文档库 最新最全的文档下载
当前位置:文档库 › 热传导方程习题解答

热传导方程习题解答

热传导方程习题解答
热传导方程习题解答

数学物理方程第三版第一章答案(全)

数学物理方程第三版答案 第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ????

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??-- =??--=11 1124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

数学物理方程第二版答案

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??- 23 222)( 22 52222 3 2222 2 ) (3) (t y x t y x t t u ?--+---=??- -

热传导方程

前言 本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。 一、概念与常量 1、温度场: 指某一时刻下,物体内各点的温度分布状态。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。 补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。 2、等温面与等温线: 三维物体内同一时刻所有温度相同的点的集合称为等温面; 一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。 3、温度梯度: 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient)。用grad t表示。 定义为: 补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。

在直角坐标系中: 3、导热系数 定义式:单位 导热系数在数值上等于单位温度降度(即1)下,在垂直于热流密度的单位面积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 补充:由物质的种类、性质、温度、压力、密度以及湿度影响。 二、热量传递的三种基本方式 热量传递共有三种基本方式:热传导;热对流;热辐射 三、导热微分方程式(统一形式:) 直角坐标系: 圆柱坐标系: 球坐标系: 其中,称为热扩散系数,单位,为物质密度,为物体比热容,为物体导热系数,为热源的发热率密度,为物体与外界的对流交换系数。 补充: 1处研究的对象为各向同性的、连续的、有内热源、物性参数已知的导热物体。 2稳态温度场,即则有:,此式称为泊松方程。 3无内热源的稳态温度场,则有:,此式称为拉普拉斯方程。 四、单值条件 导热问题的单值条件通常包括以下四项: 1几何条件:表示导热物体的几何形状与大小(一维、二维或三维)

热传导方程抛物型偏微分方程和基本知识

1. 热传导的基本概念 1.1温度场 一物体或系统内部,只要各点存在温度差,热就可以从高温点向低温点传导, 即产生热流。因此物体或系统内的温度分布情况决定着由热传导方式引起的传热速率(导热速率)。 温度场:在任一瞬间,物体或系统内各点的温度分布总和。 因此,温度场内任一点的温度为该点位置和时间的函数。 〖说明〗 若温度场内各点的温度随时间变化,此温度场为非稳态温度场,对应于非稳 态的导热状态。 若温度场内各点的温度不随时间变化,此温度场为稳态温度场,对应于稳态 的导热状态。 若物体内的温度仅沿一个坐标方向发生变化,且不随时间变化,此温度场为 一维稳态温度场。 1.2 等温面 在同一时刻,具有相同温度的各点组成的面称为等温面。因为在空间同一点不可能同时有两个不同的温度,所以温度不同的等温面不会相交。 1.3 温度梯度 从任一点起沿等温面移动,温度无变化,故无热量传递;而沿和等温面相交 的任一方向移动,温度发生变化,即有热量传递。温度随距离的变化程度沿法向最大。 温度梯度:相邻两等温面间温差△t与其距离△n之比的极限。 〖说明〗 温度梯度为向量,其正方向为温度增加的方向,与传热方向相反。 稳定的一维温度场,温度梯度可表示为:grad t = dt/dx

2. 热传导的基本定律——傅立叶定律 物体或系统内导热速率的产生,是由于存在温度梯度的结果,且热流方向和 温度降低的方向一致,即与负的温度梯度方向一致,后者称为温度降度。 傅立叶定律是用以确定在物体各点存在温度差时,因热传导而产生的导热速率大小的定律。 定义:通过等温面导热速率,与其等温面的面积及温度梯度成正比: q = dQ/ds = -λ·dT/dX 式中:q 是热通量(热流密度),W/m2 dQ是导热速率,W dS是等温表面的面积,m2 λ是比例系数,称为导热系数,W/m·℃ dT / dX 为垂直与等温面方向的温度梯度 “-”表示热流方向与温度梯度方向相反 3. 导热系数 将傅立叶定律整理,得导热系数定义式: λ= q/(dT/dX) 物理意义:导热系数在数值上等于单位温度梯度下的热通量。因此,导热系 数表征物体导热能力的大小,是物质的物性常数之一。其大小取决于物质的组成结构、状态、温度和压强等。 导热系数大小由实验测定,其数值随状态变化很大。 3.1 固体的导热系数 金属:35~420W/(m·℃),非金属:0.2~3.0W/ (m·℃) 〖说明〗

