文档库 最新最全的文档下载
当前位置:文档库 › 陶瓷粉末的制备

陶瓷粉末的制备

陶瓷粉末的制备
陶瓷粉末的制备

第五章高纯超细粉末的制备新工艺

一、概述

高技术陶瓷的制造成本

粉体的重要性质:

组成、粒子形状、结晶性、集合状态

理想的陶瓷粉末:

颗粒尺寸小、结晶形态、颗粒形态、颗粒尺寸分布、纯度、无团聚、流动性---

二、超细粉末制备方法的分类

机械方法(物理制备):球磨、砂磨、振动磨、星形磨、

气流粉碎

化学制备法:

(1)固相法:氧化还原法、热分解法、元素直接反应法(2)液相法:共沉淀法、盐溶液水解法、醇盐水解法、溶

胶-凝胶法、水热合成法、溶剂热法、微乳法、

加热煤油(石油)法、喷雾干燥法、火焰喷雾

法、冷冻干燥法---

(3)气相法:气相合成法、等离子体法、激光制粉

以ZrO 2为例:

1. ZrSiO 4??→?NaOH

Na 2ZrO 3-Na 2SiO 3??→?O

H 2Na 2SiO 3﹒nH 2O

过滤→Na 2ZrO 3??→?HCl

过滤掉SiO 2 gel →ZrOCl 2﹒8H 2O

→结晶纯

ZrOCl 2﹒8H 2O ??→?煅烧

ZrO 2

2. ZrSiO 4+4C+4Cl 2→ZrCl 4+SiCl 4+4CO, 再氧化→ZrO 2

3. ZrOCl 2﹒8H 2O, Zr(SO 4)2﹒15H 2O, ZrCl 4 , Zr 醇盐等

三、 超细粉的测试与表征 1、粒径

沉降法 (重力沉降法、离心沉降法) 激光光散射法

显微镜法(光学、电子) XRD 法 比表面积法

2、表面电性 Zeta 电位

3、表面成分

光电子能谱(XPS 、UPS ) 俄歇电子能谱 红外光谱 4、成分

化学组成:化学分析、能谱分析、光谱分析、XRF --- 相结构:XRD 、高分辨电镜晶格条纹相 ---

四、 机械粉碎法 超细粉碎粉体特性变化:

粒子由大变小、粒度分布变化、比表面增加、容积变化、形状变化、流动性变化、分散性变化、均匀性(均匀粒子排列)、纯度变化 1、 球磨法

2

、 砂磨(搅拌磨)

3、振动磨

4

星形磨(行星磨)

机械力化学、机械合金化---

五、化学制备法

1、固相合成法及氧化还原法:

立方ZrO2、MgAl2O4、3Al2O3·2SiO2 - - - Si + C →SiC

SiO2 + 3C →SiC + 2CO

3SiO2 + 6C +2N2→Si3N4 + 6CO

2、热分解法

Al2(NH4)2(SO4)4?24H2O

各种锆盐加热时的存在相和结晶尺寸

3、酒精干燥

4、喷雾干燥法

5、喷雾热分解法

(1)火焰喷雾法(2)等离子体法6、冷冻干燥法

7、加热煤油法、加热石油法

加热石油干燥法制备的ZrO2的平均粒径

8、共沉淀法 [Zr 4(OH)8(H 2O)16]8+

[Zr 4(OH)8(H 2O)16]8+??→?O

H 2

[Zr 4(OH)16-n (H 2O)n+8]n++(8-n)H +

a.浓度

b. pH 值

c.表面活性剂

d.洗涤

e.脱水

f.硬团聚

g.煅烧温度 9、盐水溶液水解法

ZrOCl 2 + (3+n)H 2O → Zr(OH)4?nH 2O ↓+2HCl ↑ 或 ZrOCl 2 + 3H 2O → ZrO 2?H 2O ↓+ 4HCl ↑ 10、溶胶-凝胶法(Sol – Gel )

金属醇盐:M(OR)n

(1) 金属与醇直接反应 M +nROH = M(OR)n +

2

n H 2

(2) 金属氯化物在氨的存在下与醇反应 MCl n + nROH+nHN 3 = M(OR)n + nNH 4Cl

a. 水解与聚合

水解反应:M(OR)n +xH 2O →M(OH)x (OR)n-x +xROH 失水聚缩反应:-M-OH+HO-M-→-M-O-M-+H 2O 失醇聚缩反应:-M-OH+RO-M-→-M-O-M-+ROH

形成化合物的总反应:

M(OR)n +xH 2O →M(OH)x (OR)n-x +xROH

M(OH)x (OR)n-x →MO n/2+2

x H 2O+(n-x)ROH

b. 凝胶的形成:初始粒子成核、长大、连接成键形成网络

c. 凝胶的干燥

d.煅烧

11、醇盐水解法 12、水热法 (1)水热结晶法 (2)水热分解法

ZrSiO 4 18.43 Ca(OH)2 14.9 NaOH 4.67(浓度7wt%) 液/固比 2 Ca(OH)2/ ZrSiO 4 mol 比 2

温度 350℃ 蒸汽压 170×105Pa 反应时间 8h ZrSiO 4+xCa(OH)2 → ZrO 2+xCaO ?SiO 2?H 2O+(x-1)H 2O (3)水热氧化法 Zr+H 2O → ZrO 2+H2 ↘ZrH x +O 2↗ 13、气相反应法

足够的过饱和度 高的平衡常数 反应温度 成核剂

3

/106???

