文档库 最新最全的文档下载
当前位置:文档库 › 自动控制算法的学习笔记 (PID控制)-V1.01

自动控制算法的学习笔记 (PID控制)-V1.01

自动控制算法的学习笔记 (PID控制)-V1.01
自动控制算法的学习笔记 (PID控制)-V1.01

一. PID调试步骤

没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的基础。

为什么PID应用如此广泛、又长久不衰?

因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID 的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。

由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤:

1.负反馈

自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。

2.PID调试一般原则

a.在输出不振荡时,增大比例增益P。

b.在输出不振荡时,减小积分时间常数Ti。

c.在输出不振荡时,增大微分时间常数Td。

3.一般步骤

a.确定比例增益P

确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此

时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。

b.确定积分时间常数Ti

比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后再反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。

c.确定微分时间常数Td

微分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。

d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。

二.PID控制简介

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统

开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器

(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统

闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

3、阶跃响应

阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。

控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。

4、PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误

差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强,反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

5、PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作﹔(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期﹔(3)在一定的控制度下通过公式计算得到PID控制器的参数。

三.PID控制器参数的工程整定,各种调节系统中PID参数经验数据以下可参照:

温度T: P=20~60%,I=180~600s,D=3~180s

压力P: P=30~70%,I=24~180s,

液位L: P=20~80%,I=60~300s,

流量L: P=40~100%,I=6~60s。

四. PID常用口诀:

参数整定找最佳,从小到大顺序查

先是比例后积分,最后再把微分加

曲线振荡很频繁,比例度盘要放大

曲线漂浮绕大湾,比例度盘往小扳

曲线偏离回复慢,积分时间往下降

曲线波动周期长,积分时间再加长

曲线振荡频率快,先把微分降下来

动差大来波动慢。微分时间应加长

理想曲线两个波,前高后低4比1

一看二调多分析,调节质量不会低

======================================================================================

PID控制的概念和如何设计一个简单的PID控制器的设计。

所谓的控制首先分有反馈控制和无反馈控制,我们当然讨论的PID当然是有反馈控制了。所谓的有反馈控制无非是要根据被控量的情况参与运算来决定操纵量的大小或者方向,那么到底如何根据被控两来决定操纵量的大小呢,唉,这就有很多分类了,所谓的高级的控制方式也就是“高级”在这个节骨眼上,有什么“自适应控制、模糊控制、预测控制、神经网络控制、专家智能控制”等等。但是就目前而言,在工业控制领域尤其是控制系统的底层,PID控制算法仍然独霸鳌头,占领着80%左右

的市场份额,当然,这里所说的PID控制算法不是侠义上的固定PID,现在不是讲究多学科融合吗?人们在PID控制规律中吸取了其他“高级”的控制规律的优点,出现了诸多的新颖的控制器如自校正PID、专家自适应PID、预估PID、模糊PID、神经网络PID、非线性 PID等新型PID控制器。至于所谓的变种的PID算法如什么“遇限削弱微分”微分先行,积分分离“bangbang+PID”等等,已经不算是什么高级的控制方式了,作控制器的厂商大多都会或多或少的采取一些,至于是神经网络PID,模糊PID,自适应PID是如何实现的,我所知道的就是利用对应的控制算法,适时的调节PID的参数。

还是举个例子吧。传统PID的算法公式是:

⊿U(n)=Kp[e(n)-e(n-1)]+Ki*e(n)+Kd[e(n)-2e(n-1)+e(n-2)]

U(n)=⊿U(n)+U(n-1)

●e(n) ,e(n-1), e(n-2)就是历史上的三个‘设定值与过程值’之间的偏差⊿了,也就是

e(n)=V s-V p(n)。

●⊿U(n)是PID控制器输出量第n次调整的修正量。

这是一个增量式的PID算式(每次计算的⊿U(n) 只决定执行机构位置的改变量【增量】,故称

增量式算法)。所谓的新型PID控制器,就是根据e(n)的不同,利用那些先进的控制规律来适当的调整Kp,Ki,Ke。

现在正式介绍一下所谓的PID各个参数吧。所谓的PID大家在大学期间都应该学过,就是比例(P)、积分(I)、微分(D)。

比例控制:就是对偏差进行控制,偏差一旦产生,控制器立即就发生作用即调节控制输出,使被控量朝着减小偏差的方向变化,偏差减小的速度取决于比例系数Kp, Kp越大偏差减小的越快,但是很容易引起振荡,尤其是在迟滞环节比较大的情况下,Kp减小,发生振荡的可能性减小但是调节速度变慢。但单纯的比例控制存在静差不能消除的缺点。这里就需要积分控制。