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条 件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件 为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2 222)1(])1[(t u h x x u h x x E ??-=??-??ρ 其中h 为圆锥的高(如图1) 证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:

第八章 热传导和扩散问题的傅里叶解

第八章 热传导方程的傅里叶解 第一节 热传导方程和扩散方程的建立 8.1.1 热传导方程的建立 推导热传导方程和前面弦振动所用的数学方法完全相用,不同之处在于具体的物理规律不同。这里用到的是热学方面的两个基本规律,即能量守恒和热传导的傅里叶实验定律。 热传导的傅里叶实验定律:设有一块连续的介质,选定一定的坐标系,并用(,,,)u x y z t 表示介质内空间坐标为的一点在t 时刻的温度。若沿x 方向有一定的温度差,在x 方向也就一定有热量的传递。从宏观上看,单位时间内通过垂直x 方向的单位面积的热量q 与温度的沿x 方向的空间变化率成正比,即 x u q k x ?=-? (8-1.1) q 称为热流密度,k 称为导热系数。公式中的负号表示热流的方向和温度变化的方向正好相 反,即热量由高温流向低温。 研究三维各向同性介质中的热传导,在介质中三个方向上存在温度差,则有 x u q k x ?=-?,y u q k y ?=-?,z u q k z ?=-? 或 q k u =-?r 即热流密度矢量q r 与温度梯度u ?成正比。 下面以一维均匀细杆为例,根据傅里叶实验定律和能量守恒定律推导介质中的热传导方程。 第一步,定变量。研究介质x 位置处在t 时刻的温度(,)u x t 。 第二步,取局部。在介质内部隔离出从x 到x x +?一段微元长度,在t 到t t +?时间内温度的变化(,)(,)u u x t t u x t ?=+?-。 第三步,立假设。假设均匀介质的横截面积为A ,质量密度为ρ,比热为c ,热传导系数为k 。

第四步,找规律。隔离出来的微元长度在t 到t t +?时间内吸收的热量为: Q c m u c A x u ρ=????=???? (8-1.2) 在t 到t t +?时间内,同过x 位置处的横截面的热量为: 1x x x Q q A t k u A t =???=-?? (8-1.3) 在t 到t t +?时间内,同过x x +?位置处的横截面的热量为: 2x x x x x Q q A t k u A t +?+?=???=-?? (8-1.4) 如果在微元段内有其他的热源,假设在单位时间单位体积内产生的热量为(,)F x t ,则该热源在微元内产生的热量为: (,)3Q F x t t A x =???? (8-1.5) 第五步,列方程。根据能量守恒定律,净流入的热量应该等于介质在此时间内温度升高所需要的热量。 123Q Q Q Q =-+ 即 (,)x x x x x c A x u k u A t k u A t F x t t A x ρ+?????=-??+??+???? (,)x x x x x u u u c k F x t t x ρ+?-??? =+?? 得到: (,)t xx k F x t u u c c ρρ = + 令 a = (,)(,)F x t f x t c ρ= 则得到热传导方程为 (,)2t xx u a u f x t =+ (8-1.6) 当介质内部无其他热源时,热传导方程是齐次的,为 2t xx u a u = (8-1.7) 8.1.2 扩散方程的建立

数学物理方程第一章部分答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数学物理方程第一章答案

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 ),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ) ,()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条 件为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为

