文档库 最新最全的文档下载
当前位置:文档库 › 三次函数的图象与性质

三次函数的图象与性质

三次函数的图象与性质
三次函数的图象与性质

三次函数的图象与性质

河源市河源中学 钟少辉

三次函数()f x =32(0)ax bx cx d a +++≠是中学阶段一个重要的函数,已经成为高考的高频考点。本文研究了三次函数的图象,并且得到它的几个性质,以及例说性质的应用。

已知三次函数:32(0)y ax bx cx d a =+++≠定义域(,)-∞+∞

则232y ax bx c '=++ , 62y ax b ''=+。由0y '=得 2320ax bx c ++= (1)

依一元二次方程根的判别式知:

1.1若24120b ac ?=-> , 即23b ac >。则方程(1)必有两个不相等的实根12,x x ,即三次函数必有两个驻点12,x x (这里不妨设21x x >), 且123()()y a x x x x '=--。由函数极值的判定定理则有: 1.a >0

当1(,)()0x x f x '∈-∞时,>,()f x 单调递增。 当12(,)()0x x x f x '∈时,<, ()f x 单调递减。当2(,)()0x x f x '∈+∞时,> ,()f x 单调递增。

驻点即为极值点,且在两个驻点中值较小的一个点上取得极大值,在值较大的一个点上

取得极小值,且12,x =。

Ⅱ.0a <

情况正好与I 相反,在此不再赘述。 由以上讨论知:1223b x x a +=-,而由0y ''= 得33b x a

=-,因而:6()3b

y a x a ''=+,当a>0, (,)3b x a ∈-∞-

时,()0f x ''<,曲线是(向下凹)

。(,)3b

x a

∈-+∞时,()0f x ''>曲线是(向上凹)。当 0a <, (,)3b x a ∈-∞-时,()0f x ''>,曲线是(向上凹),(,)3b

x a

∈-+∞时,()0

f x ''<曲线是(向下凹)。

所以,无论a 的正负,3x 为曲线拐点的横坐标,且12

32

x x x +=

即:曲线拐点的横坐标为两极值点(或二驻点)连线的中点

通过以上的讨论知:三次函数3

2

y ax bx cx d =+++,当23b ac >时,其图形的一般形状见

图1。

图1

0a > 0a <

1.2若24120b ac ?=-=,即23b ac =,则由0y '=, 得123b x x a ==-

。故23()3b y a x a

'=+ 显然0a > ,()0f x '> ,()f x 单调递增。 0a < ,()0f x '< ,()f x 单调递减 。驻点

不是极值点。而由6()3b y a x a ''=+,0y ''= , 得33b x a

=-。0a >,(,)3b

x a ∈-∞-时,()0f x ''<,

曲线是(向下凹)。(,)3b x a ∈-

+∞时,()0f x ''>曲线是(向上凹)

。0a <,(,)3b

x a

∈-∞-时,()0f x ''>,曲线是(向上凹),(,)3b

x a

∈-

+∞时,()0f x ''<曲线是(向下凹)

。 故对于三次函数32(0)y ax bx cx d a =+++≠,若23b ac =有且仅有一个驻点,则该点一定是曲线拐点的横坐标1233b

x x x a

===-

,其图形形状见图2。

图2 单一型图象

1.3 24120b ac ?=-< , 即23b ac <,则由二次函数的性质:

0a > ,()0f x '> ,()f x 单调递增 。 0a < ,()0f x '<, ()f x 单调递减 。

函数无驻点,也无极值点。由0y ''= 。 得33b x a

=-,6()3b y a x a ''=+

0a > 曲线在 (,)3b a -∞-内是(向下凹)

,在(,)3b

a

-+∞内是(向上凹)。 0a <曲线在 (,)3b a -

-∞内是(向上凹)

,在(,)3b a -+∞内是(向下凹)。33b

x a

=-仍是曲线拐点的横坐标。

故对于三次函数32y ax bx cx d =+++若23b ac <时,其图形形头见图3。

0a >

0a <

0a > 0a <

图3 单一型图象

性质1 函数32()(0)f x ax bx cx d a =+++≠,若0,a >当0?≤时,y=()f x 是增函数:当0?>时,其单调递增区间是12(,),),x -∞+∞和(x 单调递减区间是12(,);x x

若0,0()a f x ?≤<当时,y=是减函数;当0?>时,其单调递减区间是12(,),),x -∞+∞和(x ,单调递增区间是12(,)x x 。

推论 函数32()(0)f x ax bx cx d a =+++≠当0?≤时,不存在极大值和极小值:若0,a >当0?>时,有极大值()f x 、极小值2()f x ;若0,a <当0?>时,有极大值()f x 、极小值1()f x .

