文档库 最新最全的文档下载
当前位置:文档库 › web数据挖掘总结

web数据挖掘总结

web数据挖掘总结
web数据挖掘总结

一、数据挖掘

数据挖掘是运用计算机及信息技术,从大量的、不完全的数据集中获取隐含

在其中的有用知识的高级过程。Web 数据挖掘是从数据挖掘发展而来,是数据挖掘技术在Web 技术中的应用。Web 数据挖掘是一项综合技术,通过从

Internet 上的资源中抽取信息来提高Web 技术的利用效率,也就是从

Web 文档结构和试用的集合中发现隐含的模式。

数据挖掘涉及的学科领域和方法很多,有多种分类法。

(1)根据挖掘对象分:关系数据库、面向对象数据库、空间数据库、时序

数据库、DNA 数据库、多媒体数据库、异质数据库、遗产数据库以及Web数据库等;

(2)根据挖掘方法分:机器学习方法、统计方法、神经网络方法和数据库

方法等;

a. 机器学习方法可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。

b.统计方法可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。

c. 神经网络方法可细分为:前向神经网络(BP 算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。

(3)根据开采任务分:可分为关联规则、分类、聚类、时间序列预测模型

发现和时序模式发现等。

a.关联规则:典型的关联规则发现算法是Apriori算法,该算法也称广度优先算法,是A.Agrawal和R.Srikandt于1994年提出的,它是目前除AIS 算法、面向SQL的SETM 算法外几乎所有频繁项集发现算法的核心,其基本思想是:

如果一个项集不是频繁集,则其父集也不是频繁集,由此大大地减少了需要验证的项集的数目,在实际运行中它明显优于AIS 算法。

Apriori算法是关联规则挖掘中最具有影响的一种算法.所谓关联规则就是

从事务数据库、关系数据库和其他数据存储中的大量数据的项集之间发现有趣的、频繁出现的模式、关联和相关性.关联规则可以分为两步:

1)找出所有频繁项集.这部分主要由后面介绍的Apriori算法来解决.

2)由频繁项集产生相关联规则:这些规则必须满足最小支持度和最小置信

度.

b.分类规则:数据挖掘的一个重要任务是对海量数据进行分类。数据分类是基于一组数据的某些属性的值进行的。数据分类的方法很多,包括决策树方法、统计学方法、神经网络方法、最近邻居方法等等。其中,基于决策树的分类方法与其它的分类方法比较起来,具有速度较快、较容易转换成简单的并且易于被理解的分类规则、较易转换成数据库查询语言、友善、可得到更高的准确度等优点。

c.数据聚类:其基本思想是:对数据进行分析的过程中,在考虑数据间的“距离”的同时,更侧重考虑某些数据间具有类的共同内涵。数据聚类是对一组数据进行分组,这种分组基于如下的原理:最大的组内相似性与最小的组间相似性。

d. 时序模式:可用如下的例子描述时序模式:一个顾客先租看影片“Star Wars”,然后租“Empire Strikes Back”,再租“Return of the Judi”,注意到这些租借事物的发生不一定是连着的。像这样一次事件的发生会导致某些事物的相继发生的事件模式,称为时序模式。

e.相似模式:时态或空间—时态的大量数据存在于计算机中,这些数据库例子包括:股票价格指数的金融数据库、医疗数据库、多媒体数据库等等。在时态或空间—时态数据库中搜索相似模式的目的是发现和预测风险、因果关系及关联于特定模式的趋势。

二、Web挖掘

Web 站点上的数据有其自身的特点,主要的可以归纳为以下几点:

1 、数据量巨大,动态性极强;2、异构数据库环境;3 、半结构化的数据结构。

Web 数据挖掘可以分为Web 内容挖掘,Web结构挖掘,Web 使用挖掘三类。Web 内容挖掘是从文档内容或其描述中抽取有用信息的过程,Web 内容挖掘有两种策略:直接挖掘文档的内容和在其他工具搜索的基础上进行改进。采用第一种策略的有针对Web 的查询语言WebLOG,利用启发式规则来寻找个人主页信息的AHOY 等。采用第二种策略的方法主要是对搜索引擎的查询结果进行进一步的处理, 得到更为精确和有用的信息。属于该类的有WebSQL ,及对搜索引擎的返回结果进行聚类的技术等。根据挖掘处理的数据可以将Web 内容挖掘分为文本挖掘和多媒体挖掘两个部分。Web 结构挖掘是从Web 组织结构和链接关系中推导知识。挖掘页面的结构和Web 结构,可以用来指导对页面进行分类和聚类,找到权威页面、中心页面,从而提高检索的性能。同时还可以用来指导页面采集工作,提高采集效率。Web 结构挖掘可以分为Web 文档内部结构挖掘和文档间的超链接结构挖掘。这方面的代表有Page Rank和CLEVER,此外,在多层次Web 数据仓库( MLDB )中也利用了页面的链接结构。Web 使用挖掘是从服务器端记录的用户访问日志或从用户的浏览信息中抽取感兴趣的模式,通过分析这些数据可以帮助理解用户隐藏在数据中的行为模式,做出预测性分析,从而改进站点的结构或为用户提供个性化的服务。