?

???

=ρπ

N M C D

气相反应法制备的ZrO2

六、高熔点氮化物及碳化物微粉体的合成

氮化物、碳化物微粉的制造法

关于陶瓷粉体的制备技术浅析

关于陶瓷粉体的制备技术浅析 姓名:班级:11无非(1)班学号: 摘要通过对这学期粉体课程的学习,拙写了一些自己感兴趣的方面,这篇论文综述了精细陶瓷材料之主要原料-陶瓷粉体的各种制备方法。对最有发展前途的热化学气相反应法、激光诱导化学气相合成法、等离子气相合成法、沉淀法、水热法及溶胶-凝胶法的原理和工艺作了较为详细的介绍。 关键词:陶瓷粉体制备技术原理工艺 1 前言 与金属、塑料相比,精细陶瓷材料具有优异的耐高温、抗腐蚀、耐磨损性及良好的电气性能, 广泛地应用于尖端科技领域, 如空间技术、海洋技术、生物工程领域等。而精细陶瓷制作工艺中的一个基本特点就是以粉体作原料经成型和烧成, 形成多晶烧结体。陶瓷粉体的质量直接影响最终成品的质量, 因此, 发展精细陶瓷的首要问题是要符合要求的原料--粉体。 现代高科技陶瓷材料对粉体的基本要求是高纯、超细、组分均匀、团聚程度 μ1的微粉。近年来,随着小。这里所指的超细,通常是指颗粒的平均直径小于m 科学技术的迅猛发展,一项综合科学技术-- 纳米科学技术迅速崛起,已成为目前世界高新技术领域的一个重要制高点。伴随纳米科学技术的发展, 产生了纳米陶瓷, 纳米陶瓷的研究是当前先进陶瓷发展的三大课题之一, 它的问世将使材料的强度、韧性和超塑性大大提高。长期以来,人们追求的陶瓷增韧性和强度问题可望在纳米陶瓷中得到解决。为了获得纳米陶瓷, 首先必须制备出纳米陶瓷粉体。因此, 对陶瓷粉体的研究将是陶瓷新材料研究中的一个极其重要的范畴。 2 陶瓷粉体的制备技术 目前,世界上有多种制造陶瓷粉体的方法]1[, 大致可分为两类: 粉碎法和合 μ1以下的微粒,且易成法。粉碎法主要采用各种机械粉碎方法, 此法不易获得m 引入杂质。合成法是在原子、分子水平上通过反应、成核、成长、收集和处理来获得的, 因此可得到纯度高、颗粒微细、均匀的粉体。此法应用较广泛, 它又可分为气相合成法、液相合成法和固相合成法。 2. 1 气相合成法 此法可分为蒸发凝聚法( PVD) 及气相反应法( CVD) 。前者是将原料加热至

金属或陶瓷粉末注塑成型工艺

来源于:注塑塑胶网https://www.wendangku.net/doc/659582230.html, 金属或陶瓷粉末注塑成型工艺 使用金属或陶瓷粉末通过注塑成型工艺生产复杂零件 如今,使用粉末材料的注塑成型技术主要用于制造工业用复杂组件。粉末注塑成型是除了其它成型工艺(精密铸造和轴向或均衡压制)外的另一种可供选择的工艺。 近年来,用陶瓷或金属粉末来制造注塑成型零件的应用领域主要包括汽车工业、刀具工业、磁体生产、纺织工业、钟表工业、家居用品、精密工程、医疗和牙科技术以及陶瓷工业。 在 ARBURG PIM 实验室,客户可以通过实际观看样品生产来了解粉末注塑的优点。 表1: 金属和陶瓷组件的典型公差 粉末注塑成型技术使组件的批量生产成为可能,因为采用机械加工或压制技术进行批量生产已经不再是一种经济有效的方式。注塑成型技术使组件的设计和制造过程具有几乎无限的自由度。 粉末注塑成型制造过程包括成型零件的初始注塑成型、脱脂和烧结。组件公差由以下重要因素确定: ● 粘合剂含量 ● 粉末特性 ● 混合过程 ● 注塑成型参数 ● 重力变形 ● 在烧结托盘上的滑动性能 可用材料范围广泛 原则上,所有细颗粒、可烧结的粉末都可以和相应的粘合剂混合并在注塑机上加工。包括氧化陶瓷、金属、碳化物及氮化物。 由于混合和注塑设备在处理粉末材料的过程中会受到较强磨损,因此建议选择粒度尽可能小的粉末。较细的粉末可降低表面粗糙度,从而在加工过程中降低磨损并提高生坯强度。各种粉末材料的性能范围如表3中所示。 表2: 在严格的公差范围内的高重复性 粘合剂使粉末可用来注塑 对粘合剂最重要的要求是:脱脂过程中的尺寸稳定性、良好的保存特性、不与粉末材料发生反应、很高的零件强度、良好的脱模特性、热稳定性和在脱脂过程中易于去除并可完全去除。 粘合剂与粉末颗粒之间的粘附力还应尽可能高,以便在注塑过程中增高压力不会使两个组份分离,而导致填充的零件不均匀。为了获得良好的注塑成型特性并以低收缩率获得均匀的烧结质量,建议采用球形粉末。

特种陶瓷制备工艺..