根据a 和?的不同情况,其图象特征分别为:

性质2 函数32()(0)f x ax bx cx d a =+++≠,[,],x m n ∈若0[,],x m n ∈且0()0f x '=,则:

max 0()max{(),(x ),()};f x f m f f n = min 0()min{(),(x ),()};f x f m f f n =

由函数()f x 图象易知, ()[,]f x x m n ∈在上的最值出现在0,,x m x x x n ===处

性质3 任何三次函数曲数32(0)y ax bx cx d a =+++≠都存在唯一拐点,并且曲线关于拐点对称,即经坐标变换后,都可以将曲线所表示的函数化为奇函数。

证明 为方便起见,不妨设32(0)y ax bx cx d a =+++>。

求导,得2

'32,62.y ax bx c y ax b ''=++=+令0y ''=,得

03b

x a

=-

,将0x 代入3

2

y ax bx cx d =+++,得323202

2927()()()33327b b b b abc a d

y a b c d a a a a -+=-+-+-+=

当0(,x )x ∈-∞时,y ''<0;当0(,)x x ∈+∞时,y ''>0

∴点32002

2927(,)(,)327b b abc a d

o x y a a

-+'=-是32y ax bx cx d =+++的唯一拐点。 作代换0

0x X x y Y y =+??

=+?

,代入原曲线方程得

320000()()()Y y a X x b X x c X x d +=++++++=

323201

()()()(3)3333b b b a X b X c X d ax b ac X y a a a a

-

+-+-+=--+, 32

1(3)3Y aX b ac X a

∴=-

-。它是一个关于XO Y '为坐标系的奇函数,该函数表示的曲线对称于点00(,)O x y ',即原曲线32(0)y ax bx cx d a =+++≠关于拐点对称。

推论 函数32()(0)f x ax bx cx d a =+++≠是中心对称图形,其对称中心是(,()33b b f a a

--) 证明 设函数32()(0)f x ax bx cx d a =+++≠的对称中心为(m , n).

按向量(,)a m n =--将函数的图象平移,则所得函数()y f x m n =+-是奇函数, 所以()()20f x m f x m n ++-+-=,化简得 232(3)0,ma b x am bm cm d n +++++-=

上式对x R ∈恒成立,故3ma+b=0 ,m=-3b a

.所以32()3b

n am bm cm d f a =+++=-,函数

的对称中心是(,()33b b

f a a

-

-),可见,()y f x =图象的对称中心在导函数'()y f x =的对称轴上,且又是两个极值点的中点。

性质4 直线与三次函数图象相切,切点唯一。

证明 设三次函数32()(0)f x ax bx cx d a =+++≠。曲线()y f x =在点(,())t f t 处的切线方程为:()()()y f t f t x t '-=-即232(32)2y at bt c x at bt d =++--+,假设l 与曲线y 相切,切点不唯一。

不妨设l 与曲线()y f x =相切于点1

1

(,())A x f x ,22(,())B x f x ,其中12x x ≠。

所以22

11223232ax bx c ax bx c ++=++ ①

3232

112222ax bx d ax bx d --+=--+ ②

由于12x x ≠,由①得123()20a x x b ++=即123()2

a

b x x =-

+ ③ 由②得22

1122

122()()0a x x x x b x x ++++= ④ 将③代入④得212()0x x -=,所以12x x =,与假设矛盾。 所以原命题得证!

性质5 三次函数图象上任一点的切线存在情况。设00(,)P x y 是()f x 图象上任一点,过点P 的切线有以下两种情况:

(1)以点P 为切点的切线有一条.方程为000()()y y f x x x '-=-;

(2)以不同于点P 的点00(,)M x y ''为切点并过点P 的切线,方程为因切线过点P ,所以00

000()()y y f x x x ''''-=-,化简得: 22000002()()0ax b ax x ax bx ''+--+= , 22

20000()8()(3)b ax a ax bx ax b ?=-++=+,当03b

x a

=-

时,解得00x x '=(舍去),即03b x a =-

时这种切线不存在;当03b

x a

≠-时,解得0

0x x '=(舍去),00

22x b x a '=--,即03b

x a

≠-时这种切线存在1条。于是有: 当点P 是拐点(即03b

x a

=-

)时,过点P 的切线有且仅有1条,即以点P 为切点的切线;当点P 不是拐点(即03b

x a

≠-)时,过点P 的切线有且仅有2条,且它们的切点分别为点P 和点M 00(,())2222

x x

b b f a a -

---。 例1. 2010年高考湖北卷文科压轴题第21题:

设函数321(),032

a

f x x x bx c a =-++其中>,曲线()y f x =在(0(0))P f 处的切线方程为1y =。

(1)确定b,c 的值;

(2)设曲线()y f x =在点(,())x f x 及22(,())x f x 处的切线都过点(0,2)。证明:当22

x x ≠时,12()()f x f x ''≠。

解(1)略

(2)由321()132

a

f x x x =-+,得'2()f x x ax =-

由于点(,()t f t )处的切线方程为'()()(),y f t f t x t -=-而点(0.2)在切线上,所以2'()()(),f t f t t -=-化简得32210,32a t t -+=即t 满足的方程为3221032

a

t t -+=

下面用反证法证明:

假设12()()f x f x ''=,由于曲线()y f x =在点1122(,())(,())x f x x f x 及处的切线都过点(0.2),则下列等式成立:

321121032a x x -+= ① 322221032

a x x -+= ② 22

112

2x ax x ax -=- ③ 由③得12.x x a += 由①-②得22

21122

34

x x x x a ++=④

又22

22222221122

12121111133()()().244

a

x x x x x x x x a x a x x ax a x a a ++=+-=--=-+=-+≥ 故由④得12a x =

,此时22

a

x =与12x x ≠矛盾.所以12()()f x f x ''≠. 例 2 已知32()f x x bx cx d =+++在(,0)-∞上是增函数,在[0.2]上是减函数,且方程()0f x =有三个根,它们分别为2a β、 、。(1)求c 的值;(2)求证: (1)2f ≥(3)求a β-││的取值范围。

解 (1) 2()32f x ax bx c '=++,由题意可得:0x =为()f x 的极值点,(0)0,0f c '∴=∴=. (2)令2()320f x x bx '=+=,得1220,3

b

x x ==-

, ()f x 在(,0)-∞上是增函数,在[0.2]上是减函数,223

b

∴-

≥.即3b ≤-. 又(2)0,840,84.f b d d b =∴++=∴=--

(1)173 2.f b d b ∴=++=--≥

(3)方程()0f x =有三个根2a β、 、

∴设32()f x x bx cx d =+++2(2)()x x mx n =-++,

由待定系数法得 2.2

d m b n =+=-

, a β∴、2、为方程2(2)02

d

x b x ++-

=的两根, (2),2

d a b a ββ∴+=-+=-

: 2

22(2)2412a b d b b β∴-=++=-- =2(2)16b --. 2

3,9b a β≤-∴-≥ 2

3a β∴-≥

例 3 已知函数321().2

f x x x bx c =-++

(1)若()f x 的图象有与x 轴平行的切线,求b 的取值范围:

(2)若()f x 在1x =时取得极值,且[]1,2x ∈-时,2()f x c <恒成立,求c 的取值范围. 解 (1)设切点00(,)p x y ,则()f x 在P 点的切线的斜率2000()3.k f x x x b '==-+, 由题意,'2000()3.0f x x x b =-+=有解。1120,b ∴?=-≥解得。

(2)()f x 在1x =时取得极植 ∴1x =为方程2'()30f x x x b -+=的一个根2b ∴=-

∴由2320x x --=可得'()0f x =的另一根为223

x =-

当23x <-

或1x >时,'

()0f x >,∴当x ∈[-1,2]时,(x)f 在23[-1,-]递增,2(,1)3

-递减,[1,2]递增。∴()f x 在区间[-1,2]有极大值2()3f -=22

27

c +,又(2)2c f =+。∴当

x ∈[-1,2]时()f x 有最大值(2)2c f =+ 2()c f x <恒成立 ∴

22c c +<恒成立

c ∴<-1或2c >

参考文献:

[]1华东师范大学数学系.数学分析(第三版).北京:高等教育出版社. []M 2003

[]2袁拥军: 三次函数图象的四种类型. []J 数理天地.2005(4) []3付玉泉:三次函数对称中心的讨论. []J 文理导航.2011(8)

[]4寿阿根:对三次函数基本性质的探求. []J 绍庆文理学院学报.2007(11)

对数函数图像及其性质

《对数函数及其性质》 学校:广西师范大学院系:数学科学学院 作者: 学号: 对数函数及其性质 一、教学设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的, GUANGXINOPMAL UNlVEPSITY 人教A版第二章第2.2.2节

针对学生的学习背景,体现新课标要求和“学生是课堂活动的主体,教师是学生活动的引导者、组织者、帮助者”的教学理念。首先,基于“人人有份”的数学教学思想,坚持面向全体学生,引导学生积极主动地参与获取知识的全部过程,体现了学生为中心的教育教学理念。其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。数学课堂教学应该是一个自然的知识发生过程,课堂教学要坚持以学生为主体,教师为主导的“双主”地位,结合学情,让学生参与数学基本活动,探究和挖掘数学知识本质,以恰时恰点的问题引导数学活动,培养学生的问题意识,孕育创新精神。遵循这样的理念,我对此课时进行了如下设计: 第一、在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。 第二、在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。 第三、通过课堂教学活动向学生渗透数学思想方法。 二、学情分析 (一)学习的知识起点 学生在前面已经学习了指数函数及其性质,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对对函数的思想方法的理解。 (二)学习的经验起点大部分学生已经掌握了一些函数知识,具备一定学习函数的基本能力,如通过类比分析问题的能力;且有一定的自学能力。但由于高一学生思维的逻辑性还不是很严密,所以对于不同底数a 的对数函数的性质不能很好地进行区分。从学生的学习经验出发,让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受对数函数中底数a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的 规律,从而达到学生对对数函数知识的深刻掌握。 三、教材分析 (一)教材的地位与作用对数函数是在学生系统地学习了指数函数概念及性质, 掌握了对数与对数的运算性质的基础上展开研究的。作为重要的基本初等函数之一, 对数函数是指数函数知识的拓展和延伸,同时也为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识,因此对数函数在知识体系中起了承上启下的作用。它的教学过程,体现了数形结合的思想,同时蕴涵丰富的解题技巧,这对培养学生的观察、分析、概括的能力、发展学生严谨的思维能力有重要作