Web 挖掘相关技术:

数据挖掘方法通常可以分为两类: 一类是建立在统计模型的基础上, 采

用的技术有决策树、分类、聚类、关联规则等; 另一类是建立一种以机器学习为主的人工智能模型,采用的方法有神经网络、自然法则计算方法等。

Web 内容挖掘:

1、Web 文本挖掘

Web 文本挖掘可以对Web 上的大量文档的集合的内容进行总结、分类、聚类、关联分析,以及利用Web 文档进行趋势预测。在Internet 上的文本数据一般是一组html 格式的文档集,要将这些文档转化成一种类似关系数据库中

记录的规整且能反映文档内容特征的表示,一般采用文档特征向量,但目前所采用的文档表示方法中,都存在一个弊端就是文档特征向量具有非常大的维数,使得特征子集的选取成为Internet 上文本数据挖掘过程中的必不可少的一个环节。在完成文档特征向量维数的缩减后,便可利用数据挖掘的各种方法,如分类、聚类、关联分析等来提取面向特定应用的知识模式,最后对挖掘结果进行评价,若评价结果满足一定的要求则输出,否则返回到以前的某个环节,分析改进后进行新一轮的挖掘工作。。关联规则模式数据描述型模式, 发现关联规则的算法属于无监督学习的方法。发现关联规则通常要经过以下3个步骤: ①连接数据, 做数据准备; ②给定最小支持度和最小可信度, 利用数据挖掘工具提供的算法发现关联规则;③可视化显示、理解、评估关联规则。

目前Web 内容挖掘研究主要集中在基于文本内容的检索、信息过滤的提炼、重复数据消除、数据模式抽取、中间形式表示、异构集成、文本分类和聚类、文档总结和结构提取、数据仓库及OLAP等几个方面,尤其是基于XML的上述专题研究。

对分类挖掘而言,在预处理阶段要做的事情就是把这个Web页面集合文本信息转化成一个二维的数据库表,其中每一列是一个特征,每一行为一个Web页面的特征集合。在文本学习中常用的方法是TF工DF向量表示法,它是一种文档的词集(bag-of-words)表示法,所有的词从文档中抽取出来,而不考虑词间的次序和文本的结构。构造这种二维表的方法是:每一列为一个词,列集(特征集)为辞典中的所有有区分价值的词,所以整个列集可能有几十万列之多。每一行存储一个页面内词的信息,这时,该页面中的所有词对应到列集(特征集)上。列集中的每一个列(词),如果在该页面中不出现,则其值为0;如果出现k次.那么其值就为k。这样就可以表征出页面中词的频度。这样构造的二维表表示的是Web页面集合的词的统计信息,最终就可以采用Naive Bayesian方法或k-Nearest Neighbor方法进行分类挖掘。

WebSQL 是一个用于Web 页重构的查询语言,利用Web 文档的图树表示形式,可从在线的文档站点或导游指南中获取信息。而Ahoy则利用像搜索引擎一类的互联网服务来获取与个人有关的服务,利用试探法识别文档中显示该文档作为个人主页的句法特征。

分词

目前已有很多分词算法,如:正向最大匹配法(MM)、逆向最大匹配法(RMM)、逐词遍历匹配法、设立切分标志法、正向最佳匹配法和逆向最佳匹配法等。近几年又提出了很多新的方法旨在提高分词的精度和分词的速度,如:生成测试法通过词法ATN和语义ATN之间的相互作用来进行歧分决策,以提高分词的精确性;改进的MM分词算法采用正向增字最大匹配法和跳跃匹配法,结合词尾语义检查

数据挖掘与分析心得体会

正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。 1、数据挖掘 数据挖掘应当更正确的命名为:“从数据中挖掘知识”,不过后者显得过长了些。而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤! 由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。作为知识发现过程,它通常包括数据清理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。 数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进! 2、数据分析 数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步: 1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。 3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。 数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各