特种陶瓷材料的制备工艺 10材料1班 王俊红,学号:1000501134 摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。 目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。 当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。 压力成形不能满足形状复杂性和密度均匀性的要求。 多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;陶瓷材料 前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。 它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。 特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。 因此研究特种陶瓷制备技术至关重要。 正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。 特种陶瓷制备工艺流程图 一、 陶瓷粉体的制备 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结 成品

陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分的影响。粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。 传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。然后在一定的温度下煅烧。由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型: 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO3+TiO2→BaTiO3+CO2↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法:

陶瓷粉末尺寸对电弧喷涂金属_陶瓷复合涂层形成及性能的影响

陶瓷粉末尺寸对电弧喷涂金属2陶瓷复合涂层形成及性能的影响 方建筠,栗卓新,史耀武,李国栋,魏 琪 (北京工业大学材料科学与工程学院,北京 100022) 摘要:利用高速电弧喷涂和含有微米Ti B 2和纳米A l 2O 3陶瓷粉末的粉芯丝材在碳钢基体上制备了六组陶瓷颗粒弥散增强的Fe 2Ti B 2复合涂层,研究微纳米陶瓷粉末对电弧喷涂Fe 2Ti B 2复合涂层的形成和性能的影响。采用光学显微镜、W YK ONT1100三维表面形貌仪对比分析了扁平粒子形貌和厚度;用SE M ,E DAX 及XRD 分析涂层的形貌和相组成,测试了涂层的显微硬度和耐磨粒磨损性能,并用激光共聚焦显微镜观察磨损后的涂层形貌。结果表明,随着粉芯丝材中微纳米陶瓷粉末含量的增加,扁平粒子的形貌从飞溅严重的散点状逐渐转变成少量飞溅的盘状,涂层的孔隙率随之下降。对比6种涂层的组织及性能,发现当粉芯丝材中的Ti B 2粉末尺寸<2μm 时,Fe 2Ti B 2复合涂层中的陶瓷硬质相分布最为细小、弥散,涂层的耐磨性能最好。关键词:微纳米陶瓷粉末;高速电弧喷涂;金属2陶瓷复合涂层;扁平化;显微组织;耐磨性能中图分类号:TG17414 文献标识码:A 文章编号:025426051(2007)0920063205 Effects of Ceram i c Powder S i ze on Arc 2Sprayed M eta l 2Ceram i c Co m posite Coa ti n gs F AN G J ian 2jun,L I Zhuo 2xin,S H I Yao 2wu,L I Guo 2dong,W E IQ i (College of Materials Science and Engineering,Beijing University of Technol ogy,Beijing 100022,China ) Abstract:The effect of nano and m icr on powders in cored wires on f or mati on and p r operties of Fe 2Ti B 2composite coat 2ings made by high vel ocity arc s p raying (HVAS )were investigated 1Six cored wires filled with different average cera m ic particle sizes (20~40nm ,2μm ,and 420μm )fine powder contents (0,8,16,20,24,32wt 1%)were p re 2pared 1The flattening behavi or of s p rayed particles was characterized and compared by using OM and 3D surface p r ofi 2ler 1The m icr ostructure of the coatings and phase compositi ons were characterized by means of SE M ,EDAX and XRD 1M icr ohardness and wear resistance were evaluated and wear scratch was observed by laser confocal scan m icr osco 2py 1The results show that,with increasing the percentage of fine cera m ic powders,the shape of the flat particles transfers fr om a dist orted heavy s p lash t o a disk 2like shape,with little s p lash,and the coatings por osity decreases 1W hen Ti B 2pow 2der size is less than 2μm ,Fe 2Ti B 2composite coatings reveal dis persi on of fine cera m ic particles and exhibit the best wear resistance 1 Key words:nano and m icr on cera m ic powders;high vel ocity arc s p raying (HVAS );metal 2cera m ic co mposite coatings;flattening;m icr ostructure;wear resistance 作者简介:方建筠(1973—),女,四川达县人,工程师,博士研究生,主要从事热喷涂、表面工程及焊接冶金方面的研究工作,发表论文8篇。联系方式:010********* E 2mails:fangjiany @e mails .bjut .edu .cn 基金项目:北京市自然科学基金(2062005);北京市教委科技发展项目(K M200610005026)收稿日期:2007201231 电弧喷涂制备的金属基陶瓷复合涂层(MMC )成本低、性能优良,具有广阔的工业应用前景,这种复合涂层具有许多优异的性能,如高温性能、耐磨损及耐腐蚀性能等。文献[1~4]的研究表明,硼化物、碳化物及氧化物等硬质相的加入可显著改善涂层的力学性能。涂层的组织和性能取决于撞击粒子的热能和动量,而粒子的热能和动量与作为喂料的粉末的尺寸紧密相连。随电弧喷涂金属涂层应用广泛,金属粒子的特性也已得到深入研究。文献[5~6]的研 究发现,喷涂金属涂层时增加粒子的熔化程度可降低涂层的孔隙率。近来对热喷涂微纳米结构涂层的研究却发现熔化2未熔化的双相结构可改善涂层的力学性能 [7] 。而有关陶瓷粉末尺寸对电弧喷涂金属2陶 瓷粒子的特性和涂层性能影响的研究尚未涉及。本研究采用高速电弧喷涂(HVAS )技术,在20G 钢基体上制备含有微米Ti B 2和纳米A l 2O 3陶瓷颗粒弥散增强的Fe 2Ti B 2复合涂层,分析扁平粒子结构与陶瓷粉末尺寸的关系,探讨陶瓷粉末尺寸对涂层的组织和性能影响机制。 1 试验材料及方法 试验选用市售常规尺寸的Ti B 2陶瓷粉末(颗粒尺 寸为420μm ,纯度>95%),微米级Ti B 2粉末(<2μm )和纳米级A l 2O 3(20~40n m )粉末,不同尺寸的Ti B 2具有相同的化学成分和相。选用尺寸为14mm ×013mm 的20G 钢带作为金属外皮,将一定组成的常