指数函数的图象和性质

指数函数的图象和性质 一、指数函数的定义:形如),1,0(R x a a a y x ∈≠>=且的函数叫指数函数. 1、函数x a a a y )232(2 +-=是指数函数,则a 的值是________. 2、已知函数1 4)(-+=x a x f 的图象恒过定点P ,则P 的坐标是__________. 3、将三个数31 7 .02.0)3 2(,3.1,5.1-按从小到大的顺序排列. 4、作出下列函数的图象: (1)12-=x y (2)131+=-x y (3)12-=x y (4)12 -=x y 5、要得到x y 212 -=的图象,只需将函数x y )4 1(=的图象 A 、向左平移1个单位 B 、向右平移1个单位 C 、向左平移 21个单位 D 、向右平移2 1 个单位

6、已知1,10-<<

一次函数的图象与性质

一次函数图象和性质 【知识梳理】 1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(k b -,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质 【思想方法】数形结合 【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点. (1)求这个一次函数的解析式; (2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积. 例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限; (3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方. 例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式; (2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0? k 、b 的符号 k >0,b >0 k >0,b <0 k <0,b >0 k <0,b <0 图像的大致位 置 经过象限 第 象限 第 象限 第 象限 第 象限 性质 y 随x 的增大 而 y 随x 的增大而而 y 随x 的增大 而 y 随x 的增大 而

x y O 3 2y x a =+ 1y kx b =+ y x O B A 【当堂检测】 1.直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______; 2.一次函数1y kx b =+与2y x a =+的图象如图,则下列 结论:①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( ) A .0 B .1 C .2 D .3 3.一次函数(1)5y m x =++,y 值随x 增大而减小,则m 的取值范围是( ) A .1m >- B . 1m <- C .1m =- D .1m < 4.一次函数23y x =-的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( ) 6.已知整数x 满足-5≤x≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是( ) A.1 B.2 C.24 D.-9 7.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.( 22,2 2-) C.(-21,-2 1 ) D.(-22,-22) 8.一次函数y =2x -2的图象不经过... 的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上两点,则下列判断正确的是 ( ) A .y 1>y 2 B .y 1y 2 D .当x 1

一次函数概念图像及性质

一次函数概念、图像及性质 【教学目标】 1. 了解认识一次函数定义、图像,并能根据函数解析式画出图像 2. 理解一次函数的截距概念,会根据直线的表达式指出它在y 轴上的截距 3. 理解、掌握一次函数性质,熟悉图像所经过的象限及y 随x 变化而变化的情况 4. 能运用一次函数的图像及性质解综合型问题 【教学重难点】 1. 根据一次函数的图像确定解析式 2. 掌握一次函数性质,并能灵活运用于解题 3. 能结合一次函数知识点灵活求解综合型问题 【教学内容】 ★ 知识梳理 一、概念 定义:解析式形如)0( ≠+=k b kx y 的函数叫做一次函数 二、图像 一次函数的图象满足:(1)形状是一条直线;(2)始终经过(0 , b )和(k b - , 0)两点 三、截距 定义:直线)0( ≠+=k b kx y 与y 轴的交点坐标是) , 0 (b ,截距是b 四、性质 1. 一次函数)0( ≠+=k b kx y ,当0>k 时,函数值y 随自变量x 的值增大而增大;当0k ,且0>b 时,直线)0( ≠+=k b kx y 经过第一、二、三象限 (2)当0>k ,且0b 时,直线)0( ≠+=k b kx y 经过第一、二、四象限 (4)当0

一、概念 例1. 下列关于x 的函数中,是一次函数的是( ) (A )1)1(32+-=x y (B )x x y 1+ = (C )x y 3-= (D )x y 5-= 例2. 下列各式中,y 与x 成正比例关系的是 ;成一次函数关系的是 (1)x y 43= (2)x y 2 2-= (3)x y 29-= (4)x y 4= (5)52=+xy (6)765=+y x 例3. 下列说法中,不正确的是( ) (A )一次函数不一定是正比例函数 (B )不是一次函数就一定不是正比例函数 (C )正比例函数是特殊的一次函数 (D )不是正比例函数不一定不是一次函数 例4. 下列说法不正确的是( ) (A )在32--=x y 中,y 是x 的正比例函数 (B )在x y 21-=中,y 与x 成正比例 (C )在1=xy 中,y 与x 1成正比例 (D )在圆的面积公式2r S π=中,S 与2r 成正比例 例5. 已知b kx y +=,当3-=x 时,0=y ;当1=x 时,4=y ,求k 、b 的值

