文档库 最新最全的文档下载
当前位置:文档库 › 高中物理电磁感应难题集讲解学习

高中物理电磁感应难题集讲解学习

高中物理电磁感应难题集讲解学习
高中物理电磁感应难题集讲解学习

高中物理电磁感应难

题集

高中物理电磁感应难题集

Collect by LX 2014.04.11

1.(2015?青浦区一模)如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8).求:

(1)金属棒与导轨间的动摩擦因数μ

(2)cd离NQ的距离s

(3)金属棒滑行至cd处的过程中,电阻R上产生的热量

(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式).

2.(2015?潍坊校级模拟)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;

(2)金属棒的速度大小随时间变化的关系.

3.(2014秋?西湖区校级月考)如图,一半径为R的圆表示一柱形区域的横截面(纸

面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子

沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与

直线垂直.圆心O到直线的距离为.现将磁场换为平行于纸面且垂直于直线的匀强

电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应强度大小为B,不计重力,求电场强度的大小.

4.(2014?秦州区校级模拟)如图所示,两根足够长且平行的光滑金属导轨与水平面成53°夹角固定放置,导轨间连接一阻值为6Ω的电阻R,导轨电阻忽略不计.在两平行虚线m、n间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场.导体棒a的质量为m a=0.4kg,电阻R a=3Ω;导体棒b的质量为m b=0.1kg,电

阻R b=6Ω;它们分别垂直导轨放置并始终与导轨接触良好.a、b从开始相距L0=0.5m处同时将它们由静止开

始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,不计a、b之间电流的相互作用).求:

(1)当a、b分别穿越磁场的过程中,通过R的电荷量之比;

(2)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比;

(3)磁场区域沿导轨方向的宽度d为多大;

(4)在整个过程中,产生的总焦耳热.

5.(2014?郫县校级模拟)如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导

r=0.20Ω的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下.用一外力F沿水平方向拉金属杆ab,使之由静止开始运动,电压传感器可将R两端的电压U即时采集并输入电脑,获得电压U随时间t变化的关系如图乙所示.

(1)试证明金属杆做匀加速直线运动,并计算加速度的大小;

(2)求第2s末外力F的瞬时功率;

(3)如果水平外力从静止开始拉动杆2s所做的功W=0.35J,求金属杆上产生的焦耳热.

6.(2014?赣州二模)相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为

m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8Ω,导轨电阻不计.ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放.

(1)指出在运动过程中ab棒中的电流方向和cd棒受到的安培力方向;

(2)求出磁感应强度B的大小和ab棒加速度大小;

(3)已知在2s内外力F做功40J,求这一过程中两金属棒产生的总焦耳热;

(4)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时

间t0,并在图(c)中定性画出cd棒所受摩擦力f cd随时间变化的图

象.

7.(2014?广东模拟)如图所示,有一足够长的光滑平行金属导轨,

电阻不计,间距L=0.5m,导轨沿与水平方向成θ=30°倾斜放置,底部连接有一个阻值为R=3Ω的电阻.现将一根长也为L=0.5m质量为m=0.2kg、电阻r=2Ω的均匀金属棒,自轨道顶部静止释放后沿轨道自由滑下,下滑中均保持与轨道垂直并接触良好,经一段距离后进入一垂直轨道平面的匀强磁场中,如图所示.磁场上部有边界OP,下部无边界,磁感应强度B=2T.金属棒进入磁场后又运动了一段距离便开始做匀速直线运动,在做匀速直线运动之前这段时间内,金属棒上产生了Q r=2.4J的热量,且通过电阻R上的电荷量为q=0.6C,取

g=10m/s2.求:

(1)金属棒匀速运动时的速v0;

(2)金属棒进入磁场后,当速度v=6m/s时,其加速度a的大小及方向;

(3)磁场的上部边界OP距导轨顶部的距离S.

8.(2013春?莲湖区校级期末)如图,一直导体棒质量为m、长为l、电阻为r,其两端放在位于水平面内间距也为l的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面.开始时,给导体棒一个平行于导轨的初速度v0.在棒的运动速度由v0减小至v1的过程中,通过控制负载电阻的阻值使棒中的电流强度I保持恒定.导体棒一直在磁场中运动.若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率.

9.(2013?上海)如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连.导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,

x=0处磁场的磁感应强度B0=0.5T.一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:(1)电路中的电流;

(2)金属棒在x=2m处的速度;

(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;

(4)金属棒从x=0运动到x=2m过程中外力的平均功率.

10.(2013?广东)如图(a)所示,在垂直于匀强磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴转动,圆心O和边缘K通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件.流过电流表的电流I与圆盘角速度ω的关系如图(b)所示,其中ab段和bc段均为直线,且ab段过坐标原点.ω>0代表圆盘逆时针转动.已知:R=3.0Ω,B=1.0T,r=0.2m.忽略圆盘、电流表和导线的电阻.

(1)根据图(b)写出ab、bc段对应I与ω的关系式;

(2)求出图(b)中b、c两点对应的P两端的电压U b、U c;

(3)分别求出ab、bc段流过P的电流I p与其两端电压U p的关系式.

11.(2013?武清区校级模拟)如图所示,ef,gh为水平放置的足够长的平行光滑导轨,导轨间距为

L=1m,导轨左端连接一个R=2Ω的电阻,将一根质量为0.2kg的金属棒cd垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B=2T的匀强磁场中,磁场方向垂直于导轨

(1)若施加的水平外力恒为F=8N,则金属棒达到的稳定速度v1是多少?

(2)若施加的水平外力的功率恒为P=18W,则金属棒达到的稳定速度v2是多少?

(3)若施加的水平外力的功率恒为P=18W,则金属棒从开始运动到速度v3=2m/s的过程中电阻R产生的热量为8.6J,则该过程所需的时间是多少?

12.(2013?宝山区一模)相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8Ω,导轨电阻不计.ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放.(g=10m/S2)

(1)求出磁感应强度B的大小和ab棒加速度大小;

(2)已知在2s内外力F做功40J,求这一过程中ab金属棒产生的焦耳热;

(3)求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力f cd随时间变化的图线.