Web数据挖掘研究_李国慧

数据库与信息管理 本栏目责任编辑:闻翔军 Web数据挖掘研究 李国慧 (潍坊学院数学与信息科学学院,山东潍坊261061) 摘要:基于Web的数据挖掘是一个结合数据挖掘和WWW的热门研究主题,它是现代科学技术相互渗透与融合的必然结果。本文 阐述了Web数据挖掘的定义、分类和过程,并对Web数据挖掘的应用与发展前景进行了探讨。 关键词:Internet;数据挖掘;Web数据挖掘 中图分类号:TP302文献标识码:A文章编号:1009-3044(2008)04-10592-03 TheReasearchofWebDataMining LIGuo-hui (SchoolofMathematicsandInformationScience,WeifangUniversity,Weifang261061,China) Abstract:DataMiningbasedontheWebisapopularresearchtopicthatjoinsthedataminingandWWWtogether.Itistheinevitable outcomethatthemodernsciencetechniquepermeatesmutuallywithfusion.Thisarticlehavesetforthdefinition,classificationandprocess thattheWebdatamining,andhavecarriedoutinvestigationanddiscussionontheapplicationthattheWebdataminingwithdevelopinga prospect. Keywords:Internet;DataMining;WebDataMining 1引言 伴随着网络和通信技术的飞速发展,作为全球最大的信息服务平台的Internet正在以前所未有的速度渗入到人类的生产和生 活的各个方面。Internet的普及同时推动了WWW(WorldWideWeb万维网)的迅猛发展,据统计每2个小时就有一个新的WWW服 务器产生,WWW作为信息发布和交流的全球性媒体,它的内容涵盖了包括科研、教育、商业、金融、军事等各个领域。Web已发展成 为一个跨国界的巨大信息空间,Web页面的数量以惊人的速度增长,正是由于Web上包含巨大的信息量使得越来越多的用户感觉 到在WWW上寻找自己想要的信息犹如“大海捞针”一样困难。据说,99%的Web信息相对99%的用户来说都是无用的。用户关心的 其实只是Web信息中极少的一部分,而且大量的无关信息会干扰甚至淹没用户感兴趣的内容。所以如何快速、准确且高效地从浩瀚 的Web信息资源中搜寻和发现用户感兴趣的信息和知识己经成为一个迫切需要解决的问题。而将传统的数据挖掘技术与Web有 机地结合在一起,进行Web挖掘是解决这些问题的一个有效的途径。Web数据挖掘是对已有Web资源的有效利用,其主要目标是 从分散在Internet上的半结构化的HTML页面中挖掘用户所需信息,形成结构化数据,且结构化的结果数据可用于数据库挖掘、文 本生成等后续Web信息处理。 2Web数据挖掘概念 在国内对于Web挖掘众说纷纭,有学者将网络环境下的数据挖掘归入网络信息检索与网络信息内容的开发,也有的在信息服 务的角度上提出“信息挖掘”,指出其有别于传统的信息检索,能够在异构数据组成的信息库中,从概念及相关因素的延伸比较上找 出用户需要的深层次的信息,并提出信息挖掘将改革传统的信息服务方式而形成一个全新的适合网络时代要求的信息服务组合。Web数据挖掘(WebDataMining)简称Web挖掘,是数据挖掘技术在Web环境下的应用,它将数据挖掘技术应用在Web上,从大量 的Web文档集合和在站点内进行浏览的相关数据中发现蕴涵的、未知、有潜在应用价值的、非平凡的模式(Pattern)的过程。它所处理 的对象包括:静态网页、Web数据库、Web结构、用户使用记录等信息[1]。通过对这些信息的挖掘,可以得到仅通过文字检索所不能得 到的信息。 基于Web的数据挖掘和传统的基于数据仓库的数据挖掘有着不同的含义。根据W.J.Frawley和G.P.Shapiro等人的定义,一般的 数据挖掘指从大型数据库的数据中提取人们感兴趣的知识,而这些知识是隐含的,事先未知的、潜在的有用信息,它侧重在于从己 有的信息中提取规律性的知识[2]。而Web挖掘的研究对象是以半结构化和无结构文档为中心的Web,这些数据没有统一的模式,数 收稿日期:2008-01-12 作者简介:李国慧,潍坊学院数学与信息科学学院教师,硕士研究生,研究方向:计算机技术。