高三数学三次函数图象和性质与四次函数问题

三次函数与四次函数 大连市红旗高中王金泽 wjz9589@https://www.wendangku.net/doc/6615222252.html, 在初中,已经初步学习了二次函数,到了高中又系统的学习和深化了二次函数,三次函数是继二次函数后接触的新的多项式函数类型,它是二次函数的发展,和二次函数类似也有“与x轴交点个数”等类似问题。三次函数是目前高考尤其是文科高考的热点,不仅仅如此,通过深化对三次函数的学习,可以解决四次函数问题。2008年高考有多个省份出现了四次函数高考题,本文的目的就是,对三次函数做个重点的归纳,并且阐述在四次函数中的应用 第一部分:三次函数的图象特征、以及与x轴的交点个数(根的个数)、极值情况 三次函数图象说明 a对图象 的影响 可以根据极限的思想去分析 当a>0时,在x→+∞右向上 伸展,x→-∞左向下伸展。 当a<0时,在x→+∞右向下 伸展,x→-∞左向上伸展。 (可以联系二次函数a对开口的影 响去联想三次函数右侧伸展情况) 与x轴有三 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 < ?x f x f,既两个极 值异号;图象与x轴有三个交点 与x轴有二 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 = ?x f x f,既有一 个极值为0,图象与x轴有两个 交点 与x轴有一 个交点 1。存在极值时即0 3 2> -ac b, 且0 ) ( ) ( 2 1 > ?x f x f,既两个 极值同号,图象与x轴有一个交点。 2。不存在极值,函数是单调函数 时图象也与x轴有一个交点。

1.()0f x =根的个数 三次函数d cx bx ax x f +++=23)( 导函数为二次函数:)0(23)(2/≠++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则0)(=x f 恰有一个实根; (2) 若032>-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032>-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032>-ac b ,且0)()(21-ac b ,且0)()(21>?x f x f ). (3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公共点且其中之一为切点,所以 032>-ac b ,且0)()(21=?x f x f . (4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032 >-ac b 且0)()(21++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中 a ac b b x a a c b b x 33,332221-+-= ---=. 证明:c bx ax x f ++=23)('2, △=)3(41242 2ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数.

对数函数的图像与性质说课稿

《对数函数》说课稿 各位老师,大家好: 今天我说课的题目是《对数函数》.对于这个课题,下面我主要从以下两大方面进行说明. 一、教材分析与教法设计 教材的内容与地位 《对数函数》是人教B版必修1第三章内容.主要学习(1)对数函数的定义(2)对数函数的图象与性质(3)利用对数函数图像与性质进行初步应用. 对数函数是继一次函数、二次函数、指数函数后所要研究的又一重要的基本初等函数,它在实际生活中有广泛的应用,所以学习对数函数既是对前面所学函数知识和方法的巩固、深化和提高,也为学习其他函数奠定良好的基础,起着承上启下的作用. 学情分析 在学习本节课前,学生学过指对互化原理,已经树立了相互联系相互转化的观点.而经过对一、二次函数、指数函数研究后,学生对函数研究思路有了更加理性的思维.但是对数是一个新出现的代数形式,学生在对数的四则运算方面掌握的并不好. 教学目标的确定及依据 按照《课程标准》的要求(通过具体实例,直观了解对数函数模型所刻画的数量关系;初步理解对数函数的概念,能借体会对数函数是一类重要的函数模型;助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点。),根据上述教材内容与地位的分析,考虑到学生的学情,我制定如下教学目标: 1、能够准确说出对数函数的定义;通过探究例1会利用对数函数定义求相关函数的定义域; 2、会画出具体的对数函数图像; 3、通过观察对数函数的图像,利用数形结合的思想方法,运用自主探究、小组合作方式归纳出对数函数的性质(定义域、值域、单调性、奇偶性、定点等); 4、通过探究例2学会利用对数函数的单调性判断大小.(已知真数大小,比较两个对数值大小;已知对数值大小,比较真数大小;已知对数值、真数大小判定底数范围。)获得灵活运用知识的能力. 教学重点与难点

一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质 一、知识要点: 1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正比例函数。 2、图象:一次函数的图象是一条直线, (1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。 3、性质: (1)图象的位置: (2)增减性 k>0时,y随x增大而增大 k<0时,y随x增大而减小 4.求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义 构造方程组。 ②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。 ③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 ④利用题目已知条件直接构造方程。 二、例题举例: 例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。 证明:∵与成正比例, 设=a(a≠0的常数), ∵y=, =(k≠0的常数), ∴y=·a=akx, 其中ak≠0的常数, ∴y与x也成正比例。 例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断 =(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得 n=-1, ∴=-3x-1,