13.(2013?河南模拟)如图所示,在一光滑水平的桌面上,放置一质量为M,宽为L的足够长“U”型框架,其ab部分电阻为R,框架其它部分的电阻不计.垂直框架两边放一质量为m、电阻为R的金属棒cd,它们之间的动摩擦因数为μ,棒通过细线跨过一定滑轮与劲度系数为k的另一端固定的轻弹簧相连.开始弹簧处于自然状态,框架和棒均静止.现在让框架在大小为2μmg的水平拉力作用下,向右做加速运动,引起棒的运动可看成是缓慢的.水平桌面位于竖直向上的匀强磁场中,磁感应强度为B.问:

(1)框架和棒刚开始运动的瞬间,框架的加速度为多大?

(2)框架最后做匀速运动(棒处于静止状态)时的速度多大?

(3)若框架通过位移S 后开始匀速,已知弹簧的弹性势能的表达式为 kx2(x为弹簧的形变量),则在框架通过位移 s 的过程中,回路中产生的电热为多少?

14.(2013?漳州模拟)如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg、阻值r=0.5Ω的匀质金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.(g=10m/s2)

(1)保持ab棒静止,在0~4s内,通过金属棒ab的电流多大?方向如何?

(2)为了保持ab棒静止,需要在棒的中点施加了一平行于导轨平面的外力F,求当t=2s时,外力F的大小和方向;

(3)5s后,撤去外力F,金属棒将由静止开始下滑,这时用电压传感器将R两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2.4m,求金属棒此时的速度及下滑到该位置的过程中在电阻R上产生的焦耳热.

15.(2012?浙江)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪

烁”装置.如图所示,自行车后轮由半径r1=5.0×10﹣2m的金属内圈、半径r2=0.40m的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4跟金属条,每根金属条的中间均串联有一电阻值为R的小灯泡.在支架上装有磁铁,形成了磁感应强度B=0.10T、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=.后轮以角速度ω=2π rad/s,相对转轴转动.若不计其它电阻,忽略磁场的边缘效应.(1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;

(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图;

(3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差U ab随时间t变化的U ab﹣t图象;

(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价.

16.(2012?天津)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T.棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:

(1)棒在匀加速运动过程中,通过电阻R的电荷量q;

(2)撤去外力后回路中产生的焦耳热Q2;

(3)外力做的功W F.

17.(2012?广东)如图所示,质量为M的导体棒ab,垂直放在相距为l 的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置间距为d的平行金属板,R和R x分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.

(1)调节R x=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v.

(2)改变R x,待棒沿导轨再次匀速下滑后,将质量为m带电量为+q的微粒水平射入金属板间,若它能匀速

通过,求此时的R x.

18.(2012?上海)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上.一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形.棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱.导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0.以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B.在t=0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a.

(1)求回路中感应电动势及感应电流随时间变化的表达式;

(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?

(3)某一过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量.

19.(2012?邯郸一模)如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.如图所示,将甲、乙两阻值相同,质量均为m的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l.从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小以a=gsinθ,乙金属杆刚进入磁场时做匀速运动.

(1)求每根金属杆的电阻R为多少?

(2)从刚释放金属杆时开始计时,写出从计时开始到甲金属杆离开磁场的过程中外力F随时间t的变化关系式,并说明F的方向.

20.(2012?温州模拟)一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面是绝缘且光滑的斜面顶端,自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端BB′,设金属框在下滑时即时速度为v,与此对应的位移为s,那么v2﹣s图象如图2所示,已知匀强磁场方向垂直斜面向上.试问:

(1)分析v2﹣s图象所提供的信息,计算出斜面倾角θ和匀强磁场宽度d.

(2)匀强磁场的磁感应强度多大?

(3)金属框从斜面顶端滑至底端所需的时间为多少?

(4)现用平行斜面沿斜面向上的恒力F作用在金属框上,使金属框从斜面底端BB′静止开始沿斜面向上运动,匀速通过磁场区域后到达斜面顶端.试计算恒力F做功的最小值.

21.(2012?中山市校级模拟)如图1所示,在坐标系xOy中,在﹣L≤x<0区域存在强弱可变化的磁场

B1,在0≤x≤2L区域存在匀强磁场,磁感应强度B2=2.0T,磁场方向均垂直于纸面向里.一边长为L=0.2m、总电阻为R=0.8Ω的正方形线框静止于xOy平面内,线框的一边与y轴重合.

(1)若磁场B1的磁场强度在t=0.5s内由2T均匀减小至0,求线框在这段时间内产生的电热为多少?

(2)撤去磁场B1,让线框从静止开始以加速度a=0.4m/s2沿x轴正方向做匀加速直线运动,求线框刚好全部

(3)在(2)的条件下,取线框中逆时针方向的电流为正方向,试在图2给出的坐标纸上作出线框中的电流I 随运动时间t的关系图线.(不要求写出计算过程,但要求写出图线端点的坐标值,可用根式表示)

22.(2012?麦积区校级模拟)如图水平金属导轨的间距为1m,处在一个竖直向上的匀强磁场中,磁感应强度B=2T,其上有一个与之接触良好的金属棒,金属棒的电阻R=1Ω,导轨电阻不计,导轨左侧接有电源,电动势E=10V,内阻r=1Ω,某时刻起闭合开关,金属棒开始运动,已知金属棒的质量m=1kg,与导轨的动摩擦因数为0.5,导轨足够长.问:

(1)金属棒速度为2m/s时金属棒的加速度为多大?

(2)金属棒达到稳定状态时的速度为多大?

(3)导轨的右端是一个高和宽均为0.8m的壕沟,那么金属棒离开导轨后能否落到对面的平台?