数据挖掘与数据仓库知识点总结

1、数据仓库定义:数据仓库是一种新的数据处理体系结构,它与组织机构的操作数据库分别维护,允许将各种应用系统一起,为统一的历史数据分析提供坚实的平台,对信息处理提供支持。数据仓库是面向主题的、集成的、相对稳定的、反映历史变化的数据集合,为企业决策支持系统提供所需的集成信息。设计和构造步骤:1)选取待建模的商务处理;2)选取商务处理的粒变;3)选取用于每个事实表记录的维;4)选取事实表中每条记录的变量 系统结构:(1)底层是仓库数据服务器,总是关系数据库系统。(2)中间层是OLAP服务器,有ROLAP 和MOLAP,它将对多维数据的操作映射为标准的关系操作(3)顶层是前端客户端,它包括查询和报表工具、分析工具和数据挖掘工具 2、数据仓库的多维数据模型:(1)星形模式:在此模型下,数据仓库包括一个大的包含大批数据并且不含冗余的中心表,一组小的附属表,维表围绕中心事实表显示的射线上。特征:星型模型四周的实体是维度实体,其作用是限制和过滤用户的查询结果,缩小访问围。每个维表都有自己的属性,维表和事实表通过关键字相关联。【例子:sales数据仓库的星形模式,此模式包含一个中心事实表sales,它包含四个维time, item, branch和location。 (2)雪花型模式:它是星形模式的变种,其中某些维表是规化的,因而把数据进一步分解到附加的表中。特征:雪花模型通过最大限度地减少数据存储量和联合较小的维表来改善查询性能,增加了用户必须处理的表数量和某些查询的复杂性,但同时提高了处理的灵活性,可以回答更多的商业问题,特别适合系统的逐步建设要求。【例子同上,只不过把其中的某些维给扩展了。 (3)事实星座形:复杂的应用可能需要多个事实表共享维表,这种模式可看作星形模式的汇集。 特征:事实星座模型能对多个相关的主题建模。例子:有两个事实表sales和shipping,它们可以共享维表time, item和location。 3、OLAP:即联机分析处理,是在OLTP基础上发展起来的、以数据仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支持服务。特点:1.实时性要求不是很高。2.数据量大。3.因为重点在于决策支持,所以查询一般是动态的,也就是说允许用户随机提出查询要求。 OLAP操作:上卷:通过沿一个维的概念分层向上攀登,或者通过维归约,对数据立方体进行类聚。下钻:是上卷的逆操作,它由不太详细的数据得到更详细的数据,下钻可以通过沿维的概念分层向下或引入附加的维来实现。切片:对给定方体的一个维进行进行选择,导致一个子立方体。切块:通过对两个或多个维执行选择,定义子立方体。转轴:是一种可视化操作,它转动数据的视角,提供数据的替代表示。 OLTP:即联机事务处理,是以传统数据库为基础、面向操作人员和低层管理人员、对基本数据进行查询和增、删、改等的日常事务处理。OLTP的特点有:a.实时性要求高;b.数据量不是很大。C.交易一般是确定的,是对确定性数据进行存取。d.并发性要求高且严格的要求事务的完整性,安全性。 OLTP和OLAP的区别:1)用户和系统的面向性:OLTP面向顾客,而OLAP面向市场;2)数据容:OLTP 系统管理当前数据,而OLAP管理历史的数据;3)数据库设计:OLTP系统采用实体-联系(ER)模型和面向应用的数据库设计,而OLAP系统通常采用星形和雪花模型;4)视图:OLTP系统主要关注一个企业或部门部的当前数据,而OLAP 系统主要关注汇总的统一的数据;5)访问模式:OLTP访问主要有短的原子事务组成,而OLAP系统的访问大部分是只读操作,尽管许多可能是复杂的查询。 7、PageRank算法原理:1)在初始阶段:构建Web图,每个页面初始设置相同的PageRank 值,通过迭代计算,会得到每个页面所获得的最终PageRank值。2)在一轮中更新页面 PageRank得分的计算方法:每个页面将其当前的PageRank值平均分配到本页面包含的出 链上。每个页面将所有指向本页面的入链所传入的权值求和,即可得到新的PageRank得分。 优点:是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得;有效减 少在线查询时的计算量,极大降低了查询响应时间。 缺点:1)人们的查询具有主题特征,PageRank忽略了主题相关性,导致结果的相关性和主 题性降低。2)旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多上游, 除非它是某个站点的子站点。

web数据挖掘考试重点

填空或简答: 1. 数据、信息和知识是广义数据表现的不同形式。 2. 主要知识模式类型有:广义知识,关联知识,类知识,预测型知识,特异型知识 3. web挖掘研究的主要流派有:Web结构挖掘、Web使用挖掘、Web内容挖掘 4. 一般地说,KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理、.数据挖掘以及模式评估等基本阶段。 5. 数据库中的知识发现处理过程模型有:阶梯处理过程模型,螺旋处理过程模型,以用户为中心的处理结构模型,联机KDD模型,支持多数据源多知识模式的KDD处理模型 6. 粗略地说,知识发现软件或工具的发展经历了独立的知识发现软件、横向的知识发现工具集和纵向的知识发现解决方案三个主要阶段,其中后面两种反映了目前知识发现软件的两个主要发展方向。 7. 决策树分类模型的建立通常分为两个步骤:决策树生成,决策树修剪。 8. 从使用的主要技术上看,可以把分类方法归结为四种类型: a) 基于距离的分类方法 b) 决策树分类方法 c) 贝叶斯分类方法 d) 规则归纳方法 9. 关联规则挖掘问题可以划分成两个子问题: a) 发现频繁项目集:通过用户给定Minsupport ,寻找所有频繁项目集或者最大频繁项目集。 b) 生成关联规则:通过用户给定Minconfidence ,在频繁项目集中,寻找关联规则。 10. 数据挖掘是相关学科充分发展的基础上被提出和发展的。 主要的相关技术: 数据库等信息技术的发展 统计学深入应用 人工智能技术的研究和应用 11. 衡量关联规则挖掘结果的有效性: 应该从多种综合角度来考虑: a准确性:挖掘出的规则必须反映数据的实际情况。 b实用性:挖掘出的规则必须是简洁可用的。 c新颖性:挖掘出的关联规则可以为用户提供新的有价值信息。 12. 约束的常见类型有: 单调性约束; 反单调性约束; 可转变的约束; 简洁性约束. 13. 根据规则中涉及到的层次,多层次关联规则可以分为: 同层关联规则:如果一个关联规则对应的项目是同一个粒度层次,那么它是同层关联规则。层间关联规则:如果在不同的粒度层次上考虑问题,那么可能得到的是层间关联规 14. 按照聚类分析算法的主要思路,聚类方法可以被归纳为如下几种。 划分法:基于一定标准构建数据的划分。 属于该类的聚类方法有:k-means、k-modes、k-prototypes、k-medoids、PAM、CLARA、CLARANS等。 层次法:对给定数据对象集合进行层次的分解。 密度法:基于数据对象的相连密度评价。 网格法:将数据空间划分成为有限个单元(Cell)的网格结构,基于网格结构进行聚类。 模型法:给每一个簇假定一个模型,然后去寻找能够很好的满足这个模型的数据集。 15. 类间距离的度量主要有: 最短距离法:定义两个类中最靠近的两个元素间的距离为类间距离。 最长距离法:定义两个类中最远的两个元素间的距离为类间距离。 中心法:定义两类的两个中心间的距离为类间距离。