热传导方程及其定解问题的导出

第一章 热传导方程 本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会 遇到这类方程. §1 热传导方程及其定解问题的导出 热传导方程的导出 物理模型 在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化. 以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律 物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和. 在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律. 设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3 ), q ρ 是 热流密度(焦耳/秒·米2 ),0f 是热源强度(焦耳/千克·秒). 注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ρρ?-(n ρ 是 D ?的外法向),从而由能量守恒律,我们有 ,)||(21 21 120??????????+?-=-?==t t D t t D D t t t t dxdydz f dt ds n q dt dxdydz u u c ρρρ ρ () 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比 ,u k q ?-=ρ (梯度? ?? ? ????????==?z u y u x u gradu u ,,) () 这里负号表明热量是由高温向低温流动,k 是物体的导热系数. ,n u k n u k n q ρρρρ??-=??-=? 从而式可改写为

数学物理方程课程

《数学物理方程》课程 教学大纲 课程代码:B0110040 课程名称:数学物理方程/equation of mathematic physics 课程类型:学科基础课 学时学分:64学时/4学分 适用专业:地球物理学 开课部门:基础课教学部 一、课程的地位、目的和任务 课程的地位:数学物理方程是地球物理学专业的一门重要的专业(或技术)基础课。数学物理方程是反应自然中物理现象的基本模型,也是一种基本的数学工具,与数学其他学科和其他科学技术领域诸如数值分析、优化理论、系统工程、物理、化学、生物等学科都有广泛联系。对于将来从事工程地震技术工作及自然科学研究的学生来说是必不可少的。期望学生通过该门课程的学习,能深刻地理解数学物理方程的不同定解问题所反应的物理背景。 课程的目的与任务:使学生了解数学物理方程建立的依据和过程,认识这门学科与物理学、力学、化学、生物学等自然科学和社会科学以及工程技术的极密切的广泛的联系。掌握经典数学物理方程基本定解问题的提法和相关的基本概念和原理,重点掌握求解基本线性偏微分方程定解问题的方法和技巧。使学生掌握与本课程相关的重要理论的同时,注意启发和训练学生联系自己的专业,应用所学知识来处理和解决实际问题的能力。 二、课程与相关课程的联系与分工 学生在进入本课程学习之前,应修课程包括:大学物理、高等数学、线性代数、复变函数、场论与向量代数。这些课程的学习,为本课程奠定了良好的数学基础。本课程学习结束后,可进入下列课程的学习:四大力学、电磁场与微波技术、近代物理实验等。且为进一步选修偏微分方程理论、数值计算、控制理论与几何分析等课程打下基础。

三、教学内容与基本要求 第一章绪论 1.教学内容 第一节偏微分方程的基本概念 第二节弦振动方程及定解条件 第三节热传导方程及定解条件 第四节拉普拉斯方程及定解条件 第五节二阶线性偏微分方程的分类 第六节线性算子 2.重点难点 重点:物理规律“翻译”成数学物理方程的思路和步骤,实际问题近似于抽象为理想问题 难点:数学物理方程的数学模型建立及数学物理方程的解空间是无限维的函数空间 3.基本要求 (1)了解数学物理方程研究的基本内容,偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念;了解算子的定义。了解三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 (2)掌握微分算子的运算规律,理解线性问题的叠加原理 (3)了解二阶线性方程的特征理论 (4)掌握两个变量二阶线性偏微分方程分类方法及化简方法 (5)掌握三类方程的标准形式及其化简过程,会三类方程的比较,并能通过标准形式求得某些方程的通解。 第二章分离变量法 1.教学内容 第一节有界弦的自由振动。 第二节有界长杆的热传导问题。 第三节二维拉普拉斯方程的边值问题。 第四节非齐次方程得求解问题。

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。 定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则 x 点处的张力)(x T 为 ) ()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)] ([22ρ∣ x u x l g x x ??--?+] [ρ∣ g x ρ 利用微分中值定理,消去x ?,再令0→?x 得

])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 2 2 1),,(y x t t y x u --=在锥2 22 y x t -->0中都 满足波动方程 2 22222y u x u t u ??+??=??证:函数 2 2 2 1),,(y x t t y x u --= 在锥 2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 2 2 52222 32222 2)(3) (t y x t y x t t u ?--+---=??-- ) 2()(22223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 2 25222232222 23x y x t y x t x u - ---+--=?? ( )( )2 22 252222y x t y x t -+- -=- 同理 ()()22225222222y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题