23.(2012?眉山模拟)如图所示,两根不计电阻的金属导线MN与PQ 放在水平面内,MN是直导线,PQ 的PQ1段是直导线,Q1Q2段是弧形导线,Q2Q3段是直导线,MN、PQ1、Q2Q3相互平行.M、P间接入一个阻值R=0.25Ω的电阻.质量m=1.0kg、不计电阻的金属棒AB能在MN、PQ上无摩擦地滑动,金属棒始终垂直于MN,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向竖直向下.金属棒处于位置(I)时,给金属棒一向右的初速度v1=4 m/s,同时给一方向水平向右F1=3N的外力,使金属棒向右做匀减速直线

运动;当金属棒运动到位置(Ⅱ)时,外力方向不变,改变大小,使金属棒向右做匀速直线运动2s到达位置(Ⅲ).已知金属棒在位置(I)时,与MN、Q1Q2相接触于a、b两点,a、b的间距L1=1 m;金属棒在位置(Ⅱ)时,棒与MN、Q1Q2相接触于c、d两点;位置(I)到位置(Ⅱ)的距离为7.5m.求:

(1)金属棒向右匀减速运动时的加速度大小;

(2)c、d两点间的距离L2;

(3)金属棒从位置(I)运动到位置(Ⅲ)的过程中,电阻R上放出的热量Q.

24.(2012?黄州区校级模拟)如图(a)所示,间距为L电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域I内有方向垂直于斜面的匀强磁场,磁感应强度恒为B不变;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t的大小随时间t变化的规律如图(b)所示.t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上也由静止释放.在ab棒运动到区域Ⅱ的下边界EF之前,cd棒始终静止不动,两棒均与导轨接触良好.又已知cd棒的质量为m,区域Ⅱ沿斜面的长度也是L,在t=t x时刻(t x未知)ab棒恰好进入区域Ⅱ,重力加速度为g.求:

(1)通过cd棒中的电流大小和区域I内磁场的方向

(2)ab棒开始下滑的位置离区域Ⅱ上边界的距离s;

(3)ab棒从开始到下滑至EF的过程中,回路中产生的总热量.(结果均用题中的已知量表示)

25.(2011?四川)如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场.电阻R=0.3Ω、质量m1=0.1kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05kg的小环.已知小环以a=6m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10m/s2,sin37°=0.6,cos37°=0.8.求

(1)小环所受摩擦力的大小;

(2)Q杆所受拉力的瞬时功率.

26.(2011?海南)如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m.竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好.求:

(1)细线烧断后,任意时刻两杆运动的速度之比;

(2)两杆分别达到的最大速度.

27.(2011?天津)如图所示,两根足够长的光滑金属导轨MN、PQ间

距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°

角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨

始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个

装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒

ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止.取g=10m/s2,问:

(2)棒ab受到的力F多大?

(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?

28.(2011?上海)电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上.阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q r=0.1J.(取g=10m/s2)求:

(1)金属棒在此过程中克服安培力的功W安;

(2)金属棒下滑速度v=2m/s时的加速度a.

(3)为求金属棒下滑的最大速度v m,有同学解答如下:由动能定理W重﹣W安=mv,….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.

29.(2011?奉贤区二模)如图所示,光滑斜面的倾角α=30°,在

斜面上放置一矩形线框abcd,ab边的边长l1=lm,bc边的边长

l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框受到沿光滑斜面

向上的恒力F的作用,已知F=10N.斜面上ef线(ef∥gh)的右方

有垂直斜面向上的均匀磁场,磁感应强度B随时间t的变化情况如B﹣t图象,时间t是从线框由静止开始运动时刻起计的.如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s=5.1m,求:(1)线框进入磁场时匀速运动的速度v;

(2)ab边由静止开始到运动到gh线处所用的时间t;

(3)线框由静止开始到运动到gh线的整个过程中产生的焦耳热.

30.(2011?萧山区校级模拟)如图所示,两根电阻不计,间距为l的平行金属导轨,一端接有阻值为R的电阻,导轨上垂直搁置一根质量为m.电阻为r的金属棒,整个装置处于竖直向上磁感强度为B的匀强磁场中.现给金属棒施一冲量,使它以初速V0向左滑行.设棒与导轨间的动摩擦因数为μ,金属棒从开始运动到停止的整个过程中,通过电阻R的电量为q.求:(导轨足够长)

(1)金属棒沿导轨滑行的距离;

(2)在运动的整个过程中消耗的电能.

参考答案与试题解析

1.(2015?青浦区一模)如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8).求:

(1)金属棒与导轨间的动摩擦因数μ

(2)cd离NQ的距离s

(3)金属棒滑行至cd处的过程中,电阻R上产生的热量

(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系

式).

考点:导体切割磁感线时的感应电动势;共点力平衡的条件及其应用;牛顿第二定

律;电磁感应中的能量转化.

专题:压轴题;电磁感应——功能问题.

擦力,由牛顿第二定律可求出动摩擦因数.

(2)当金属棒速度稳定时,则受到重力、支持力、安培力与滑动摩擦力达

到平衡,这样可以列出安培力公式,产生感应电动势的公式,再由闭合电路

殴姆定律,列出平衡方程可求出金属棒的内阻,从而利用通过棒的电量来确

定发生的距离.

(3)金属棒滑行至cd处的过程中,由动能定理可求出安培力做的功,而由

于安培力做功导致电能转化为热能.

(4)要使金属棒中不产生感应电流,则穿过线框的磁通量不变.同时棒受

到重力、支持力与滑动摩擦力做匀加速直线运动.从而可求出磁感应强度B

应怎样随时间t变化的.

解答:解:(1)当v=0时,a=2m/s2

由牛顿第二定律得:mgsinθ﹣μmgcosθ=ma

μ=0.5

(2)由图象可知:v m=2m/s

当金属棒达到稳定速度时,有F A=B0IL;

且B0IL+μmgcosθ=mgsinθ

解得I=0.2A;

切割产生的感应电动势:E=B0Lv=1×0.5×2=1V;

因,

解得r=1Ω

电量为:

而△φ=△B×L×s

即有:s=2m

(3)

产生热量:W F=Q总=0.1J

(4)当回路中的总磁通量不变时,

金属棒中不产生感应电流.