积分控制:实质上就是对偏差累积进行控制,直至偏差为零。积分控制作用始终施加指向给定值的作用力,有利于消除静差,其效果不仅与偏差大小有关,而且还与偏差持续的时间有关。简单来说就是把偏差积累起来,一起算总帐。

微分控制:它能敏感出误差的变化趋势,可在误差信号出现之前就起到修正误差的作用,有利于提高输出响应的快速性,减小被控量的超调和增加系统的稳定性。但微分作用很容易放大高频噪声,降低

系统的信噪比,从而使系统抑制干扰的能力下降。因此,在实际应用中,应慎用微分控制,尤其是当你开始作实验时,不防将微分控制项去掉,看看行不行。

再来说说怎么确定这几个参数的数值吧。这几个参数的确定比较先进的方式是自整定,但是如果是开始涉及这部分还是先不要讲了,按照经验值吧。估计大家用来控制温度比较多。大家按照这个规律来选吧。

分别介绍一下各个参数的意义:

● T:计算周期,就是隔多少时间计算一次。单位是秒。一般1秒或者0.5秒甚至5秒都行。

●P: 比例带。

●I:积分时间。

●D:微分时间。

P、I、D跟kp,ki,kd有什么关系呢?

Kp=P

Ki=Kp

Kd=Kp

然后就可以计算

⊿U(n)=Kp[e(n)-e(n-1)]+Ki*e(n)+Kd[e(n)-2e(n-1)+e(n-2)]

=P[e(n)-e(n-1)]+P*e(n)+P[e(n)-2e(n-1)+e(n-2)]

下面是对三部分的解释。

※P部分:P[e(n)-e(n-1)]。在设定值发生变化产生阶跃时,由于e(n)比e(n-1)大了许多,所以P部分值

就比稳定状态时大了许多,也产生一个对U(n)阶跃式的贡献值使U(n)瞬间变大;当n+1个采样时根据控制对象属性的不同,控制量发生的变化反应快慢不同e(n+1)-e(n)数值差异就很大。反应快的控制量也就是e(n+1)已经很小了,整个P部分会再贡献一个反向的比阶跃稍小一点的贡献值,PID输出就有一个大的回摆。有这样属性控制量的采样周期要短一点,控制反应会快一点。如果是反应慢的控制量也就是e(n+1)并没有比e(n)小多少,这时P部分的贡献量就很小了,基本还是维持在U(n)的输出量,PID输出回摆很小。有这样属性控制量的采样周期可以略长一点,可能对电气件或机械件寿命有好处。

也就是说,阶跃产生时P值即便是比较小整个P部分的贡献值还是很大的。

在稳定状态下产生小的波动时或者是阶跃之后两个采样周期后,e(n)、e(n-1)都是比较小的,P 部分产生的贡献是比阶跃时小的太多了,简直就是一个天上一个地下的差别。

控制量属性不同,PID输出量特性也不一样。控制量反应快的,PID输出量变化不能太快。如压力控制量,压力阶跃时PID控制器不能有满度输出(如挤压机驱动控制,并且挤压机变频器爬升时间不能太短,假如爬升时间设成2s,在有阶跃产生时由于变频器输出突增而且由于重载特性造成皮带打滑现象,对电机也不好)。并且,这类特性控制量的采样周期要短一点,1s一下。控制量反应慢的,PID输出量变化就很快。如电加热温度控制量,温度阶跃时PID 控制器可以满度输出,采样周期就可以长一点,1-4秒都可以。

※I部分:P*e(n)。实质上就是对偏差累积进行控制,直至偏差为零,I部分给⊿U(n)的贡献值就固定下来,直到偏差再次发生后而改变。

※D部分:P[e(n)-2e(n-1)+e(n-2)]。在稳定控制期e的变化都不大,所以整个D部分对⊿U(n)的贡献值都一直很小。只有当控制值发生突变时e(n)的值发生大的改变,而e(n-1)、e(n-2)还是很小,才使D部分产生较大贡献值。

算出来⊿U(n)之后怎么把这一个数据跟控制输出联系在一起呢?说到这里我们先说说PID控制方式大体都有那些?