数学物理方程(谷超豪)第二版前两章答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数学物理方法第一章作业答案

第一章复变函数 §1.1 复数与复数运算 1、下列式子在复数平面上个具有怎样的意义? (1)z≤ 2 解:以原点为心,2 为半径的圆内,包括圆周。 (2)z?a=z?b,(a、b 为复常数) 解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。 (3)Re z>1/2 解:直线x=1/ 2右半部分,不包括该直线。 (4)z+Re z≤1 解:即x2 +y2 +x≤1,则x≤1,y2 ≤1?2x,即抛物线y2 =1?2x及其内部。(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数) 解: (6)0 0 x 2 2 + +( y y 2 + ? 1 1) 2 > 所以 ,即x <0,x2 +y2 ?1+2x >0 x 0

z -1 ≤(7)1, z +1

2 z-1 x 1 iy x y 1 4y ?+?+?? 2 2 2 ==+ ?? 解:()[()] +++++ iy 1 y2 2 2 z 1 x 1 x ?x 1 y ?+ 2 + 2 所以()[()] x+?+≤++ 2 2 2 y 1 4y2 x 1 y 2 2 2 化简可得x≥0 (8)Re(1 /z) =2 ????? 1 x iy x 解:Re( ?=R e 2 1/ z=? ) R e 2 == ???? ?iy? x ?x ++y+y ?x 2 2 2 即(1/ 4)1/16 x? 2 +y= 2 (9)Re Z2 =a2 解:Re Z2 =x2 ?y2 =a2 +z+z?z=2 z+2 z 2 (10) z 1

数学物理方程与特殊函数第二、三章作业

习 题 2.1 4. 一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。试写出定解问题。 解:由题意可知定解问题为: ?? ?? ???<<-=-<<=========== )(,)/(,)0(,0,00,0)/(0 00002L x L I u L x u u u u u a u Y u t t t t t x x x xx xx tt εερερ 习 题 2.2 3. 设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡—玻尔兹曼定律正比于u 4,即d Q =k u 4d S d t ,设物体与周围介质之间,只有热辐射而无热传 导,周围介质的绝对温度为已知函数 ),,,(t z y x ?。试写出边界条件。 解:由题意可知: dsdt u dsdt n u k )(44?σ-=??- ∴边界条件为: )(44?σ -- =??u k n u s 习 题 2.3 4. 由静电场Gauss 定理?????= ?V S V S E d 1 d 0 ρε,求证:0 ▽ερ = ?E ,并由此导出静电势u 所满足的Poisson 方程。 证明:由题意可知由静电场高斯定理: ????????= =?V S V V V divE S E d 1 d d 0 ρε ∴ 0 0▽ερερ=??= E divE 习 题 2.4 2. (1) 032=-+yy xy xx u u u 解:由题意可知: △=12-1×(-3)=4﹥0 => 双曲型

03d d 2d d 2 =--?? ? ??x y x y => 3d d =x y 或 -1 令 ???+=-=y x y x ηε3 则 ??? ???-=????????=1113 y x y x Q ηηεε => ??????=??????-??????-??????-=?? ????=??????''''08801113311111132212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε ∴ )()3()()(016y x g y x f g f u u ++-=+=?=ηεεη (5) 031616=++yy xy xx u u u 解:由题意可知: △=82-16×3=16﹥0 => 双曲型 03d d 16d d 162 =+-?? ? ??x y x y => 43d d =x y 或 41 令 ? ??-=-=y x y x 443ηε 则 ??? ???--=??????? ?=4143 y x y x Q ηηεε => ??????--=??????--????????????--=?? ????=??????''''03232044133881641432212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε ∴ )4()43()()(064y x g y x f g f u u -+-=+=?=-ηεεη 习 题 2.5 2.试证明:若),,(τt x V 是定解问题 ? ?? ??====><<=-====),(,00,0,0,002ττττx f V V V V t L x V a V t t t L x x xx tt