金属陶瓷粉末注射成型技术MIM

金属(陶瓷)粉末注射成型技术 (Metal Powder Injection Molding,简称MIM) 是一项新的制造技术,美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。日本未来3至5年MIM产业的市场预计达20亿美元。据不完全统计,1995年全世界MIM技术制作的销售额已突破4亿美元,预计2010年MIM 潜在市场为30亿美元。到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 中国MIM技术的研究始于1985年,由中国兵器工业五三研究所承担该课题,当时列入国家[七五]军用新材料重点预研计划,经十余年的探索,技术已基本成熟,并于1996年与上海金珠东方雪域企业有限公司合作成立了山东金珠粉末注射制造有限公司。经过几年的发展,山东金珠公司完成了MIM技术由试验室水平向产业化发展的过程,应用技术更加成熟,能够大批量生产高精尖的军用、民用产品,制品水平已接近世界同期水平,并连续三年实现产值翻番,企业的发展呈现出良好的态势。 近年来,国内努力平衡对日贸易逆差大,掌握关键性零部件的制造技术和提升制造能力,一直是政府协助业者的重要工作之一。本文对MIM技术、生产工艺过程、工艺特点、制品

第20章瓷粉体原料制备工艺

第20章陶瓷粉体原料制备工艺 §20.1 粉体制备工艺 传统的粉体制备工艺就是机械破碎法,生产量大,成本低,但杂质混入不可避免。 随着先进陶瓷的发展,各种反应合成法得以应用,优点是纯度高、粒度小、成分均匀,但成本高。 20.1.1 传统粉体制备工艺 以机械力使原材料变细的方法在陶瓷工业中应用极为广泛。陶瓷原料进行破碎有利于提高成型坯体质量,提高致密程度并有利于烧结过程中各种物理化学反应的顺利进行,降低烧成温度。 一、颚式破碎机 颚式破碎机是陶瓷工业化生产所经常采用的一种粗碎设备,主要用于块状料的前级处理。设备结构简单,操作方便,产量高。但颚式破碎机的粉碎比不大(约4),进料块度一般很大,因此出料粒度一般都较粗,而且粒度的调节范围也不大。 二、轧辊破碎机 轧辊破碎机的优点在于粉碎效率高,粉碎比大(>60),粒度较细(通常可达到44 m)。但当细磨硬质原料时,由于轧辊转速高,磨损大,使得粉料中混入较多的铁,影响原料纯度,要求后续去铁。同时由于设备的特点,其粉料粒度分布比较窄,只宜用于处理有粒度分布要求的原料。 三、轮碾机 轮碾机是陶瓷工业化生产所常采用的一种破碎设备,也可用于混合物料。在轮碾机中,原料在碾盘与碾轮之间的相对滑动及碾轮的重力作用下被研磨、压碎。碾轮越重、尺寸越大,粉碎力越强。为了防止铁污染,经常采用石质碾轮和碾盘。轮碾机的粉碎比大(约10),轮碾机处理的原料有一定的颗粒组成,要求的粒度越细,生产能力越低。轮碾机也可采用湿轮碾的方法。 四、球磨机 球磨机是工业生产普遍使用的细碎设备,也可用于混料。为了保证原材料的纯度,经常采用陶瓷作为衬里,也可采用高分子聚合物材料作为衬里,并以各种陶瓷球作为研磨球。 湿球磨所采用的介质对原料表面的裂缝有劈裂作用,间歇式湿球磨的粉碎效率比干球磨高,湿球磨所得到的粉料粒度可达几个微米。 球磨机转速对球磨机效率的影响。球磨机转速直接影响磨球在磨筒内的运动状态,转速过快,磨球附看在磨筒内壁,失去粉碎作用;转速太慢,低于临界转速太多,磨球在磨筒内上升不高就落下来,粉碎作用很小;当转速适当时,磨球紧贴在筒壁上,经过—段距离,磨球离开筒壁下落,给粉料以最大的冲击与研磨作用,具有最高的粉碎效率。球磨机的临界转速与球磨筒直径有关,直径越大,临界转速越小。它们之间的关系可用下列关系表示:D>1.25m,N=35/D1/2,D<1.25m,N=40/D1/2,其中N为接近临界转速的工作转速(r/min),D 为球磨筒有效内径(m)。 磨球对球磨机效率的影响。球磨时加入磨球越多、破碎效率越高,但过多的磨球将占据有效空间,导致整体效率降低。磨球的大小以及级配与球磨筒直径有关,可用公式:D(磨筒直径)/24>d(磨球最大直径)>90d0(原料粒度)来计算。磨球的比表面积越大,研磨效能越高,但也不能太小,必须兼顾磨球对原料的冲击作用。此外磨球的密度越大球磨效果越好。 水与电解质的加入量对球磨机效率的影响。湿磨时水的加入对球磨效率也有影响,根据经验,当料/水=1/(1.16~1.2)时球磨效率最高;为了提高效率,还可加入电解质使原料颗粒表