此时金属棒将沿导轨做匀加速运动.

牛顿第二定律:mgsinθ﹣μmgcosθ=ma

a=g(sinθ﹣μcosθ)=10×(0.6﹣0.5×0.8)m/s2=2m/s2

则磁感应强度与时间变化关系:.

所以:(1)金属棒与导轨间的动摩擦因数为0.44;

(2)cd离NQ的距离2m;

(3)金属棒滑行至cd处的过程中,电阻R上产生的热量0.08J;

(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度

逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t

变化为.

点评:本题考查了牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式,还有动能定理.同时当金属棒速度达到稳定时,则一定是处于平衡状

算出棒的距离.最后线框的总磁通量不变时,金属棒中不产生感应电流是解

题的突破点.

2.(2015?潍坊校级模拟)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;

(2)金属棒的速度大小随时间变化的关系.

考点:导体切割磁感线时的感应电动势;力的合成与分解的运用;牛顿第二定律;

电容.

专题:压轴题;电磁感应中的力学问题.

分析:(1)由法拉第电磁感应定律,求出感应电动势;再与相结合求出电荷

量与速度的关系式.

(2)由左手定则来确定安培力的方向,并求出安培力的大小;借助于

、及牛顿第二定律来求出速度与时间的关系.

解答:解:(1)设金属棒下滑的速度大小为v,则感应电动势为E=BLv,

平行板电容器两极板之间的电势差为U=E,

设此时电容器极板上积累的电荷量为Q,

按定义有,

联立可得,Q=CBLv.

(2)设金属棒的速度大小为v时,经历的时间为t,通过金属棒的电流为

i,

金属棒受到的磁场力方向沿导轨向上,大小为f1=BLi,

设在时间间隔(t,t+△t)内流经金属棒的电荷量为△Q,

则△Q=CBL△v,

按定义有:,

△Q也是平行板电容器极板在时间间隔(t,t+△t)内增加的电荷量,

由上式可得,△v为金属棒的速度变化量,

金属棒所受到的摩擦力方向沿导轨斜面向上,

大小为:f2=μN,式中,N是金属棒对于导轨的正压力的大小,

有N=mgcosθ,

金属棒在时刻t的加速度方向沿斜面向下,

设其大小为a,

根据牛顿第二定律有:mgsinθ﹣f1﹣f2=ma,

联立上此式可得:.

由题意可知,金属棒做初速度为零的匀加速运动,t时刻金属棒的速度大小为

答:(1)电容器极板上积累的电荷量与金属棒速度大小的关系为

Q=CBLv;

(2)金属棒的速度大小随时间变化的关系

点评:本题让学生理解左手定则、安培力的大小、法拉第电磁感应定律、牛顿第二

定律、及运动学公式,并相互综合来求解.

3.(2014秋?西湖区校级月考)如图,一半径为R的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应强度大小为B,不计重力,求电场强度的大小.

考点:法拉第电磁感应定律;电磁场.

专题:压轴题.

分析:通过带电粒子在磁场中做圆周运动,根据几何关系求出轨道半径的大小.带电

粒子在匀强电场中做类平抛运动,结合在沿电场方向上做匀加速直线运动和垂

直于电场方向做匀速直线运动,求出电场强度与磁感应强度的大小关系.

解答:解:粒子在磁场中做圆周运动.设圆周的半径为r,由牛顿第二定律和洛仑兹

力公式得…①

式中v为粒子在a点的速度.

过b点和O点作直线的垂线,分别与直线交于c和d点.由几何关系知,线

段和过a、b两点的轨迹圆弧的两条半径(未画出)围成一正方

形.因此…②

设,由几何关系得=R+x…③

…④

联立②③④式得 r=R ⑤

再考虑粒子在电场中的运动.设电场强度的大小为E,粒子在电场中做类平抛

运动.设其加速度大小为a,由牛顿第二定律和带电粒子在电场中的受力公式

得qE=ma…⑥

粒子在电场方向和直线方向所走的距离均为r,有运动学公式得r=…⑦

r=vtr=vt…⑧

式中t是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E=

答:电场强度的大小为.

点评:解决本题的关键掌握带电粒子在磁场中磁偏转和在电场中电偏转的区别,知道

磁偏转做匀速圆周运动,电偏转做类平抛运动.

4.(2014?秦州区校级模拟)如图所示,两根足够长且平行的光滑金属导轨与水平面成53°夹角固定放置,导轨间连接一阻值为6Ω的电阻R,导轨电阻忽略不计.在两平行虚线m、n间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场.导体棒a的质量为m a=0.4kg,电阻R a=3Ω;导体棒b的质量为m b=0.1kg,电

阻R b=6Ω;它们分别垂直导轨放置并始终与导轨接触良好.a、b从开始相距L0=0.5m处同时将它们由静止开

始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,不计a、b之间电流的相互作用).求:

(1)当a、b分别穿越磁场的过程中,通过R的电荷量之比;

(2)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比;

(3)磁场区域沿导轨方向的宽度d为多大;

(4)在整个过程中,产生的总焦耳热.

考点:法拉第电磁感应定律;电磁感应中的能量转化.

专题:压轴题;电磁感应——功能问题.

分析:(1)导体棒进入磁场切割磁感线,从而产生感应电动势,电路出现感应电

流,则由法拉第电磁感应定律与闭合电路欧姆定律,可推出通过导体棒的电量

表达式:.

(2)两棒匀速穿越磁场的过程中,安培力等于重力的分力.a棒匀速通过

时,a棒相当于电源,求出总电阻,b棒匀速通过时,b棒相当于电源,求出

总电阻.根据BIL==mgsinθ,求出速度比.

(3)当b棒到达m时,两棒的速度相等,设b棒通过磁场的时间为t,则a

棒到达m的速度v a=v b+gsin53°t,又d=v b t,根据两棒匀速运动的速度关

系,求出两速度,再根据,可求出m点到n点的

距离.