高中数学三次函数的图象和性质精品教案教学设计

“三次函数的图象与性质”教学设计 一、教学内容解析: 三次函数是高中数学人教版选修2-2第一章第三节的内容。三次函数是中学数学利用导数研究函数的一个重要载体,有着重要的地位,围绕三次函数命制的试题,近几年来在全国各地高考及模拟试题中频繁出现,已成为高考数学的一大亮点,特别是文科数学。因此学习和掌握三次函数的基本性质很有必要。但教材也没提及三次函数的这一概念,题型也局限在只是解决系数为常数的极值和单调区间问题,各种教辅资料中也往往只从求导、求极值、求单调区间等角度进行一些零碎的、浅表的探索,而很少对它作出比较系统地、实质性地阐述。 本节课是高三复习探究课,具体内容是:借助信息技术、通过几何画板的操作生成关于三次函数的动态效果,从而以三次函数的图像的形状特征为主线,探究三次函数的单调性和极值问题,加强学生对三次函数图像与性质的感性认识、引发学生的理性思考,形成经验。同时在此过程中体会数形结合、分类讨论、化归与类比等思想方法。基于对教材的认识和分析,本节课的教学重点和难点分别确定为: 重点: (1)探究系数a,b,c,d的大小的变化与三次函数图像之间的变化规律; (2)根据图像探究三次函数的性质:单调性和极值。 难点: 根据图像分析出三次函数的性质:单调性和极值。 二、教学目标设置: 根据本节课的内容和地位,让学生通过这节课的教学达到下列三个目标: 1、知识与能力: ①加深对三次函数图像和性质的认识,学会利用三次函数解决问题;增强分析问题,解决问题的能力。

②培养自主学习的能力和利用计算机软件《几何画板》探求新知识的能力。 ③掌握一定的多媒体环境下研究性学习的方法和手段,提高现代教育技术素养。 2、过程与方法: 通过对函数)0(,)(23≠+++=a d cx bx ax x f 性质的研究,引导学生建立讨论函数性质的基本框架,知道函数性质的基本内容及其作用,掌握研究函数性质的基本过程和方法。 3、情感态度与价值观: 通过直观的图形和抽象的函数性质的统一,培养学生的辨证唯物主义思想观;在研究的过程中,通过同学之间的讨论与协作,培养合作精神。 三、学生学情分析: 本节课,学生已初步搭建起研究函数的基本平台,借助导数的工具和图形技术(几何画板)来研究三次函数的图象和性质,符合学生的认知规律。三次函数的导数是二次函数,二次函数是重要的且具有广泛应用的基本初等函数,学生对此已有较为全面、系统、深刻的认识,并在某些方面具备了把握规律的能力。三次函数虽同样是初等函数,学生能通过导数解决一些三次函数性质相关的题型,但利用几何画板探究三次函数的性质仍显力不从心。首先学生对《几何画板》不够熟悉。其次三次函数的图像与性质本身就有一定的难度。对于观察图像探究系数的变化对图像的影响,学生通过自己的努力基本能够解决。但由此归纳总结性质就存在问题,因为函数的图像与性质本身就很复杂,对学生能力方面的要求较高,不仅需要调动广泛的知识,而且需要有比较清晰的思路。因此这方面教师要通过设置问题、追问、恰当提示等方法加强引导,从而达到突破教学难点。 四、教学策略分析: 根据这节课内容的特点,本节课设计强调学生主动探究式的学习方式,这也是新课程所倡导的教学理念。为突破难点,紧紧围绕教学重点,结合学生已有的基础:会用导数研究三次函数的性质,通过创设问题情境,搭设台阶,并以追问或问题串的形式引导学生积极参与

一次函数的图像与性质

一次函数的性质和图像

目录一、函数的定义 (一)、一次函数的定义函数。

(二)、正比例函数的定义 二、函数的性质 (一)、一次函数的性质 (二)、正比例函数的性质 三、函数的图像 (一)、一次函数和正比例函数图像在坐标上的位置 (二)、一次函数的图像 1、一次函数图像的形状 2、一次函数图像的画法 (三)、正比例函数的图像 1、正比例函数图像的形状 2、正比例函数图像的画法 3、举例说明正比例函数图像的画法 四、k、b两个字母对图像位置的影响 K、b两个字母的具体分工是: (一次项系数)k决定图象的倾斜度。 (常数项)b决定图象与y轴交点位置。 五、解析式的确定 (一)一个点坐标决定正比,两个点坐标决定一次 (二)用待定系数法确定解析式

六、两条函数直线的四种位置关系 两直线平行,k1= k2,b1≠b2 两直线重合,k1= k2,b1=b2 两直线相交,k1≠k2 两直线垂直,k1×k2=-1 (一)两条函数直线的平行 (二)两条函数直线的相交 (三)两条函数直线的垂直 一次函数、反比例函数中自变量x前面的字母k称为比例系数 这一节我们要学习正比例函数和一次函数。一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。因此,正比例函数是一次函数当b=0时的特殊情况。正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。 在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