其一为线形连续PID输出,也就是说,PID运算的结果以模拟电压,电流或者可控硅导通角的形式按比例输出。

其二为时间-比例PID输出,也就是说,事先定一个时间长度,T1,然后PID运算的结果就在控制周期内以ON-OFF的形式输出出来,比如你控制一个炉子的温度,用电热丝来加热,就可以控制电热丝的一个控制周期内通电占整个控制周期的比例来实现,电路上可以用继电器或者过零触发的方式来切断或者接通电热丝供电。

其三为位置比例PID,PID运算的结果主要是对应于调节阀的阀门开度。

再回到前面,我们以第二种控制方式为例,计算出⊿U(n)后,一般首先将其归一化,也就是说除以你所要控制的温度的量程。

⊿U(n)0_1=⊿U(n)/(hh-ll)

而时间比例PID输出对应的是“位置式PID运算”的结果

所以呢,我们要讲结果累积起来,

U(n)0_1+=⊿U(n)0_1

然后将次结果换算成对应于控制周期的占空比来输出。

(完整版)数字PID及其算法

数字PID 及其算法 主要内容:1、PID 算法的原理及数字实现 2、数字PID 调节中的几个实际问题 3、几种发展的PID 算法 4、PID 参数的整定方法 一、概述 几个概念: 1、程序控制:使被控量按照预先规定的时间函数变化所作 的控制,被控量是时间的函数。 2、顺序控制:是指控制系统根据预先规定的控制要求,按 照各个输入信号的条件,使过程的各个执行机构自动地按预 先规定的顺序动作。 3、PID 控制:调节器的输出是输入的比例、积分、微分的 函数。 4、直接数字控制:根据采样定理,先把被控对象的数学模 型离散化,然后由计算机根据数学模型进行控制。 5、最优控制:是一种使控制过程处在某种最优状态的控制。 6、模糊控制:由于被控对象的不确定性,可采用模糊控制。 二、PID 算法的原理及数字实现 PID 调节的实质:根据系统输入的偏差,按照PID 的函数 关系进行运算,其结果用以控制输出。 PID 调节的特点:PID 的函数中各项的物理意义清晰,调节灵活,便于程序化实现。 三、 PID 算法的原理及数字实现 PID 调节器是一种线性调节器,他将设定值w 与实际值y 的偏差: 按其比例、积分、微分通过线性组合构成控制量 1、比例调节器:比例调节器的微分方程为:)(*y t e Kp = y 为调节器输出,Kp 为比例系数,e(t)为调节器输入偏差。由上式可以看出比例调节的特点:调节器的输出与输入偏差成正比。只要偏差出现,就能及时地产生与之成比例的调节作用,使被控量朝着减小偏差的方向变化,具有调节及时 的特点。但是,Kp 过大会导致动态品质变坏,甚至使系统不稳定。比例调节器的阶跃响应特性曲线如下图 y w e -=s d *K s Ki p K 对象 w e + - + + + u y

数字PID控制算法

第三章、计算机测控系统设计与实现 一、参考书目: 书名:《计算机控制系统》 章节:第六章 页号:P140-156 二、主要学习内容: 1.数字PID 控制算法 PID 控制规律的基本输入/输出关系可用微分方程表示: ()()()??????++=?dt t de T dt t e T t e K Y D I P 1 在模拟调节系统中,PID 控制算法的模拟表达式为: ()()()()??????++=?dt t de T dt t e T t e K t Y D I P 1 2.对标准PID 算法的改进 1、微分项的改进 不完全微分型PID 算法传递函数 ????? ? ??++???? ??+=1111)(S K T S T S T K S G D D D I P C

2、积分项的改进 抗积分饱和 积分作用虽能消除控制系统的静差,但它也有一个副作用,即会引起积分饱和。在偏差始终存在的情况下,造成积分过量。当偏差方向改变后,需经过一段时间后,输出u(n)才脱离饱和区。这样就造成调节滞后,使系统出现明显的超调,恶化调节品质。这种由积分项引起的过积分作用称为积分饱和现象。 克服积分饱和的方法: 1、积分限幅法 积分限幅法的基本思想是当积分项输出达到输出限幅值时,即停止积分项的计算,这时积分项的输出取上一时刻的积分值。其算法流程如图3-2-4所示。 2、积分分离法 积分分离法的基本思想是在偏差大时不进行积分,仅当偏差的绝对值小于一预定的门限值ε时才进行积分累积。这样既防止了偏差大时有过大的控制量,也避免了过积分现象。其算法流程如图3-2-5。 三、知识点: 1、为什么要用PID调节器 1、经典控制方法,可靠成熟。 2、相比两位式控制,控制精度大大提高。 3、算法成熟,资源丰富。 2、数字PID控制算法的比例、积分、微分的作用特点和不足 PID是英文单词比例(Proportion),积分(Integral),微分(Differential coefficient)的缩写。PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下: 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取

数字PID的补偿算法的设计..