(4)在a穿越磁场的过程中,因a棒切割磁感线产生感应电流,可求出对应

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

高级中学物理电磁感应定律学习知识点加例题

私塾国际学府学科教师辅导教案 组长审核:

6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差. (1)磁感应强度B 不变,有效面积S 变化时,则ΔΦ=Φ2-Φ1=B ·ΔS. (2)磁感应强度B 变化,磁感线穿过的有效面积S 不变时,则ΔΦ=Φ2-Φ1=ΔB ·S. (3)磁感应强度B 和有效面积S 同时变化时,则ΔΦ=Φ2-Φ1=B 2S 2-B 1S 1. 注意几个概念: (1)磁通量Φ:某时刻穿过磁场中某个面的磁感应线条数,若穿过某个面有方向相反的磁场,则不能直接用Φ=B ·S ,应考虑相反方向的磁感应或抵消以后所剩余的磁通量。 (2)磁通量变化量ΔΦ:穿过某个面的磁通量随时间的变化量。注意开始和转过180o时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S ,而不是零。 (3)磁通量的变化率ΔΦ/Δt :表述磁场中穿过某一面的磁通量变化快慢的物理量。它既不表示磁通量的大小也不表示磁通量变化的多少,在Φ-t 图像中,可用图形的斜率表示。 剖析: ① 磁通量?的实质就是穿过某面积的磁感线的条数。 ② 磁感线除了有大小以外,还有方向,但它是个标量。磁通量的方向仅仅表示磁感线沿什么方向穿过 某面积,其运算不满足矢量合成的平行四边形定则,只满足代数运算,在求其变化量时,事先要设正方向,并将“+”、“-”号代入。 ③ 由磁通量的定义θ?sin BS =可得:θ ? sin S B = ,此式表示“磁感应强度B 大小等于穿过垂直于磁 场方向的单位面积的磁感线条数”,所以磁感应强度又被叫做“磁感密度”。 [例题1] .如图10-1-4所示,面积大小不等的两个圆形线圈A 和B 共轴套在一条形磁铁上,则穿过A 、B 磁通量的大小关系是A ?____B ?。 解析:磁铁内部向上的磁感线的总条数是相同的,但由于线圈A 的面积大于B 的,外部穿过线圈向下的磁感线的条数A 的大于B 的,所以A ?<B ?。 10-1-4

高中物理十大难点之法拉第电磁感应定律

难点之七 法拉第电磁感应定律 一、难点形成原因 1、关于表达式t n E ??=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ?是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ?、t ??φ的关系容易混淆不清。 2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E = 、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。 3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。 二、难点突破 1、φ、φ?、t ??φ同v 、△v 、t v ??一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。 磁通量φ 磁通量变化量φ? 磁通量变化率t ??φ 物理 意 义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多 某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小 计 算 ⊥=BS φ,⊥S 为与B 垂直的面积 12φφφ-=?,S B ?=?φ或B S ?=?φ t S B t ??=??φ 或t B S t ??=??φ 注 意 若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方 向的磁通量相互抵消以 后所剩余的磁通量 开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一 正一负,△φ=2 BS , 而不是零 既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示 2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题 ⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。此公式也可

高中物理电磁感应定律知识点加例题资料

中国最负责任的教育机构 私塾国际学府学科教师辅导教案 组长审核: 学员编号:年级:年级课时数:3课时 学员姓名:辅导科目:物理学科教师:杨振 授课主题 教学目的 教学重点 授课日期及时段 教学内容 新课讲-练-总结 一、磁通量 1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量. 2.定义式:Φ=BS. 说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向的夹角. 3.磁通量Φ是标量,但有正负.Φ的正负意义是:从正、反两面哪个面穿入,若从一面穿入为正,则从另一面穿入为负. 4.单位:韦伯,符号:Wb. 5.磁通量的直观含义:表示磁场中穿过某一面积磁感线的条数. 6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差. (1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS. (2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S. (3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1. 注意几个概念: (1)磁通量Φ:某时刻穿过磁场中某个面的磁感应线条数,若穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁感应或抵消以后所剩余的磁通量。 (2)磁通量变化量ΔΦ:穿过某个面的磁通量随时间的变化量。注意开始和转过180o时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B·S,而不是零。 (3)磁通量的变化率ΔΦ/Δt:表述磁场中穿过某一面的磁通量变化快慢的物理量。它既不表示磁通量的大

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习 —电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 R v a b θ d 图12-1 M v B

B .通过导线某一横截面的电荷量之比是1:1 C .拉力做功之比是1:4 D .线框中产生的电热之比为1:2 4. 图12-5,条形磁铁用细线悬挂在O 点。O 点正下方固定一个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的是 ( ) A .在磁铁摆动一个周期内,线圈内感应电流的方向改变2次 B .磁铁始终受到感应电流磁铁的斥力作用 C .磁铁所受到的感应电流对它的作用力始终是阻力 D .磁铁所受到的感应电流对它的作用力有时是阻力有时是动力 5. 两相同的白炽灯L 1和L 2,接到如图12-4的电路中,灯L 1与电容器串联,灯L 2与电感线圈串联,当a 、b 处接电压最大值为U m 、频率为f 的正弦交流电源时,两灯都发光,且亮度相同。更换一个新的正弦交流电源后,灯L 1的亮度大于大于灯L 2的亮度。新电源的电压最大值和频率可能是 ( ) A .最大值仍为U m ,而频率大于f B .最大值仍为U m ,而频率小于f C .最大值大于U m ,而频率仍为f D .最大值小于U m ,而频率仍为f 6.一飞机,在北京上空做飞行表演.当它沿西向东方向做飞行表演时(图12-6),飞行员左右两机翼端点哪一点电势高( ) A .飞行员右侧机翼电势低,左侧高 B .飞行员右侧机翼电势高,左侧电势低 C .两机翼电势一样高 D .条件不具备,无法判断 7.图12-7,设套在条形磁铁上的弹性金属导线圈Ⅰ突然缩小为线圈Ⅱ,则关于线圈的感应电流及其方向(从上往下看)应是( ) A .有顺时针方向的感应电流 B .有逆时针方向的感应电流 C .有先逆时针后顺时针方向的感应电流 D .无感应电流 8.图12-8,a 、b 是同种材料的等长导体棒,静止于水平面内的足够长的光滑平行导轨上,b 棒的质量是a 棒的两倍。匀强磁场竖直向下。若给a 棒以4.5J 的初动能,使之向左运动,不 L 1 L 2 图12-4 v 0 a b 图12-8 图12-6 S N O 图12-5 图12-7