数据挖掘案例分析--啤酒与尿布讲课稿

前言 “啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长! 商品相关性分析是购物篮分析中最重要的部分,购物篮分析英文名为market basket analysis(简称MBA,当然这可不是那个可以用来吓人的学位名称)。在数据分析行业,将购物篮的商品相关性分析称为“数据挖掘算法之王”,可见购物篮商品相关性算法吸引人的地方,这也正是我们小组乐此不疲的围绕着购物篮分析进行着研究和探索的根本原因。 购物篮分析的算法很多,比较常用的有A prior/ ?’ p r i ?/算法、FP-tree结构和相应的FP-growth算法等等,上次课我们组的邓斌同学已经详细的演示了购物篮分析的操作流程,因此在这里我不介绍具体的购物篮分析算法,而是在已经获得的结果的基础上剖析一下数据身后潜藏的商业信息。目前购物篮分析的计算方法都很成熟,在进入20世纪90年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分,客户购买了这些软件产品后就等于有了购物篮分析的工具,比如我们正在使用的Clementine。 缘起 “啤酒与尿布”的故事可以说是营销界的经典段子,在打开Google搜索一下,你会发现很多人都在津津乐道于“啤酒与尿布”,可以说100个人就有100个版本的“啤酒与尿布”的故事。故事的时间跨度从上个世纪80年代到本世纪初,甚至连故事的主角和地点都会发生变化——从美国跨越到欧洲。认真地查了一下资料,我们发现沃尔玛的“啤酒与尿布”案例是正式刊登在1998年的《哈佛商业评论》上面的,这应该算是目前发现的最权威报道。 “啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。 在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布”故事的由来。 当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal (个人翻译--艾格拉沃)提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提出了商品关联关系的计算方法——A prior算法。沃尔玛从上个世纪90年代尝试将A prior算法引入到POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。 “啤酒和尿布”的故事为什么产生于沃尔玛超市的卖场中

模糊数学在数据挖掘领域综述

模糊数学在数据挖掘研究综述 一、模糊数学 关于数学的分类,根据所研究对象的确定性可以分为经典数学、随机数学以及模糊数学。三者的关系如图1所示。经典数学建立在集合论的基础上,一个对象对于一个集合要么属于,要么不属于,两者必居其一,且仅居其一,绝不可模棱两可,由于这个要求,大大限制了数学的应用范围,使它无法处理日常生活中大量的不明确的模糊现象与概念。随着发展,过去那些与数学毫无关系或关系不大的学科如生物学,心理学,等都迫切要求定量化和数学化。 图1依照研究对象是否确定的数学分类 在日常生活中,我们经常会遇到一些模糊不清的概念。例如,“高个子”、“矮个子”等。如果把1.80米的人算高个子,那么,身高1.76米的人算不算高个子呢?这就很难说,因为“高个子”,“矮个子”并没有二者明确的标准,因而这些概念就显得模糊不清。为了适应这些学科自身的特点,只有通过改造数学,使它应用的面更为广泛。模糊数学就是研究事物这种模糊性质的一门数学学科。 模糊数学诞生于1965年,创始人是美国自动控制专家查德,他最早提出了模糊集合的概念,引入了隶属函数。自诞生之日起,就与电子计算机息息相关。今天精确的数学计算当然是不可少的,然而,当我们要求脑功能的时候,精确这个长处反而成了短处。例如,我们在判别走过的人是谁时,总是将来人的高矮,胖瘦、走路姿势与大脑存储的样子进行比较,从而作出判断。一般说来,这不是件难事,即使是分别多年的老友,也会很快地认出他来,但是若让计算机做这件事,使用精确数学就太复杂了。得测量来人的身高、体重、手臂摆的角度以及鞋底对地面的正压力、磨擦力、速度、加速度等数据,而且非要精确到后几十位才肯罢休。如果有位熟人最近稍为瘦了或胖了一些,计算机就“翻脸不认了”。显然,这样的“精确”容易使人糊涂。由此可见,要使计算机能模拟人功能,一定程度的模糊是必要的。模糊数学就是在这样的背景下诞生的。 随机数学与模糊数学都是对不确定性量的研究,但与模糊数学不同的是,随机数学是研究随机现象统计规律性的一个数学分支,涉及四个主要部分:概率论、随机过程、数理统计、随机运筹。随机数学更强调对数据的统计规律;而模糊数学强调的是变量的定义的模糊性。 模糊数学是一门新兴学科,过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而使数学的应用范围大大扩展。它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面,并且在气象、结构力学、控制、心理学等方面已有具体的研究成果。模糊数学最重要的应用领域是计算机职能,它与新一代计算机的研制有密切的联系。 二、模糊计算