数字PID调节器纯滞后的补偿算法设计 摘要 对于无滞后或滞后比较小的系统,通常采用PID控制。对于纯滞后系统,PID控制效果并不好,需要另加补偿,因此提出了Smith预估补偿控制系统。而 Smith 预估算法则在模型匹配时具有好的性能指标 ,但是由于这种算法严重依赖模型的精确匹配 ,而在实际中这是很难做到的。 本文研究的重点是设计与实现纯滞后系统的控制过程的控制规律和控制算法,并比较传统的数字PID控制算法与加入Smith预估器的控制算法的不同。具体讨论了纯滞后系统的Smith预估器的实现方法,着重对这种控制算法进行了较深入的讨论,而且还通过仿真对设计和改进的结果进行了分析。仿真实验中,若采用PID控制算法,系统会出现较大的超调量,采用史密斯预估器补偿控制超调量大大较少,系统更加稳定。 关键字:Matlab;纯滞后;数字PID;Smith 预估控制器;Simulink

Abstract For the system with no or less delay, usually adopts PID control. For pure delay system, PID control effect is not good, need additional compensation, so the proposed Smith predictor control system. But Smith pre estimation algorithm has good performance index in the model matching, but because an exact match this algorithm heavily depends on the model, but in fact it is very difficult to do. This paper is focused on the control and implementation of rules and the control algorithm to control the process of pure lag system design, and compare the traditional digital PID control algorithm with the addition of Smith predictive control algorithm for different. Discussed the specific time delay system Smith prediction method is, focuses on the control algorithm are discussed in depth, but also analyzed through simulation design and improvement of the results. The simulation experiment, if the PID control algorithm, the system will have a large overshoot, Smith predictor is used to compensate control overshoot is greatly reduced, the system more stable. Keywords: Matlab; delay; digital PID; Smith controller; Simulink

数字PID控制算法

计算机测控系统 读书笔记 《数字PID控制算法》 2017年10月

一、参考文献 《计算机测控系统设计与应用》李正军机械工业出版社 百度文库 二、知识目录 1、主要内容: 数字PID控制算法 对标准PID算法的改进 PID调节器的参数选择 2、重点内容: 为什么要用PID调节器 数字PID控制算法的比例、积分、微分的作用特点和不足 PID控制算法数字化前提条件 两种算法表达式及相互比较 对标准PID算法的改进——“饱和”作用的抑制 采样周期的选择依据 三、主要内容学习 1、数字PID控制算法 P(比例)I(积分)D(微分) 位置式PID算法 由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,因此式子

中的计分和微分项不能直接准确计算,只能用数值计算的方法逼近。在采样时刻t=iT(T为采样周器),模拟PID调节规律可通过下数值公式近似计算 上式的控制算法提供了执行机构的位置U i(如阀门开度),所以称之为位置式PID控制算法。 增量式PID算法 相减就可以导出下面的公式 上式称为增量式PID控制算法。也可以将其进行进一步改写。 其中 图1给出了位置式与增量式PID算法的结构比较。 图1 位置式与增量式PID控制算法的简化示意图 (a)位置式(b)增量式

增量式PID算法与位置式相比,存在下列优点: ①位置式算法每次输出与整个过去状态有关,计算式中要用到过去偏差的累加值,容易产生较大的累计误差。而增量式只需计算增量,当存在计算误差或精度不足时,对控制量计算的影响较小。 ②控制从手动切换到自动时,必须首先将计算机的输出值设置为原始阀门开度u0,才能保证无冲击切换。如果采用增量算法,则由于算式中不出现u0项,易于实现手动到自动的无冲击切换。此外,在计算机发生故障时,由于执行装置本身有寄存作用,故可仍然保持在原位。 因此,在实际控制中,增量式算法要比位置式算法应用更为广泛。图2给出了增量式PID控制算法子程序的流程。在初始化时,应在内存固定单元置入调节参数d0,d1,d2和设定值w,并设置误差初值ei=ei-1=ei-2=0。

PID控制算法控制算法

第五章 PID控制算法控制算法 5.1 PID控制原理与程序流程 5.1.1过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 一、模拟控制系统 图5-1-1 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 二、微机过程控制系统 图5-1-2 微机过程控制系统基本框图 以微型计算机作为控制器。控制规律的实现,是通过软件来完成的。改变控制规律,只要改变相应的程序即可。 三、数字控制系统DDC 图5-1-3 DDC系统构成框图 DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。由于计算机的决策直接作用于过程,故称为直接数字控制。 DDC系统也是计算机在工业应用中最普遍的一种形式。