高中物理专题练习电磁感应中的能量问题

电磁感应中的能量问题(2) 例1.如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B.竖直放置的正方形金属线框边长为l,电阻为R,质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平.开始时,线框与物块静止在图中虚线位置且细线水平伸直.将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角θ=30°,线框刚好有一半处于右侧磁场中.(已知重力加速度g,不计一切摩擦)求: (1)此过程中通过线框截面的电荷量q (2)此时安培力的功率 (3)此过程在线框中产生的焦耳热Q. 例2.(多选)如图甲所示,在竖直平面内有一单匝正方形线圈和一垂直于竖直平面向里的有界匀强磁场,磁场的磁感应强度为B,磁场上、下边界AB和CD均水平,线圈的ab边水平且与AB间有一定的距离.现在让线圈无初速自由释放,图乙为线圈从自由释放到cd边恰好离开CD边界过程中的速度一 时间关系图象.已知线圈的电阻为r, 且线圈平面在线圈运动过程中始终处在 竖直平面内,不计空气阻力,重力加速 度为g,则根据图中的数据和题中所给 物理量可得() A.在0~t3时间内,线圈中产生的热量为 B.在t2~t3时间内,线圈中cd两点之间的电势差为零 C.在t3~t4时间内,线圈中ab边电流的方向为从b流向a D.在0~t3时间内,通过线圈回路的电荷量为 例3.利用超导体可以实现磁悬浮,如图是超导磁悬浮的示意图。在水平桌面 上有一个周长为L的超导圆环,将一块质量为m的永磁铁从圆环的正上方缓 慢下移,由于超导圆环跟磁铁之间有排斥力,结果永磁铁悬浮在超导圆环的 正上方h1高处平衡。 (1)若测得圆环a点磁场如图所示,磁感应强度为B1,方向与水平方向成 θ1角,问此时超导圆环中电流的大小和方向? (2)在接下的几周时间内,人们发现永磁铁在缓慢下移。经过较长时间T 后,永磁铁的平衡位置在离桌面h2高处。有一种观点认为超导体也有很微小 的电阻,只是现在一般仪器无法直接测得,超导圆环内电流的变化造成了永 磁铁下移,并设想超导电流随时间缓慢变化的I2-t图,你认为哪张图相对合 理,为什么? (3)若测得此时a点的磁感应强度变为B2,夹角变为θ2,利用上面你认为 相对正确的电流变化图,求出该超导圆环的电阻? 同步练习: 1.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨 等宽的粗糙金属细杆ab,cd和导轨垂直且接触良好.已知ab,cd杆的质 量,电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场 中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下 运动,以下说法正确的是() A.cd杆一定向下做匀速直线运动 B.cd杆一定向下做匀加速直线运动 C.F做的功等于回路中产生的焦耳热与ab杆克服 摩擦做功之和 D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和 2.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部 进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于 线圈宽度,那么()

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质 设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。 由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

高中物理法拉第电磁感应定律

高二物理学案9(必修班) 二、法拉第电磁感应定律 一、知识梳理 一、感应电动势 闭合电路中由于磁通量的变化产生感应电流产生,产生感应电流的那部分电路相当于电源。我们把电磁感应现象中产生的电动势叫做感应电动势。 画图举例: 二、法拉第电磁感应定律 1、磁通量、磁通量的变化、磁通量的变化率 磁通量:φ = BScos θ 磁通量的变化:Δφ=φ2—φ1 磁通量的变化率:Δφ/Δt 磁通量的变化率与磁通量、磁通量的变化无直接关系,三者间的关系类似于加速度与速度、速度变化的关系。 2、法拉第电磁感应定律 A 、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、数学表达式: t E ??=φ (单匝线圈) 对于多匝线圈有 t n E ??=φ 二、例题分析 例1、把一条形磁铁插入同一闭合线圈中,一次是迅速插入,一次是缓慢插入,两次初、末位置均相同,则在两次插入过程中 ( ) A.磁通量变化量相同 B.磁通量变化率相同 C.产生的感应电流相同 D.产生的感应电动势相同 例2、有一个1000匝的线圈,在0.4s 内穿过它的磁通量从0.02wb 增加到0.09wb ,求线圈中的感应电动势。如果线圈的电阻是10Ω,把它从一个电阻为990Ω的电热器串联组成闭合电路时,通过电热器的电流是多大?

三、课后练习 1、关于电磁感应,下列说法中正确的是( )。 A 、穿过线圈的磁通量越大,感应电动势越大; B 、穿过线圈的磁通量为零,感应电动势一定为零; C 、穿过线圈的磁通量的变化越大,感应电动势越大; D 、空过线圈的磁通量变化越快,感应电动势越大。 2、如图所示,将条形磁铁从相同的高度分别以速度v 和2v 插入线圈,电流表指针偏转角度较大的是: A .以速度v 插入 B .以速度2v 插入 C .一样大 D .不能确定 3、桌面上放一个单匝线圈,线圈中心上方一定高度上有一竖立的条形磁铁,此时线圈内的磁通量为0.04Wb ,把条形磁铁竖放在线圈内的桌面上时,线圈内磁通量为0.12Wb 。分别计算以下两个过程中线圈中感应电动势。 (1)把条形磁铁从图中位置在0.5s 内放到线圈内的桌面上。 (2)换用10匝的矩形线圈,线圈面积和原单匝线圈相同,把条形磁铁从图中位置在0.1s 内放到线圈内的桌面上。 【选做题】平行闭合线圈的匝数为n,所围面积为S ,总电阻为R ,在t ?时间内穿过每匝线圈的磁通量变化为?Φ,则通过导线某一截面的电荷量为( ) A 、 R ?Φ B 、R nS ?Φ C 、 tR ??Φn D 、R ?Φn