数据挖掘课程体会

数据挖掘课程体会 学习数据挖掘这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门课程的一些技术有了一定的了解,并明确了一些容易混淆的概念,以下主要谈一下我的心得体会。 近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。 要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统所需的数据,供决策支持或数据分析使用。 数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。主要是可以做以下几件事:分类、估计、预测、关联分析、聚类分析、描述和可视化、复杂数据类型挖掘。在这里就不一一介绍了。 在学习关联规则的时候,提出了一个关于啤酒与纸尿布的故事:在一家超市里,纸尿布与啤酒被摆在一起出售,但是这个奇怪的举措却使得啤酒和纸尿布的销量双双增加了。其实,这是由于这家超市对其顾客的购物行为进行购物篮分析,在这些原始交易数据的基础上,利用数据挖掘方法对这些数据进行分析和挖掘。从而意外的发现跟纸尿布一起购买最多的商品竟是啤酒。按我们的常规思维,啤酒与纸尿布是两个毫无关联的商品,但是借助数据挖掘技术对大量交易数据进行挖掘分析后,却可以寻求到这一有价值的规律。这个故事在一定程度上说明了数据挖掘技术的巨大价值。 总之,非常感谢周教员在这十余周的精彩授课,让我受益匪浅,我会继续学习这门课程,努力为今后的课题研究或论文打好基础。

数据挖掘常用的方法

数据挖掘常用的方法 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪 声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知 识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统 计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正 确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可 以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖 掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。 可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情 况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的 研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的 回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的 相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶 段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各 银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知 识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神 经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络 模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组

SAS+8.2+Enterprise+Miner数据挖掘实例

SAS 8.2 Enterprise Miner数据挖掘实例 目录 1.SAS 8.2 Enterprise Miner简介 (2) 2.EM工具具体使用说明 (2) 3.定义商业问题 (3) 4.创建一个工程 (4) 4.1调用EM (4) 4.2新建一个工程 (5) 4.3应用工作空间中的节点 (6) 5.数据挖掘工作流程 (6) 5.1定义数据源 (6) 5.2探索数据 (8) 5.2.1设置Insight节点 (8) 5.2.2察看Insight节点输出结果 (9) 5.3准备建模数据 (11) 5.3.1建立目标变量 (11) 5.3.2设置目标变量 (13) 5.3.3数据分割 (21) 5.3.4替换缺失值 (22) 5.4建模 (23) 5.4.1回归模型 (23) 5.4.2决策树模型 (25) 5.5评估模型 (28) 5.6应用模型 (30) 5.6.1抽取打分程序 (30) 5.6.2引入原始数据源 (31) 5.6.3查看结果 (32) 6.参考文献: (34)

1.SAS 8.2 Enterprise Miner简介 数据挖掘就是对观测到的庞大数据集进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其有价值的新颖方式来总结数据。[1] 一个数据挖掘工程需要足够的软件来完成分析工作,为了计划、实现和成功建立一个数据挖掘工程,需要一个集成了所有分析阶段的软件解决方案,包括从数据抽样到分析和建模,最后公布结果信息。大部分专业统计数据分析软件只实现特定的数据挖掘技术,而SAS 8.2 Enterprise Miner是一个集成的数据挖掘系统,允许使用和比较不同的技术,同时还集成了复杂的数据库管理软件。SAS 8.2 Enterprise Miner把统计分析系统和图形用户界面(GUI)集成在一起,并与SAS协会定义的数据挖掘方法——SEMMA方法,即抽样(Sample)、探索(Explore)、修改(Modify)建模(Model)、评价(Assess)紧密结合,对用户友好、直观、灵活、适用方便,使对统计学无经验的用户也可以理解和使用。 Enterprise Miner简称EM,它的运行方式是通过在一个工作空间(workspace)中按照一定的顺序添加各种可以实现不同功能的节点,然后对不同节点进行相应的设置,最后运行整个工作流程(workflow),便可以得到相应的结果。 2.EM工具具体使用说明 EM中工具分为七类: ?Sample类包含Input Data Source、Sampling、Data Partition ?Explore类包含Distribution Explorer、Multiplot、Insight、 Association、Variable Selection、Link Analysis (Exp.) ?Modify类包含Data Set Attribute、Transform Variable、Filter Outliers、Replacement、Clustering、SOM/Kohonen、 Time Series(Exp.) ?Medel类包括Regression、Tree、Neural Network、 Princomp/Dmneural、User Defined Model、Ensemble、 Memory-Based Reasoning、Two Stage Model ?Assess类包括Assessment、Reporter