5.1.2 模拟PID 调节器 一、模拟PID 控制系统组成 图5-1-4 模拟PID 控制系统原理框图 二、模拟PID 调节器的微分方程和传输函数 PID 调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。 1、PID 调节器的微分方程 ?????? ++=?t D I P dt t de T dt t e T t e K t u 0)()(1)()( 式中 )()()(t c t r t e -= 2、PID 调节器的传输函数 ?? ????++==S T S T K S E S U S D D I P 11)()()( 三、PID 调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器 立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI ,TI 越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。 5.1.3 数字PID 控制器 一、模拟PID 控制规律的离散化 二、数字PID 控制器的差分方程

PID控制原理与控制算法

PID控制原理与控制算法 5.1 PID控制原理与程序流程 5.1.1过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 一、模拟控制系统 图5-1-1 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 二、微机过程控制系统 图5-1-2微机过程控制系统基本框图 以微型计算机作为控制器。控制规律的实现,是通过软件来完成的。改变控制规律,只要改变相应的程序即可。 三、数字控制系统DDC 图5-1-3DDC系统构成框图 DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。由于计算机的决策直接作用于过程,故称为直接数字控制。 DDC系统也是计算机在工业应用中最普遍的一种形式。

5.1.2 模拟PID 调节器 一、模拟PID 控制系统组成 图5-1-4 模拟PID 控制系统原理框图 二、模拟PID 调节器的微分方程和传输函数 PID 调节器是一种线性调节器,它将给定值r(t)与实际输出值c (t )的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。 1、PID 调节器的微分方程 ?? ? ?? ?++ =? t D I P dt t de T dt t e T t e K t u 0 )()(1)()( 式中 )()()(t c t r t e -= 2、PID 调节器的传输函数 ?? ????++==S T S T K S E S U S D D I P 1 1)()()( 三、P ID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数T I,TI 越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大 之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。 5.1.3 数字P ID 控制器 一、模拟PID 控制规律的离散化 模拟形式 离散化形式 )()()(t c t r t e -= )()()(n c n r n e -= dT t de ) ( T n e n e ) 1()(-- ?t dt t e 0 )( ∑∑===n i n i i e T T i e 0 )()( 二、数字PID 控制器的差分方程

电机伺服控制和PID算法简介

电机伺服控制和PID 算法简介 1 电机伺服控制技术简介 所谓伺服控制,通常也就是指闭环控制,即通过反馈环节,测量被控制对象的变化,用以修正电机输出的控制技术。 对于要求不高的应用,通常采用简单的开环控制。例如,给直流有刷电机的两根引线通电,电机就会旋转;施加的电压越高,电机转速越高,力量越大。但是在很多需要精密控制的场合,仅仅这种方式还是不够的,还需要依靠一定的反馈装置,将电机的转速或位置信息反馈给微控制器或其他的机械装置,通过一定的算法变成可以调节电机控制信号的输出,从而使电机的实际转速、位置等参数与我们所希望的一致。机器人控制是一个精度要求比较高的领域,例如,基于以下的一些考虑,机器人平台需要使用闭环控制。 a) 开环控制情况下,移动机器人在爬坡时,电机速度会下降。更糟糕的是,当双轴独立驱动的移动机器人以一定的角度接近斜坡时。每一个车轮转速的下降值将会不同,结果是机器人的实际运动轨迹是沿着一条曲线而不是直线行进。 路线。 速差。 一一定的计算方法(如PID 算法)调整相应的电压供给,如此反复,直到达到给定转速。 b) 不平坦的地面会造成移动机器人的两个车轮转速之间的差异。如果转速较低的车轮的驱动电机没有得到相应的电压补给,移动机器人将偏移既定的c) 由于安装工艺、负载不完全均衡等原因,即使是完全匹配的两个电机,并在相同的输入电压条件下,他们的速度有时仍会产生不同,即转d) 如果采用的是PWM 控制,即使在PWM 信号占空比不变的条件下,随着电池电压的逐渐下降,电机供给电压也会随之降低,从而导致电机的转速与给定值不完全致。 综合以上的一些考虑,必须选择闭环控制的方式,其工作流程如下图所示:闭环系统中加上了反馈环节(通常机器人的驱动电机使用的是增量式光学编码器)。在闭环控制系统中,速度指令值通过微控制器变换到功放驱动电路,功放驱动电路再为电机提供能量。光学编码器用于测量车轮速度的实际值并将其回馈给微控制器。基于实际转速与给定转速的差值,即“偏差” ,驱动器按照 闭环控制模型示意图