指数函数图像与性质的教案

§3.指数函数图像和性质 一、教材分析 教材的地位和作用 函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图象与性质。一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。 重难点分析 教学重点:指数函数的图像、性质及其简单运用 教学难点:指数函数图象和性质的发现过程,及指数函数图像与底的关系。 二、教学目标分析 知识目标:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想以及从特殊到一般等学习数学的方法,增强识图用图的能力情感目标:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。 三、教法学法分析 教法分析 采用梳理—探究—训练的教学方法,充分利用多媒体辅助教学,通过学生的互动探究,教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受 学法分析 学生思维活跃,求知欲强,但在思维习惯上还有待教师引导;从学生原有知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。 四、教学过程分析 1.创设情景,形成概念 2.发现问题,探究新知 3.深入探究,加深理解 4.强化训练,巩固双基 5.小结归纳,拓展深化 6.布置作业,升华提高

指数函数对数函数幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质 (一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n a a m n N n a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a 〉0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );。 n 为奇数 n 为偶数

3 .指数函数的图象与性质 y=a x a 〉1 0〈a 〈1 图象 定义域 R 值域 (0,+∞) 性质 (1)过定点(0,1) (2)当x 〉0时,y 〉1; x 〈0时,0〈y<1 (2) 当x 〉0时,0〈y 〈1; x<0时, y>1 (3)在(-∞,+∞)上是增函数 (3)在(—∞,+∞)上是减函数 注:如图所示,是指数函数(1)y=a x ,(2)y=b x , (3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1〉a 1〉b 1,∴c 〉d 〉1>a>b 。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。 (2)几种常见对数 对数形式 特点 记法 一般对数 底数为a 0,1a a >≠且 log N a 常用对数 底数为10 lg N 自然对数 底数为e ln N

一元三次函数性质与图象探索

一元三次函数性质与图象探索 高中部宋润生 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间 取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 接着,我们同样学习了二次函数,图象大致如下: 图1 图2 利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对

称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置. 三次函数的图象有六类.如图: 图3 图4

图5 图6 图7 图8 分析:由图3函数有哪些特点呢?归纳:解析式是,整个定义域上函数单调递增,在图4中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值,函数必经过原点.单调性又与什么知识相关呢?导数,现在求出函数的导数是 ,验证与0的关系,当时,即 的图象在是单调递增;当时,即 的图象在是单调递减相一致.当 ,根据图象知道,在处不是函数f(x)的极值点.所以 的根是函数取得极值的必要不充分条件.现在思考并验证函数 与函数图象有什么关系?经过验证得 出:函数与相同,当

时函数图象是图象向上平移|d|个单位;当时函数图象是图象向下平移|d|个单位;函数的导数都是. 在图5中解析式是,整个定义域上函数单调递增.在图6中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值.函数的导数,经过验证在图5中因为即,所以的图象在是单调递增;在图6中因为即,所以 的图象在是单调递减;函数都不存在极大值或极小值.为什么在图5中a>0、,在图6中a<0、呢?a>0、 或a<0、是又有什么结果呢?因为导数是二次函数,当a>0、或a<0、时判别式,导数函数不小于0,方程有一个根.当a>0、或a<0、时 ,方程有两个根.那么函数图象有什么特点呢?猜想如果,那么有两根,函数f(x)应有增也有减,我们来验证一下图7、图8: 在图7中解析式是,在或 上函数单调递增,在上函数单调递减;在处取得极大值,在处取得极小值;在图8中解析式是 ,在或上函数单调递减,在上函数单调递增;在处取得极小值,在处取得极