电磁感应中的双棒运动问题高中物理专题

第9课时 电磁感应中的双棒运动问题 一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R v L B BIL F 22,F 与速度有关; 2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点) ; 3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。 二、例题分析: 1、两棒一静一动: 【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计, 两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为 B=0.2T ,棒ab 在平行于导轨向上的力 F 作用下,沿导轨向上匀速运动,而棒cd 恰 好能保持静止。取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大? (3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少? 2、两棒不受力都运动:满足动量守恒,分析最终状态: 【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为 L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43 v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值? 3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 【例3】如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀 强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离 L=0.20m 。两根质量均为m=0.10kg 的金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的为电阻R=0.50Ω,在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为 0.20N 的力F 作用于金属杆甲上,使金属杆在导轨上滑动。(1)分析说明金属杆最终的运动 状态?(2)已知当经过 t=5.0s 时,金属杆甲的加速度a=1.37m/s ,求此时两金属杆的速度各为多少?

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及详细答案

高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及 详细答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt - 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高中物理电磁感应专题复习

电磁感应·专题复习 一. 知识框架: 二. 知识点考试要求: 知识点 要求 1. 右手定则 B 2. 楞次定律 B 3. 法拉第电磁感应定律 B 4. 导体切割磁感线时的感应电动势 B 5. 自感现象 A 6. 自感系数 A 7. 自感现象的应用 A 三. 重点知识复习: 1. 产生感应电流的条件 (1)电路为闭合回路 (2)回路中磁通量发生变化?φ≠0 2. 自感电动势 (1)E L I t 自=? ?? (2)L —自感系数,由线圈本身物理条件(线圈的形状、长短、匝数,有无铁芯等)决定。 (2)自感电动势的作用:阻碍自感线圈所在电路中的电流变化。 (4)应用:<1>日光灯的启动是应用E 自 产生瞬时高压 <2>双线并绕制成定值电阻器,排除E 自 影响。 3. 法拉第电磁感应定律 (1)表达式:E N t =??φ N —线圈匝数;?φ—线圈磁通量的变化量,?t —磁通量变化时间。

(2)法拉第电磁感应定律的几个特殊情况: i )回路的一部分导体在磁场中运动,其运动方向与导体垂直,又跟磁感线方向垂直时,导体中的感应电动势为E B l v = 若运动方向与导体垂直,又与磁感线有一个夹角α时,导体中的感应电动势为:E B l v =s i n α ii )当线圈垂直磁场方向放置,线圈的面积S 保持不变,只是磁场的磁感强度均匀变化时线圈中的感应电动势为E B t S = ?? iii )若磁感应强度不变,而线圈的面积均匀变化时,线圈中的感应电动势为:E B S t =?? iv )当直导线在垂直匀强磁场的平面,绕其一端作匀速圆周运动时,导体中的感应电动势为:E Bl =12 2ω 注意: (1)E B l v =s i n α用于导线在磁场中切割磁感线情况下,感应电动势的计算,计算的是切割磁感线的导体上产生的感应电动势的瞬时值。 (2)E N t =??φ ,用于回路磁通量发生变化时,在回路中产生的感应电动势的平均值。 (3)若导体切割磁感线时产生的感应电动势不随时间变化时,也可应用E N t =??φ ,计算E 的瞬时值。 4. 引起回路磁通量变化的两种情况: (1)磁场的空间分布不变,而闭合回路的面积发生变化或导线在磁场中转动,改变了垂直磁场方向投影面积,引起闭合回路中磁通量的变化。 (2)闭合回路所围的面积不变,而空间分布的磁场发生变化,引起闭合回路中磁通量的变化。 5. 楞次定律的实质:能量的转化和守恒。 楞次定律也可理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因。 (1)阻碍原磁通量的变化或原磁场的变化 (2)阻碍相对运动,可理解为“来拒去留”。 (3)使线圈面积有扩大或缩小的趋势。 (4)阻碍原电流的变化(自感现象)。 6. 综合题型归纳 (1)右手定则和左手定则的综合问题 (2)应用楞次定律的综合问题 (3)回路的一部分导体作切割磁感线运动 (4)应用动能定理的电磁感应问题 (5)磁场均匀变化的电磁感应问题 (6)导体在磁场中绕某点转动 (7)线圈在磁场中转动的综合问题 (8)涉及以上题型的综合题 【典型例题】 例1. 如图12-9所示,平行导轨倾斜放置,倾角为θ=?37,匀强磁场的方向垂直于导轨平面,磁感强度B T =4,质量为m k g =10.的金属棒ab 直跨接在导轨上,ab 与导轨间的动摩擦因数μ=025.。ab 的电阻r =1Ω,平行导轨间的距离L m =05.,R R 1218== Ω,导轨电阻不计,求ab 在导轨上匀速下滑的速度多大?此时ab 所受

高考物理专题电磁学知识点之电磁感应难题汇编含答案解析

高考物理专题电磁学知识点之电磁感应难题汇编含答案解析 一、选择题 1.如图所示,竖直放置的长直导线通有恒定电流,有一矩形线框与导线在同一平面内,在下列情况中线框中不能产生感应电流的是() A.导线中的电流变大B.线框以PQ为轴转动 C.线框向右平动D.线框以AB边为轴转动 2.如图所示,L1和L2为直流电阻可忽略的电感线圈。A1、A2和A3分别为三个相同的小灯泡。下列说法正确的是() A.图甲中,闭合S1瞬间和断开S1瞬间,通过A1的电流方向不同 B.图甲中,闭合S1,随着电路稳定后,A1会再次亮起 C.图乙中,断开S2瞬间,灯A3立刻熄灭 D.图乙中,断开S2瞬间,灯A2立刻熄灭 3.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a、b,垂直放置在磁感应强度为B的匀强磁场中,a的边长为L,b的边长为2L。当磁感应强度均匀增加时,不考虑线圈a、b之间的影响,下列说法正确的是() A.线圈a、b中感应电动势之比为E1∶E2=1∶2 B.线圈a、b中的感应电流之比为I1∶I2=1∶2 C.相同时间内,线圈a、b中产生的焦耳热之比Q1∶Q2=1∶4 D.相同时间内,通过线圈a、b某截面的电荷量之比q1∶q2=1∶4 4.如图所示,将直径为d,电阻为R的闭合金属环从匀强磁场B中拉出,这一过程中通过金属环某一截面的电荷量为()