2019年最新MLCC陶瓷粉体材料行业分析报告

MLCC陶瓷粉体材料行业 分析报告

目录 一、行业属性 (5) 二、行业管理体制、产业政策和主要法律法规 (7) 1、行业管理体制、行业主管部门及自律性组织 (7) 2、产业政策和主要法律法规 (8) 三、行业与上下游行业的关系 (10) 四、下游MLCC 行业概况 (11) 1、MLCC 简介 (11) (1)电介质陶瓷粉料等材料技术 (13) (2)介质薄层化技术 (13) (3)陶瓷粉料和金属电极共烧技术 (14) 2、MLCC 行业市场发展状况 (14) (1)全球MLCC 行业发展状况 (14) (2)我国MLCC 行业发展状况 (15) 3、MLCC 行业未来发展前景 (16) (1)电子消费品的更新换代及新产品的不断涌现将持续提高市场对MLCC 的需 求 (17) (2)MLCC 对其他类型电容器的替代作用将日趋明显 (19) (3)中国已成为全球电子整机的生产基地,作为电子整机使用的主要元件之一, 国内的MLCC 行业迎来了良好的发展契机 (21) (4)国内经济的发展及人民生活水平的提高所带来的电子消费品普及化过程,将 带动国内对MLCC 的巨大需求 (22) 4、MLCC 行业主要企业情况 (23) (1)全球主要MLCC 厂家 (24) (2)国内主要MLCC 厂家 (31) 5、MLCC 行业未来发展趋势 (34) (1)小型化、微型化 (34) (2)大容量化 (35)

五、MLCC 电子陶瓷材料行业概况 (37) 1、MLCC 电子陶瓷材料内涵 (38) 2、钛酸钡基础粉及水热法 (39) (1)钛酸钡基础粉 (39) (2)钛酸钡的制备方法 (40) (3)水热法 (43) 3、改性添加剂 (44) 4、MLCC 配方粉 (45) 5、MLCC 电子陶瓷材料行业市场发展及需求概况 (46) 6、MLCC 电子陶瓷材料行业的竞争状况 (50) (1)日本堺化学(Sakai) (52) (2)美国Ferro 公司 (52) (3)日本化学(NCI) (53) (4)日本富士钛(Fuji Titanium) (53) (5)日本共立(KCM,Kyoritsu) (54) (6)日本东邦(Toho) (54) (7)三星精密化学株式会社 (55) (8)户田工业株式会社 (55) (9)台湾信昌电子陶瓷股份有限公司 (56) (10)我国国内MLCC 电子陶瓷材料行业的市场竞争情况 (57) 7、进入行业的主要壁垒 (58) (1)技术壁垒 (58) (2)市场壁垒 (59) (3)安全生产和环境保护壁垒 (60) (4)资金壁垒 (60) 8、行业利润水平的变动趋势及变动原因 (61) 六、行业技术水平和发展趋势 (62) 1、行业技术水平 (62)

金属陶瓷材料

金属陶瓷材料

[长春工业大学] 金属陶瓷材料读书笔记 090201 20090516 胡冰 2013/3/14 摘要:介绍了Ti(C,N)基金属陶瓷的基本组成和结构,其组织性能及其影响因素,综述了Ti(C,N)基金属陶瓷的研究现状,指出了未来的发展方向和应用。