一次函数的图象与性质

一次函数的图象与性质(基础篇) 知识要点 1.一次函数的定义: ①已知y=(m+1)x2-|m|+n+4,当m= ,y是x的一次函数;当m= ,n= 时,y是x 的正比例函数. ②已知函数y=(k+2)x+k2-2,当k时,它为一次函数;当k= 时,它为正比例函数. 2.一次函数y=kx+b(k≠0)的图象特征: 一次函数的图象是一条直线,因为两点确定一条直线,所以画一次函数图象时,描点时常选图象与x轴的交点和y轴的交点. ①当k>0,b>0时,直线过第象限. ②当k>0,b<0时,直线过第象限. ③当k<0,b>0时,直线过第象限. ④当k<0,b<0时,直线过第象限. ⑤若正比例函数y=-(k+1)x+k2-4的图象只经过第一、三象限,则k = . ⑥一次函数y=-3x必过第象限. ⑦一次函数y=πx+3必过第象限. ⑧正比例函数y=(3k2+1)x必过第象限. 3.直线y=kx+b与y=kx(k≠0)的关系: 直线y=kx+b与y=kx(k≠0)的关系是平行关系. ①当b>0时,直线y= kx+b可以由直线y=kx向上平移个单位而得到. ②当b<0时,直线y= kx+b可以由直线y=kx向下平移个单位而得到. ③将直线y=3x沿y轴向平移个单位长度可得直线y=3x+6; ④将直线y=-5x+6沿y轴向平移个单位长度可得直线y=-x. 4.直线与坐标轴交点的求法: 求函数图象与x轴的交点坐标,令y=0,解方程kx+b=0得x的值,就是相应的横坐标x的值; 求函数图象与y轴的交点坐标,令x=0得y=b,就是相应的横坐标y的值; ①已知函数y=2x-6,与x轴的交点坐标为;与y轴的交点坐标为. ②函数y=2x+1的图象是不经过第象限的直线,它与x轴的交点坐标是,与y轴的交点坐标是. 5.一次函数y=kx+b(k≠0)的增减性: 当k>0时,y随x的增大而增大,函数图象从左到右呈上升趋势. 当k<0时,y随x的增大而减小,函数图象从左到右呈下降趋势. ①已知一次函数y=(1-2k)x+2k-1,当k时,y随x的增大而增大,此时图象经过第象限. ②已知一次函数y=(6+3m)x+(n-4). 当m时,y随x的增大而减小;当m,n时,函数图象与y轴的交点在x 轴下方;当m,n时,函数图象经过原点.

二次函数图像与性质总结

二次函数图像与性质总 结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。Array 3.()2 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 二、二次函数图象的平移 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后 者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中 2 424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般 我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴 对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ???,.当2 b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

指数函数的图像及性质知识要点

第10讲 指数函数的图像及性质 一、学习目标 1.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图像,探索并理解指数函数的单调性与特殊点,掌握指数函数的性质 2.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. 掌握指数函数的性质及应用. 3. 逐步渗透数形结合的数学思想方法 二、重点难点 1.教学重点:利用函数的单调性求最值 2.教学难点:函数在给定区间上的最大(小)值 第一部分 知识梳理 讨论:12()2x x y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗? ②利用电脑软件画出11 5,3,(),()35x x x x y y y y ====的函数图 象. 864 2 -2 -4 -6 -8-5510 问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律. 8 6 4 2 -2-4 -6 -8-5 510 从图上看x y a =(a >1)与x y a =(0<a <1)两函数图象的特征. 问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 3x y = 5x y = 13x y ??= ??? 15x y ?? = ??? 0

问题3:指数函数x y a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系 图象特征 函数性质 a >1 0<a <1 a >1 0<a <1 向x 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R + 函数图象都过定点(0,1) 0a =1 自左向右, 图象逐渐上升 自左向右, 图象逐渐下降 增函数 减函数 在第一象限内的图 象纵坐标都大于1 在第一象限内的图 象纵坐标都小于1 x >0,x a >1 x >0,x a <1 在第二象限内的图 象纵坐标都小于1 在第二象限内的图 象纵坐标都大于1 x <0,x a <1 x <0,x a >1 5.利用函数的单调性,结合图象还可以看出: (1)在[,]x a b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例1:(P 66例7)比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.10.8-与0.20.8 - ( 3 ) 1.70.3 与 0.9 3.1 1、已知0.70.90.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 2. 比较1 132a a 与的大小(a >0且a ≠0). x y d =的图象,判断,,,a b c d 与1的大小关系;

(整理)二次函数图像与性质总结(含答案)

二次函数的图像与性质 一、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

对数函数图像及其性质

《对数函数及其性质》人教A版第二章第2.2.2节 学校:广西师大学 院系:数学科学学院 作者: 学号:

对数函数及其性质 一、教学设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,体现新课标要求和“学生是课堂活动的主体,教师是学生活动的引导者、组织者、帮助者”的教学理念。首先,基于“人人有份”的数学教学思想,坚持面向全体学生,引导学生积极主动地参与获取知识的全部过程,体现了学生为中心的教育教学理念。其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。数学课堂教学应该是一个自然的知识发生过程,课堂教学要坚持以学生为主体,教师为主导的“双主”地位,结合学情,让学生参与数学基本活动,探究和挖掘数学知识本质,以恰时恰点的问题引导数学活动,培养学生的问题意识,孕育创新精神。遵循这样的理念,我对此课时进行了如下设计: 第一、在课堂活动过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。 第二、在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。 第三、通过课堂教学活动向学生渗透数学思想方法。 二、学情分析 (一)学习的知识起点 学生在前面已经学习了指数函数及其性质,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对对函数的思想方法的理解。 (二)学习的经验起点 大部分学生已经掌握了一些函数知识,具备一定学习函数的基本能力,如通过类比分析问题的能力;且有一定的自学能力。但由于高一学生思维的逻辑性还不是很严密,所以对于不同底数a的对数函数的性质不能很好地进行区分。从学生的学习经验出发,让学生体验对数函数来源于实践,通过教师课件的演示,通

相关文档 最新文档