数字PID控制算法的研究

北华航天工业学院 题目:数字PID控制算法的研究 学生姓名:王鋆鑫 专业:测控技术与仪器 班级: B13241 指导教师:李晓颖 完成日期: 2016/6/03

实验四 数字PID 控制算法的研究 一.实验目的 1.学习并掌握常规数字PID 及积分分离PID 控制算法的原理和应用。 2.学习并掌握数字PID 控制算法参数整定方法。 3.学习并掌握数字控制器的混合仿真实验研究方法。 二.实验内容 1.利用实验设备,设计并构成用于混合仿真实验的计算机闭环控制系统。 2.采用常规数字PID 控制,并用扩充响应曲线法整定控制器的参数。 3.采用积分分离PID 控制,并整定控制器的参数。 三.实验步骤 1.设计并连接模拟二阶被控对象的电路,并利用C8051F060构成的数据采集系统完成计算机控制系统的模拟量输入、输出通道的设计和连接。利用上位机的虚拟仪器功能对此模拟二阶被控对象的电路进行测试,根据测试结果调整电路参数,使它满足实验要求。 2.在上位机完成常规数字PID 控制器的计算与实验结果显示、记录,并用扩充响应曲线法整定PID 控制器的参数,在整定过程中注意观察参数变化对系统动态性能的影响。 3.在上位机完成积分分离PID 控制器的计算与实验结果显示、记录,改变积分分离值,观察该参数变化对系统动态性能的影响。 4.对实验结果进行分析,并完成实验报告。 四.附录 1 构成 递函数为 5()(1)G s s = +它可以用图的方框图如图

1 (){()()[()(1)]}d p i i u k K e k e i e k e k T T ==+ + --∑ 简记为 1 ()()()[() (1)] k i u k P e k I e i D e k e k ==++--∑ 这里P 、I 、D 参数分别为 p P K =, p i T I K T =, d p T D K T = 采用增量式形式有: ()(1)[()(1)]()[()2(1)(2)]u k u k P e k e k Ie k D e k e k e k =-+--++--+- 3.积分 分离PID 控制算法 设积分分离值为EI ,则积分分离PID 控制算法可表达为下式: ()()() |()|()()() |()|p I D p D u k u k u k e k EI u k u k u k e k EI ++?? 其中 ()()P u k Pe k = ()(1)()I I u k u k Ie k =-+ ()[()(1)]D u k D e k e k =-- 4.数字PID 控制器的参数整定 (1)按扩充阶跃响应曲线法整定PID 参数 在模拟控制系统中,参数整定方法较多,常用的实验整定方法有:临界比例度法、阶跃响应曲线法、试凑法等。数字控制时也可采用类似方法,如扩充的临界比例度法、扩充的阶跃响应曲线法与试凑法等等。下面简要介绍扩充阶跃响应曲线法。 扩充阶跃响应曲线法只适用于含多惯性环节的自平衡系统。用扩充响应曲线法整定PID 参数的步骤如下: (a )数字控制器不接入控制系统,让系统处于开环工作状态下,将被调量调节到给定值附近,并使之稳定下来。

数字PID控制算法及Matlab仿真

数字PID 控制算法及Matlab 仿真 一.实验目的: 1.学习数字PID 算法的基本原理。 2.学习数字PID 调节器参数调节方法。 二.实验属性及设备: 验证性实验,使用电脑及相关专业软件。 三.实验原理: 1.概述 首先建立数字PID 直流电机控制模型,然后用Matlab 的LTI 状态分析工具箱进行仿真,并绘制转速及控制电压变化图形。 图: k k k y r e -=2.位置式数字PID 算法公式 010j )(u e e K e K e K u k k D k k I k P k +-?+?+?=-=∑3.增量式数字PID 算法公式 ) 2()(211---+-?+?+-?=?k k k D k I k k P k e e e K e K e e K u k k k u u u ?+=-14.Matlab LTI 工具箱函数(作为了解内容) 例:一台150kW 直流电动机,额定电压220V ,额定转速1000r/min ,额定电流700A ,R a =0.05Ω,L d =2mH ,假设负载及电动机转动总惯量GD 2=125kg ·m 2,则: )min/185.01000 05.0*700220r V n R I U C N a N N e ?=-=-=A m N C C e T /767.155.9?==s R L T a a a 04.005 .01023=?==-s C C R GD T T e a m 051.0767 .1185.037505.01253752=???==mA kg C C e M ?==18.003 .1传递函数为 490 2526521051.000204.041.51/1)()(222++=++=++=s s s s s T s T T C s u s y m m a e

数字PID控制算法

计算机测控系统 读书笔记 《数字PID 控制算法》 院:11111 业:11111 名:11111 号:11111 学 专 姓 学

2017年10月

、参考文献 《计算机测控系统设计与应用》李正军机械工业出版社百度文库 二、知识目录 1、主要内容: 数字PID控制算法 对标准PID算法的改进 PID调节器的参数选择 2、重点内容: 为什么要用PID调节器 数字PID控制算法的比例、积分、微分的作用特点和不足 PID控制算法数字化前提条件 两种算法表达式及相互比较 对标准PID算法的改进一一“饱和”作用的抑制 采样周期的选择依据 三、主要内容学习 1、数字PID控制算法 P(比例)I (积分)D (微分)位置式PID算法由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控 制量,因此式子 「1打 u = K e 4 --- T I Q 1 1