Ti(C,N)基金属陶瓷的基础研究与进展 前言 TiC—Ni金属陶瓷最早出现在1929年,作为WC—Co合金的替代材料,主要用于切削加工[1]。Ti(C,N)基金属陶瓷是1931年发明的[2]。1956年,美国福特汽车公司Humenik发现在TiC—Ni基金属陶瓷中加入Mo后,可以改善Ni对TiC的润湿性,大大提高合金强度[3]。1971年Kiefer发现在TiC —Ni基金属陶瓷中引入N,并同时加入Mo2C和Mo粉,可使其获得更高的硬度、耐磨性、抗弯强度,较好的切削性能和抗氧化能力。此后,Ti(C,N)基金属陶瓷的研究越来越多。因此国内外对Ti(C,N)基金属陶瓷非常重视,进行深入系统的研究。自2O世纪8O年代以来,Ti(C,N)基金属陶瓷获得了迅速的发展,世界各国硬质合金厂先后推出了系列的Ti(C,N)基金属陶瓷刀具[4]。 3O多年来,随着粉末冶金技术的发展,成分的演化趋于稳定,烧结技术的不断更新,粉末粒径的不断细化,Ti(C,N)基金属陶瓷的机械性能不断提高,Ti(C,N)基金属陶瓷发展到一个比较成熟的阶段。在日本,Ti(C,N)基金属陶瓷刀具材料已占可转位刀片的30%。我国在“八五”期间也研制成功多种牌号的Ti(C,N)基金属陶瓷刀具,并批量上市,但性能不稳定[5]。 Ti(C,N)基金属陶瓷作为一种新型的工具材料,具有密度低、室温硬度和高温硬度都优于WC基硬质合金,化学稳定性和抗氧化性好,耐磨性好等优点。其应用填补了WC硬质合金和陶瓷刀具之间高速精加工和半精加工的空白,既适用于高速精加工,又适用于半精加工和间断切削加

MLCC陶瓷粉体材料行业分析报告

2011年MLCC陶瓷粉体材料行业分析报告

目录 一、行业属性 ............................................. 二、行业管理体制、产业政策和主要法律法规.................. 1、行业管理体制、行业主管部门及自律性组织....................... 2、产业政策和主要法律法规....................................... 三、行业与上下游行业的关系................................ 四、下游MLCC 行业概况.................................... 1、MLCC 简介.................................................... (1)电介质陶瓷粉料等材料技术.......................... (2)介质薄层化技术.................. 错误!未定义书签。 (3)陶瓷粉料和金属电极共烧技术........................ 2、MLCC 行业市场发展状况........................................ (1)全球MLCC 行业发展状况............................ (2)我国MLCC 行业发展状况............................ 3、MLCC 行业未来发展前景........................................ (1)电子消费品的更新换代及新产品的不断涌现将持续提高市 场对MLCC 的需求 (17) (2)MLCC 对其他类型电容器的替代作用将日趋明显 ........ (3)中国已成为全球电子整机的生产基地,作为电子整机使用 的主要元件之一,国内的MLCC 行业迎来了良好的发展契机... (4)国内经济的发展及人民生活水平的提高所带来的电子消费 品普及化过程,将带动国内对MLCC 的巨大需求.............

固相法制备陶瓷粉体

固相反应法生产陶瓷粉体 一、固相反应法的特点 固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。固相法其原料本身是固体,这较之于液体和气体都有很大的差异。固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物质。[1] 二、物质粉末化机理 一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。 三、固相反应的具体方法 1、机械粉碎法 主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。目前已形成各种方法,如滚转磨、振动磨和平面磨。采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。其特点是操作简单、成本低,但产

品容易被污染,因此纯度低,颗粒分布不均匀[2] 。 2、热分解法 热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相): 121 1212S S G S S G G →+→++ 第一个式子是最普通的,第二个式子是第一个式子的特殊情况。热分解反应基本是第一式的情况。 3、 固相反应法 由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显着地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。

陶瓷粉末的制备

第五章高纯超细粉末的制备新工艺 一、概述 高技术陶瓷的制造成本 粉体的重要性质: 组成、粒子形状、结晶性、集合状态 理想的陶瓷粉末: 颗粒尺寸小、结晶形态、颗粒形态、颗粒尺寸分布、纯度、无团聚、流动性--- 二、超细粉末制备方法的分类 机械方法(物理制备):球磨、砂磨、振动磨、星形磨、 气流粉碎 化学制备法: (1)固相法:氧化还原法、热分解法、元素直接反应法(2)液相法:共沉淀法、盐溶液水解法、醇盐水解法、溶 胶-凝胶法、水热合成法、溶剂热法、微乳法、 加热煤油(石油)法、喷雾干燥法、火焰喷雾 法、冷冻干燥法--- (3)气相法:气相合成法、等离子体法、激光制粉

以ZrO 2为例: 1. ZrSiO 4??→?NaOH Na 2ZrO 3-Na 2SiO 3??→?O H 2Na 2SiO 3﹒nH 2O 过滤→Na 2ZrO 3??→?HCl 过滤掉SiO 2 gel →ZrOCl 2﹒8H 2O →结晶纯 ZrOCl 2﹒8H 2O ??→?煅烧 ZrO 2 2. ZrSiO 4+4C+4Cl 2→ZrCl 4+SiCl 4+4CO, 再氧化→ZrO 2 3. ZrOCl 2﹒8H 2O, Zr(SO 4)2﹒15H 2O, ZrCl 4 , Zr 醇盐等 三、 超细粉的测试与表征 1、粒径 沉降法 (重力沉降法、离心沉降法) 激光光散射法 显微镜法(光学、电子) XRD 法 比表面积法 2、表面电性 Zeta 电位 3、表面成分 光电子能谱(XPS 、UPS ) 俄歇电子能谱 红外光谱 4、成分 化学组成:化学分析、能谱分析、光谱分析、XRF --- 相结构:XRD 、高分辨电镜晶格条纹相 ---