A .24 B d R π B .2Bd R π C .2Bd R D .2Bd R π 5.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v 0刷卡时,在线圈中产生感应电动势,其E -t 关系如图所示.如果只将刷卡速度改为 2 v ,线圈中的E -t 关系图可能是( ) A . B . C . D . 6.一个简易的电磁弹射玩具如图所示,线圈、铁芯组合充当炮筒,硬币充当子弹。现将一个金属硬币放在铁芯上(金属硬币半径略大于铁芯半径),电容器刚开始时处于无电状态,先将开关拨向1,电容器充电,再将开关由1拨向2瞬间,硬币将向上飞出。则下列说法正确的是( ) A .当开关拨向1时,电容器上板带负电 B .当开关由1拨向2时,线圈内磁感线方向向上 C .当开关由1拨向2瞬间,铁芯中的磁通量减小 D .当开关由1拨向2瞬间,硬币中会产生向上的感应磁场 7.如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使

高中物理电磁感应知识点详解和练习

电磁感应 一、知识网络 二、画龙点睛 概念 1、磁通量

设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S,如图所示。 (1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S 的乘积,叫做穿过这个面的磁通量,简称磁通。 (2)公式:Φ=BS 当平面与磁场方向不垂直时,如图所示。 Φ=BS⊥=BScosθ (3)物理意义 物理学中规定:穿过垂直于磁感应强度方向的单位面积的磁感线条数等于磁感应强度B。所以,穿过某个面的磁感线条数表示穿过这个面的磁通量。 (4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。 1Wb=1T·1m2=1V·s。 (5) 磁通密度:B=Φ S⊥ 磁感应强度B为垂直磁场方向单位面积的磁通量,故又叫磁通

密度。 2、电磁感应现象 (1)电磁感应现象:利用磁场产生电流的现象,叫做电磁感应现象。 (2)感应电流:在电磁感应现象中产生的电流,叫做感应电流。 (3)产生电磁感应现象的条件 ①产生感应电流条件的两种不同表述 a.闭合电路中的一部分导体与磁场发生相对运动 b.穿过闭合电路的磁场发生变化 ②两种表述的比较和统一 a.两种情况产生感应电流的根本原因不同 闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。 穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。 b.两种表述的统一 两种表述可统一为穿过闭合电路的磁通量发生变化。 ③产生电磁感应现象的条件 不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。

高三物理电磁感应知识点

2019届高三物理电磁感应知识点物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高中物理选修3_2第四章电磁感应中“滑轨”问题(含双杆)归类

电磁感应双导轨问题 1、两根足够长的平行金属导轨,固定在同一水平面上,导轨的电阻很小,可忽略不计。导轨间的距离L=0.2m 。磁感强度B=0.50T 的匀强磁场与导轨所在平面垂直。两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。现有一与导轨平行,大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s ,金属杆甲的加速度为1.37m/s 2,问此时甲、乙两金属杆速度v 1、v 2及它们之间的距离是多少? R v v l B F 2)(2122-=安 ① ma F F =-安 ② 21mv mv Ft += ③ 由①②③三式解得:s m v s m v /85.1,/15.821== 对乙:2mv t HB =? ④ 得C Q mv QIB 85.12== 又R BlS R Q 22相对 =?= φ ⑤ 得m S 5.18=相对 2、如图,水平平面固定两平行的光滑导轨,左边两导轨间的距离为2L ,右边两导轨间的距离为L ,左右部分用导轨材料连接,两导轨间都存在磁感强度为B 、方向竖直向下的匀强磁场。ab 、cd 两均匀的导体棒分别垂直放在左边和右边导轨间,ab 棒的质量为2m ,电阻为2r ,cd 棒的质量为m ,电阻为r ,其它部分电阻不计。原来两棒均处于静止状态,cd 棒在沿导轨向右的水平恒力F 作用下开始运动,设两导轨足够长,两棒都不会滑出各自的轨道。 ⑴试分析两棒最终达到何种稳定状态?此状态下两棒的加速度各多大? ⑵在达到稳定状态时ab 棒产生的热功率多大? 解:⑴cd 棒由静止开始向右运动,产生如图所示的感应电流,设感应电流大小为I ,cd 和ab 棒分别受到的安培力为F 1、F 2,速度分别为v 1、v 2,加速度分别为a 1、a 2,则 r v v BL r BLv BLv r E I 3)2(3232121-=-== ① F 1=BIL F 2=2BIL ② m BIL F a -= 1 m BIL m BIL a ==222 ③ 开始阶段安培力小,有a 1>>a 2,cd 棒比ab 棒加速快得多,随着(v 1-2v 2)的增大,F 1、F 2增大,a 1减 小、a 2增大。当 a 1=2a 2时,(v 1-2v 2)不变,F 1、F 2也不变,两棒以不同的加速度匀加速运动。将③式代入可得两棒最终作匀加速运动加速度:

高中物理电磁感应核心知识点归纳

高中物理《电磁感应》核心知识点归 纳 一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有: ①S、α不变,B改变,这时

②B、α不变,S改变,这时 ③B、S不变,α改变,这时 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 (1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 (2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 (3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒 3、应用:对阻碍的理解: (1)顺口溜“你增我反,你减我同”

相关文档
相关文档 最新文档