+ — I 其中 m 电 P1D T 图1位置式与增量式 PID 控制算法的简化示意图 (a )位置式(b )增 增量式PID 算法 相减就可以导出下面的公式 图1给出了位置式与增量式PID 算法的结构比较 中的计分和微分项不能直接准确计算,只能用数值计算的方法逼近。在 采样时刻t=iT (T 为采样周器),模拟PID 调节规律可通过下数值公式近 似计算 上式的控制算法提供了执行机构的位置 (如阀门开度),所以称之为位 置式PID 控制算法 上式称为增量式PID 控制算法。也可以将其进行进一步改写。 r r , <_ <-i +y (e i _ 2^_j+e i _3)

增量式PID算法与位置式相比,存在下列优点: ①位置式算法每次输出与整个过去状态有关,计算式中要用到过去偏差的累加值,容易产生较大的累计误差。而增量式只需计算增量,当存在计算误差或精度不足时,对控制量计算的影响较小。 ②控制从手动切换到自动时,必须首先将计算机的输出值设置为原始阀 门开度uO,才能保证无冲击切换。如果采用增量算法,则由于算式中不出现uO项,易于实现手动到自动的无冲击切换。此外,在计算机发生故障时,由于执行装置本身有寄存作用,故可仍然保持在原位。 因此,在实际控制中,增量式算法要比位置式算法应用更为广泛。图2 给出了增量式PID控制算法子程序的流程。在初始化时,应在内存固定单元置入调节参数d0,d1,d2 和设定值w,并设置误差初值ei=ei-1=ei-2=0 。

51单片机PID算法程序

51单片机PID算法程序(二)位置式PID控制算法 由51单片机组成的数字控制系统控制中,PID控制器是通过PID控制算法实现的。51单片机通过AD对信号进行采集,变成数字信号,再在单片机中通过算法实现PID运算,再通过DA把控制量反馈回控制源。从而实现对系统的伺服控制。 位置式PID控制算法 位置式PID控制算法的简化示意图 ? 上图的传递函数为: (2-1) ?? 在时域的传递函数表达式 (2-2) ?? 对上式中的微分和积分进行近似 (2-3) ?? 式中n是离散点的个数。 ?? 于是传递函数可以简化为: (2-4) 其中 u(n)——第k个采样时刻的控制; K P? ——比例放大系数;??? K i?? ——积分放大系数; K d?? ——微分放大系数; T?? ——采样周期。 如果采样周期足够小,则(2-4)的近似计算可以获得足够精确的结果,离散控制过程与连续过程十分接近。 (2-4)表示的控制算法直接按(2-1)所给出的PID控制规律定义进行计算的,所以它给出了全部控制量的大小,因此被称为全量式或位置式PID控制算法。 缺点: 1)??????????? 由于全量输出,所以每次输出均与过去状态有关,计算时要对e(k)(k=0,1,…n)进行累加,工作量大。 2)??????????? 因为计算机输出的u(n)对应的是执行机构的实际位置,如果计算机出现故障,输出u(n)将大幅度变化,会引起执行机构的大幅度变化,有可能因此造成严重的生产事故,这在实际生产中是不允许的。 位置式PID控制算法C51程序

具体的PID参数必须由具体对象通过实验确定。由于单片机的处理速度和ram资源的限制,一般不采用浮点数运算,而将所有参数全部用整数,运算 到最后再除以一个2的N次方数据(相当于移位),作类似定点数运算,可大大提高运算速度,根据控制精度的不同要求,当精度要求很高时,注意保留移位引起的“余数”,做好余数补偿。这个程序只是一般常用pid算法的基本架构,没有包含输入输出处理部分。 #include #include ???????????? //C语言中memset函数头文件 /*======================================================================= ============================= PID Function The PID (比例、积分、微分) function is used in mainly control applications. PIDCalc performs one iteration of the PID algorithm. While the PID function works, main is just a dummy program showing a typical usage. ======================================================================== =============================*/ typedef struct PID { double SetPoint;???? ?// 设定目标Desired value double Proportion; ???// 比例常数Proportional Const double Integral; ?????// 积分常数Integral Const double Derivative; ???// 微分常数Derivative Const double LastError;??? ?// Error[-1] double PrevError; ???// Error[-2] double SumError;?? ?// Sums of Errors } PID; /*======================================================================= ============================= PID计算部分 ======================================================================== =============================*/ double PIDCalc( PID *pp, double NextPoint ) { double dError, Error; Error = pp->SetPoint - NextPoint; ??????????// 偏差 pp->SumError += Error;????????????????? ?// 积分 dError = Error - pp->LastError; ????????????// 当前微分 pp->PrevError = pp->LastError; pp->LastError = Error; return (pp->Proportion * Error // 比例项 + pp->Integral * pp->SumError // 积分项 + pp->Derivative * dError // 微分项