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

大数据处理技术的总结与分析

数据分析处理需求分类 1 事务型处理 在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。这类系统数据处理特点包括以下几点: 一就是事务处理型操作都就是细粒度操作,每次事务处理涉及数据量都很小。 二就是计算相对简单,一般只有少数几步操作组成,比如修改某行得某列; 三就是事务型处理操作涉及数据得增、删、改、查,对事务完整性与数据一致性要求非常高。 四就是事务性操作都就是实时交互式操作,至少能在几秒内执行完成; 五就是基于以上特点,索引就是支撑事务型处理一个非常重要得技术. 在数据量与并发交易量不大情况下,一般依托单机版关系型数据库,例如ORACLE、MYSQL、SQLSERVER,再加数据复制(DataGurad、RMAN、MySQL数据复制等)等高可用措施即可满足业务需求。 在数据量与并发交易量增加情况下,一般可以采用ORALCERAC集群方式或者就是通过硬件升级(采用小型机、大型机等,如银行系统、运营商计费系统、证卷系统)来支撑. 事务型操作在淘宝、12306等互联网企业中,由于数据量大、访问并发量高,必然采用分布式技术来应对,这样就带来了分布式事务处理问题,而分布式事务处理很难做到高效,因此一般采用根据业务应用特点来开发专用得系统来解决本问题。

2数据统计分析 数据统计主要就是被各类企业通过分析自己得销售记录等企业日常得运营数据,以辅助企业管理层来进行运营决策。典型得使用场景有:周报表、月报表等固定时间提供给领导得各类统计报表;市场营销部门,通过各种维度组合进行统计分析,以制定相应得营销策略等. 数据统计分析特点包括以下几点: 一就是数据统计一般涉及大量数据得聚合运算,每次统计涉及数据量会比较大。二就是数据统计分析计算相对复杂,例如会涉及大量goupby、子查询、嵌套查询、窗口函数、聚合函数、排序等;有些复杂统计可能需要编写SQL脚本才能实现. 三就是数据统计分析实时性相对没有事务型操作要求高。但除固定报表外,目前越来越多得用户希望能做做到交互式实时统计; 传统得数据统计分析主要采用基于MPP并行数据库得数据仓库技术.主要采用维度模型,通过预计算等方法,把数据整理成适合统计分析得结构来实现高性能得数据统计分析,以支持可以通过下钻与上卷操作,实现各种维度组合以及各种粒度得统计分析。 另外目前在数据统计分析领域,为了满足交互式统计分析需求,基于内存计算得数据库仓库系统也成为一个发展趋势,例如SAP得HANA平台。 3 数据挖掘 数据挖掘主要就是根据商业目标,采用数据挖掘算法自动从海量数据中发现隐含在海量数据中得规律与知识。

Web数据挖掘在电子商务中的应用

结课论文 课程名称:数据仓库与数据挖掘 授课教师:徐维祥 论文题目:Web数据挖掘在电子商务中的应用学生姓名:王琛 学号:13120975 北京交通大学 2014年9月

Web 数据挖掘在电子商务中的应用 摘要:大数据时代已然来临,在各种信息数据都呈现出爆炸式增长的今天,不同规模的电商都在奋力追赶“大数据”发展的速率和步伐。一个全新的以信息为中心,以洞察力为导向的电商生存环境已经出现,而智慧的分析能力成为在该环境下成功的关键,以大数据为导向的效率提升,客户需求快速响应,风险把控和商业模式优化,都将成为提高商业流转速率的利器,数据挖掘和分析领域技术型、产品型的创业公司将有可能成为全新的创业机会和投资热点。数据挖掘在电子商务的发展中占有越来越重要的作用,本文重点论述Web 数据挖掘在电子商务的相关应用。 关键字:Web 数据挖掘,电子商务,内容挖掘 随着Internet 的快速发展,互联网上的各种信息飞速增长,电子商务已经成为当代经济不可或缺的重要组成部分。面对电子商务网站产生的海量信息和数据,通过Web 数据挖掘技术可以从这个庞大的信息数据集合中提取有用的信息,找到提供数据管理和使用的平台;可以合理的组织网站建设,更加人性化的给用户提供服务;可以从无限量的网络信息中迅速找到用户最为需求的信息,从而更好的有针对性的销售自己的产品。电子商务中的Web 数据挖掘,主要是从其中挖掘出有效的、新颖的、有价值的,潜在的有用的市场信息,从而进行正确的商业决策。 1 概述 1.1Web 数据挖掘技术 Web 数据挖掘技术是随着电子商务的发展应运而生的技术,是指从海量的Web 信息仓库中进行浏览的相关数据中发现潜在有用的、隐含的模式或关联信息。Web 数据挖掘技术在电子商务中有广泛的应用,能对客户的访问方式、订单详情等进行挖掘,获取其购买行为特点,跟踪发现用户的访问习惯,以此来改进网页设计机构,实现智能化、个性化的用户界面。1 1.2Web 数据挖掘的分类 Web 挖掘通常基于Web 数据类型的分类进行划分。Web 数据类型主要包含三种:一类 1

