的起跑动作 D .研究地球自转时的地球 2.如图1所示,物体沿两个半径为R 的半圆弧由A 运动到C ,则它的位移和路程分别是 A .0, 0 B .4R 向东,2πR 向东 C .4πR 向东,4 R D .4R 向东,2π R 3.A 、B 、C 三物同时、同地、同向出发作直线运动,下图是它们位移与时间的图象,由图2 可知它们在t 0时间内(除t 0时刻外) A .平均速度v =v=v B .平均速度v >v >v C .A 一直在B 、C 的后面 D .A 的速度一直比B 、C 要大 4.下列关于速度和速率的说法正确的是 ①瞬时速率是瞬时 ②平均速率是平均速度的大小 ③对运动物体,某段时间的平均速度不可能为零 ④对运动物体,某段时间的平均速率不可能为零 A .①② B .②③ C .①④ D .③④ 5.在直线运动中,关于速度和加速度的说法,正确的是 A B C .物体的速度改变快,加速度就大 D 6.物体做匀加速直线运动,已知加速度为2 m/s 2,则 A .物体在某秒末的速度一定是该秒初的速度的 2 B .物体在某秒末的速度一定比该秒初的速度大 2 m/s C .物体在某秒初的速度一定比前秒末的速度大 2 m/s D .物体在某秒末的速度一定比前秒初的速度大2 m/s 7.关于物体运动的下述说法中正确的是 A B C D 8.一辆汽车以速度v 1匀速行驶全程的 3 2 的路程,接着以v 2=20 km/h 走完剩下的路程,若它全路程的平均速度v =28 km/h ,则v 1应为 西 A C 东 图2

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

高考物理天体运动公式归纳

高考物理天体运动公式归纳 高考物理天体运动公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2; ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地 +h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径} 强调:(1)天体运动所需的向心力由万有引力提供,F向=F 万;(2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理分子动理论、能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥&asymp;0,F分子力&asymp;0,E分子势能&asymp;0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册 P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来

高中物理直线运动试题经典

高中物理直线运动试题经典 一、高中物理精讲专题测试直线运动 1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m . (1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间. (2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222 m/s 0.67m/s 3 B a =≈ 【解析】 【详解】 (1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at 联立可得:t =10 s A 车的位移为:x A =v A t= 200 m B 车的位移为: x B = 2 12 at =100 m 因为x B +x 0=175 m

高中物理天体运动知识

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G 得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G ③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量 卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得 若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得

相关文档
相关文档 最新文档