PID控制算法的C语言实现完整版精修订

P I D控制算法的C语言 实现完整版 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

PID控制算法的C语言实现一 PID算法原理 最近两天在考虑一般控制算法的C语言实现问题,发现网络上尚没有一套完整的比较体系的讲解。于是总结了几天,整理一套思路分享给大家。 在工业应用中PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法,如果能够熟练掌握PID算法的设计与实现过程,对于一般的研发人员来讲,应该是足够应对一般研发问题了,而难能可贵的是,在我所接触的控制算法当中,PID控制算法又是最简单,最能体现反馈思想的控制算法,可谓经典中的经典。经典的未必是复杂的,经典的东西常常是简单的,而且是最简单的,想想牛顿的力学三大定律吧,想想爱因斯坦的质能方程吧,何等的简单!简单的不是原始的,简单的也不是落后的,简单到了美的程度。先看看PID算法的一般形式: PID的流程简单到了不能再简单的程度,通过误差信号控制被控量,而控制器本身就是比例、积分、微分三个环节的加和。这里我们规定(在t时刻): 1.输入量为rin(t); 2.输出量为rout(t); 3.偏差量为err(t)=rin(t)-rout(t); pid的控制规律为 理解一下这个公式,主要从下面几个问题着手,为了便于理解,把控制环境具体一下:

1.规定这个流程是用来为直流电机调速的; 2.输入量rin(t)为电机转速预定值; 3.输出量rout(t)为电机转速实际值; 4.执行器为直流电机; 5.传感器为光电码盘,假设码盘为10线; 6.直流电机采用PWM调速转速用单位转/min表示; 不难看出以下结论: 1.输入量rin(t)为电机转速预定值(转/min); 2. 输出量rout(t)为电机转速实际值(转/min); 3.偏差量为预定值和实际值之差(转/min); 那么以下几个问题需要弄清楚: 1.通过PID环节之后的U(t)是什么值呢 2.控制执行器(直流电机)转动转速应该为电压值(也就是PWM占空比)。 3.那么U(t)与PWM之间存在怎样的联系呢 (见附录1)这篇文章上给出了一种方法,即,每个电压对应一个转速,电压和转速之间呈现线性关系。但是我考虑这种方法的前提是把直流电机的特性理解为线性了,而实际情况下,直流电机的特性绝对不是线性的,或者说在局部上是趋于线性的,这就是为什么说PID调速有个范围的问题。具体看一下(见附录2)这篇文章就可以了解了。所以在正式进行调速设计之前,需要现有开环系统,测试电机和转速之间的特性曲线(或者查阅电机的资料说明),然后再进行闭环参数整定。这篇先写到这,下一篇说明连续系统的离散化问题。并根据离散化后的特点讲述位置型PID和增量型PID的用法和C语言实现过程。

PID控制原理与控制算法

PID控制原理与控制算法 5.1 PID控制原理与程序流程 5.1.1过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 一、模拟控制系统 图5-1-1 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 二、微机过程控制系统 图5-1-2 微机过程控制系统基本框图 以微型计算机作为控制器。控制规律的实现,是通过软件来完成的。改变控制规律,只要改变相应的程序即可。 三、数字控制系统DDC 图5-1-3 DDC系统构成框图 DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。由于计算机的决策直接作用于过程,故称为直接数字控制。 DDC系统也是计算机在工业应用中最普遍的一种形式。

5.1.2 模拟PID 调节器 一、模拟PID 控制系统组成 图5-1-4 模拟PID 控制系统原理框图 二、模拟PID 调节器的微分方程和传输函数 PID 调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。 1、PID 调节器的微分方程 ?????? ++=?t D I P dt t de T dt t e T t e K t u 0)()(1)()( 式中 )()()(t c t r t e -= 2、PID 调节器的传输函数 ?? ????++==S T S T K S E S U S D D I P 11)()()( 三、PID 调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器 立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI ,TI 越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。 5.1.3 数字PID 控制器 一、模拟PID 控制规律的离散化 二、数字PID 控制器的差分方程

相关文档