第一章导热理论和导热微分方程

第一章 导热理论和导热微分方程 相互接触的物体各部分之间依靠分子、原子和自由电子等微观粒子的热运动而传递热量的过程称为导热。在纯导热过程中物体各部分之间没有宏观运动。 与固体物理的理论研究方法不同,传热学研究导热问题时不是对导热过程的微观机理作深入的分析,而是从宏观的、现象的角度出发,以实验中总结出来的基本定律为基础进行数学的推导,以得到如温度分布、温度-时间响应和热流密度等有用的结果。这种处理方法的物理概念简单明了,但所要求的数学知识和技能仍是复杂和困难的。本书在材料的选取上,注意在介绍有重要应用价值的结果的同时,也给予求解导热问题的典型数学方法以足够的重视,以培养和发展读者独立解决问题的能力。 1-1 导热基本定律 1-1-1 温度场 由于传热学以宏观的、现象的方式来研究导热问题,团此必须引入连续介质假定,以便用连续函数来描述温度分布。温度场就是在一定的时间和空间域上的温度分布。它可以表示为空间坐标和时间的函数。由于温度是标量,温度场是标量场。常用的空间坐标系有三种:直角坐标系、柱坐标系和球坐标系。在直角坐标系中,温度场可以表示为 (,,,)t f x y z τ= (1-1-1) 式中:t 表示温度;x 、y 、z 为三个空间坐标;τ表示时间。 若温度场各点的温度均不随时间变化,即0t τ??=,则称该温度场为稳态温度场,否则为非稳态温度场。若温度场只是一个空间坐标的函数,则称为一维温度场;若温度场是两个或三个空间坐标的函数,则称为二维或三维温度场。 1-1-2 等温面与温度梯度 物体内温度相同的点的集合所构成的面叫做等温面。对应不同温度值的等温面构成等温面族。等温面与任一截面的交线形成等温线。由于等温线具有形象直观的优点,二维温度场常用等温线来表示温度分布。 由于在同一时刻物体的一个点上只能有一个温度值,所以不同的等温面不可能相交。它们或者在域内形成封闭曲线,或者终止于物体的边界。 如图1-l 所示,在物体内某一点P 处,沿空间某一方向l 的温度的变化率 图1-l 等温线和温度梯度

数学物理方程资料

数学物理方程考点 一. 分离变量法:知识点见课本16 18 P P - 1.已知初边值问题: 2000 0,0,0 00,sin 2tt xx x x x l t t t u a u x l t u u x u u l π====? ?-=<<>?? ==?? ?==?? (1) 求此问题的固有函数(特征函数)与固有值(特征值); (2) 求此初边值问题的解。 解:(1)令 (,)()() u x t X x T t = (1.1),其中(,)u x t 不恒零,将其代入方程得到: '' 2 '' ()() ()()0 X x T t a X x T t -= 将该式分离变量并令比值为λ-有: '' '' 2()() () () T t X x a T t X x λ= =- 则有: ''2 ()()0T t a T t λ+= (1.2) ''()()0X x X x λ+= (1.3) 由原初边值问题的边界条件知: 方程(1.3)满足边界条件 ' (0)0,()0 X X l == (1.4) ()I 当0λ<时,方程(1.3)的通解为 12()X x C C e =+,由边界条件(1.4) 知: 1200C C C C +=??? -=?? ? 120 C C =??=? ()0X x ∴ = 由(1.1)知:(,)0u x t =,0λ<应舍去; ()II 当0λ=时,方程(1.3)的通解为 12()X x C C x =+,由边界条件(1.4)知: 120 C C =??=? 同理0λ=应舍去; ()III 当λ>0时,则方程的通解为: 12X ()cos sin x C C =+ 由边界条件(0)0X =知:10C = 即 2()sin X x C = 又由'()0X l = 知:0C = , 令20C ≠ ,则cos 0=

相关文档
相关文档 最新文档