用水热法制备纳米陶瓷粉体技术

Hefei University 题目:水热法制备纳米陶瓷粉体技术 专业:11级粉体材料科学与工程(1)班姓名:施学富 学号:1103011002 二O一三年六月

摘要:文章较为系统地概述了水热法制备纳米陶瓷粉体的技术方法、特点和研究进展。认为水热法是一种极有应用前景的纳米陶瓷粉体的制备方法 关键词:水热法,纳米,陶瓷粉体 1 引言 现代陶瓷材料的性能在一定程度上,是由其显微结构决定的,而显微结构的优劣却取决于制备工艺过程。陶瓷的制备工艺过程主要由粉体制备、成型和烧结等三个主要环节组成。其中,粉体制备是基础,若基础的粉体质量不高,不但烧结条件难以控制,也绝不可能制得显微结构均匀、致密度高、内部无缺陷、外部平整的瓷坯。显微结构,尤其是陶瓷材料在烧结过程中形成的显微结构,在很大程度上由原料粉体的特性决定。因此粉体性能的优劣,直接影响到成型和烧结的质量。粉体的尺寸大小决定了作用于粉体上的单位体积的表面积,进而又决定了粉体的最终行为。粉体达到纳米级时,可以生产出优于普通材料的纳米特异功能。 目前,制备纳米粉体的方法可分为三大类:物理方法、化学方法和物理化学综合法。化学方法主要包括水解法、水热法、溶融法和溶胶一凝胶法等。其中,用水热法制备纳米粉体技术越来越引起人们的

关注?。本文拟对近年来水热法制备纳米陶瓷粉体作一概要介绍。 2 水热法制备纳米陶瓷粉体的原理及特点 2.1水热法概述 水热法(hydrothermal preparation)是指密闭体系如高压釜中,以水为溶剂,在一定的温度和水的自生压力下,原始混合物进行反应的的一种合成方法。由于在高温,高压水热条件下,能提供一个在常压条件下无法得到的特殊的物理化学环境,使前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉体或纳米晶。 根据化学反应类型的不同,水热法制备粉体有如下几种方法:(1)水热氧化(Hydrothermal Oxidation)利用高温高压,水、水溶液等溶剂与金属或合金可直接反应生成新的化合物。 (2)水热沉淀(Hydrothermal Precipitation 某些化合物在通常条件下无法或很难生成沉淀,而在水热条件下易反应生成新的化合物沉淀。 (3)水热晶化(Hydrothermal Crystallization):.以非晶态氢氧化物、氧化物或水凝胶为前驱物,在水热条件下结晶成新的氧化物晶粒。(4)水热合成(Hydrothermal Synthesis~.允许在很宽范围内改变参数,使两种或两种以上的化合物起反应,合成新的化合物。 (5)水热分解(Hydrothermal Decomposition):.某些化合物在水热条件下分解成新的化合物,进行分离而得单一化合物微粉。 (6)水热还原(Hydrothermal Reduction):.金属盐类氧化物、氢氧化

固相法制备陶瓷粉体

固相反应法生产陶瓷粉体 一、 固相反应法的特点 固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。固相法其原料本身是固体,这较之于液体和气体都有很大的差异。固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物 质。[1] 二、 物质粉末化机理 一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。 三、 固相反应的具体方法 1、 机械粉碎法 主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。目前已形成各种方法,如滚转磨、振动磨和平面磨。采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀[2]。 2、热分解法 热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相): 121 1212 S S G S S G G →+→++ 第一个式子是最普通的,第二个式子是第一个式子的特殊情况。热分解反应基本是第一式的情况。 3、 固相反应法 由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显著地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。

凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体

?电子陶瓷、陶瓷一金属封接与真空开关管用陶瓷管壳应用专辑? 凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体 焦春荣,陈大明,仝建峰 (北京航空材料研究院,北京100095) Preparationof Sub-MicroBao.6Sro.4Ti03Ceramic PowdersbyGel-SolidMethod JIAOChun—rong,CHENDa—ming,TONGJian—feng (BeijingInstituteofAeronauticalMaterial,Beijing100095,China) Abstract:Sub—microBao6Sro4Ti03ceramicpowderswerepreparedbythegel—solidreactionmethodu—singTi02,BaC03andSrC03powdersasrawmaterials.DSCthermodynamicswasusedtoanalyzetheheatflowandaccuratetemperatureofeachreactionduringthepreparationprocess.Microstructure,phasestructureandgranularityofthepowderswereinvestigated.TheresultsshowthatreactiontemperatureofBao.6Sro.4Ti03ceramicpowderswasabout857℃.UniformlydispersedBao.6Sro.4Ti03powdersof0.5pmdiametercanbepreparedunderthetemperaturerangeof900。C~1000℃.Theparticlesizeofthesynthe—sizedpowdersisdeterminedbytheparticlesizeoftherawmaterials.Theparticlesizeincreasesduringtheheattreatmentbecauseofthecompositiondiffusion.Therefore,smallsizeparticlesoftherawmaterialsshouldbechosentoprepareforthesynthesizedpowdersofsmallsize. Keywords:Gel—solidmethod;Bao.6Sro4Ti03;Ceramic;Powders 摘要:以Ti0:和BaC0。,SrCO,粉体为原料,采用凝胶同相反应法合成了亚微米级Ba—Sr。TiO。陶瓷粉体。对凝胶固相反应过程进行了DSC热分析,并观察和测定了合成粉体的微观形貌、相结构和粒度分布。结果表明:Ba0。Sro。TiO。粉体合成温度对应于857℃,在9001000℃温度范围煅烧均可获得颗粒尺寸约0.5肛m、粒径分布均匀的Ba0。Sro。TiO。粉体。试验结果表明,凝胶固相合成Bao。Sr。。TiO。的粉体粒径取决于原料粉体尺寸,经高温煅烧后因各组元元素的互扩散导致粉体粒径有所长大,要获得更细的合成粉体应采用更细的粉体原料。 关键词:凝胶固相反应法;钛酸锶钡;陶瓷;粉体 中图分类号:TQl74文献标识码:A文章编号:1002—8935(2009)04—0054—05 钛酸锶钡陶瓷材料是一种优良的热敏材料、电容器材料和铁电压电材料[1_3],应用领域非常广泛。它的诸多优异的介电性能使得该材料系统在无铅电容器、微波传输、信号处理和测量等领域中的应用具有很大优势和潜力[4-s],而高性能的钛酸锶钡粉体是制备钛酸锶钡陶瓷的重要条件。凝胶固相反应法是传统的固相反应制粉工艺与陶瓷注凝成型工艺(Gelcasting)相结合而产生的一种新型粉体制备技术【7-10|。该工艺保证了原料成分在颗粒尺度的均匀混合,并解决了传统固相反应法各组元原料需靠压块达到紧密接触的目的;与化学共沉淀等液相法相比,则具有操作简单、效率高、成本低、原料来源广团至Q盟二些泛、普适性强、环境污染小等诸多优点。本文采用凝胶固相反应法制备出颗粒细小、分散均匀、结晶完好的亚微米级BaⅢSr。.。TiO。陶瓷粉体,并对粉体合成过程和相关问题进行了分析研究。 1试验方法 1.1粉体的合成工艺 凝胶固相反应法制备Ba。Sr…Ti0。粉体的工艺流程如图l所示。详细过程如下:使用BaC0。,SrC03,Ti02为原料,按BaO:SrO:Ti02为0.6:0.4:1.0的摩尔比,加入去离子水和少量聚丙烯酸铵分散剂,混合配制成固含量约50%(体积比)的水

水热法制备PZT压电陶瓷粉体

无机材料学报990427 无机材料学报 JOURNAL OF INORGANIC MATERIALS 1999年 第14卷 第4期 Vol.14 No.4 1999 水热法制备PZT压电陶瓷粉体 古映莹 戴恩斌 黄可龙 摘 要 本文报道了水热法制备PZT压电陶瓷粉体的研究结果,给出了PZT粉体的结晶性与反应温度、反应时间和氢氧化钾添加量之间的关系,用XRD、SEM等测试手段分析了实验结果,表明所得到的PZT粉体为四方晶相钙钛矿结构,粒子粒径为0.6~2.1μm,呈立方体状. 关 键 词 水热合成;PZT粉体;压电陶瓷 分 类 号 TN 304 Hydrothermal Synthesis of PZT Powders GU Ying-Ying DAI En-Bin HUANG Ke-Long (Department of Chemistry, Central South University of Technology Changsha 410083  China) Abstract The results of hydrothermal synthesis of PZT powders were reported. The effect of synthesis temperature, time and catalytic promoter on the crystalline powder was investigated by means of XRD and SEM. The result showed that the PZT powder obtained has a tetragonal perovskite structure, the dimension of the crystalline powder particle is from 0.6μm to 2.1μm, and the particle is cubic.  Key words hydrothermal synthesis, PZT powders, piezoelectric ceramics 1 引言 锆钛酸铅(Pb(Zr x Ti1-x)O3,简称PZT)是一种典型的压电陶瓷,它具有居里温度高、压电性强、易掺杂改性和稳定性好等特点,在压电陶瓷领域中一直占主要地位[1~3]. 过去制备PZT压电陶瓷材料,通常采用传统的固相反应法,这种方法的缺点是:(1)原料中各组份难以混合均匀;(2)高温下氧化铅易挥发,因而烧结体化学组成波动范围较大;(3)整个工艺过程易混杂,难以得到高纯度的粉体;(4)粉体颗粒大小不均匀,表面活性差,易形成团聚体,因而最终影响材料的性能.  近年来,各种湿化学方法用于制备陶瓷粉体的研究获得了广泛的重视,它们在制备高纯、均一、超细的多组份粉体方面显示了令人振奋的应用前景,其中水热法制备陶瓷粉体, 又由于其具有工艺相对较为简单,不需要高温灼烧处理,可直接得到结晶完好、团聚少、粒度分布窄、烧结活性高的粉体等特点,正获得越来越广泛的重视. file:///E|/qk/wjclxb/wjcl99/wjcl9904/990427.htm(第 1/5 页)2010-3-23 9:58:24

相关文档