大数据挖掘商业案例

1.前言 随着中国加入WTO,国金融市场正在逐步对外开放,外资金融企业的进入在带来先进经营理念的同时,无疑也加剧了中国金融市场的竞争。金融业正在快速发生变化。合并、收购和相关法规的变化带来了空前的机会,也为金融用户提供了更多的选择。节约资金、更完善的服务诱使客户转投到竞争对手那里。即便是网上银行也面临着吸引客户的问题,最有价值的客户可能正离您而去,而您甚至还没有觉察。在这样一种复杂、激烈的竞争环境下,如何才能吸引、增加并保持最好的客户呢? 数据挖掘、模式(Patterns>等形式。用统计分析和数据挖掘解决商务问题。 金融业分析方案可以帮助银行和保险业客户进行交叉销售来增加销售收入、对客户进行细分和细致的行为描述来有效挽留有价值客户、提高市场活动的响应效果、降低市场推广成本、达到有效增加客户数量的目的等。 客户细分―使客户收益最大化的同时最大程度降低风险 市场全球化和购并浪潮使市场竞争日趋激烈,新的管理需求迫切要求金融机构实现业务革新。为在激烈的竞争中脱颖而出,业界领先的金融服务机构正纷纷采用成熟的统计分析和数据挖掘技术,来获取有价值的客户,提高利润率。他们在分析客户特征和产品特征的同时,实现客户细分和市场细分。 数据挖掘实现客户价值的最大化和风险最小化。SPSS预测分析技术能够适应用于各种金融服务,采用实时的预测分析技术,分析来自各种不同数据源-来自ATM、交易、呼叫中心以及相关分支机构的客户数据。采用各种分析技术,发现数据中的潜在价值,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。 客户流失―挽留有价值的客户 在银行业和保险业,客户流失也是一个很大的问题。例如,抵押放款公司希望知道,自己的哪些客户会因为竞争对手采用低息和较宽松条款的手段而流失;保险公司则希望知道如何才能减少取消保单的情况,降低承包成本。 为了留住最有价值的客户,您需要开展有效的保留活动。然而,首先您需要找出最有价值的客户,理解他们的行为。可以在整个客户群的很小一部分中尽可能多地找出潜在的流失者,从而进行有效的保留活动并降低成本。接着按照客户的价值和流失倾向给客户排序,找出最有价值的客户。 交叉销售 在客户关系管理中,交叉销售是一种有助于形成客户对企业忠诚关系的重要工具,有助于企业避开“挤奶式”的饱和竞争市场。由于客户从企业那里获得更多的产品和服务,客户与企业的接触点也就越多,企业就越有机会更深入地了解客户的偏好和购买行为,因此,企业提高满足客户需求的能力就比竞争对手更有效。 研究表明,银行客户关系的年限与其使用的服务数目、银行每个账户的利润率之间,存在着较强的正相关性。企业通过对现有客户进行交叉销售,客户使用企业的服务数目就会增多,客户使用银行服务的年限就会增大,每个客户的利润率也随着增大。 从客户的交易数据和客户的自然属性中寻找、选择最有可能捆绑在一起销售的产品和服务,发现有价值的产品和服务组合,从而有效地向客户提供额外的服务,提高活期收入并提升客户的收益率。

web数据挖掘总结

一、数据挖掘 数据挖掘是运用计算机及信息技术,从大量的、不完全的数据集中获取隐含 在其中的有用知识的高级过程。Web 数据挖掘是从数据挖掘发展而来,是数据挖掘技术在Web 技术中的应用。Web 数据挖掘是一项综合技术,通过从 Internet 上的资源中抽取信息来提高Web 技术的利用效率,也就是从 Web 文档结构和试用的集合中发现隐含的模式。 数据挖掘涉及的学科领域和方法很多,有多种分类法。 (1)根据挖掘对象分:关系数据库、面向对象数据库、空间数据库、时序 数据库、DNA 数据库、多媒体数据库、异质数据库、遗产数据库以及Web数据库等; (2)根据挖掘方法分:机器学习方法、统计方法、神经网络方法和数据库 方法等; a. 机器学习方法可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。 b.统计方法可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。 c. 神经网络方法可细分为:前向神经网络(BP 算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。 (3)根据开采任务分:可分为关联规则、分类、聚类、时间序列预测模型 发现和时序模式发现等。 a.关联规则:典型的关联规则发现算法是Apriori算法,该算法也称广度优先算法,是A.Agrawal和R.Srikandt于1994年提出的,它是目前除AIS 算法、面向SQL的SETM 算法外几乎所有频繁项集发现算法的核心,其基本思想是: 如果一个项集不是频繁集,则其父集也不是频繁集,由此大大地减少了需要验证的项集的数目,在实际运行中它明显优于AIS 算法。 Apriori算法是关联规则挖掘中最具有影响的一种算法.所谓关联规则就是 从事务数据库、关系数据库和其他数据存储中的大量数据的项集之间发现有趣的、频繁出现的模式、关联和相关性.关联规则可以分为两步: 1)找出所有频繁项集.这部分主要由后面介绍的Apriori算法来解决. 2)由频繁项集产生相关联规则:这些规则必须满足最小支持度和最小置信 度. b.分类规则:数据挖掘的一个重要任务是对海量数据进行分类。数据分类是基于一组数据的某些属性的值进行的。数据分类的方法很多,包括决策树方法、统计学方法、神经网络方法、最近邻居方法等等。其中,基于决策树的分类方法与其它的分类方法比较起来,具有速度较快、较容易转换成简单的并且易于被理解的分类规则、较易转换成数据库查询语言、友善、可得到更高的准确度等优点。

相关文档