文档库 最新最全的文档下载
当前位置:文档库 › 体外预应力混凝土桥梁

体外预应力混凝土桥梁

体外预应力混凝土桥梁
体外预应力混凝土桥梁

体外预应力混凝土桥梁研究现状浅析

摘要:本文对体外预应力混凝土桥梁的国内外研究现状在试验研究、全过程分析方法及简化计算方法研究三个方面分别综述,并指出其中存在的不足。

关键词:体外预应力;混凝土桥梁;国内研究;国外研究

1 前言

体外预应力混凝土桥梁自出现以来,围绕着这种结构开展的研究,除针对体外预应力系统之外,主要集中在模型试验、全过程分析方法及简化计算方法三个方面。这些研究从20世纪70年代后期开始逐步深入,20世纪80中期至90年中期相关问题的研究达到了高潮。下面就试验研究、全过程分析方法及简化计算方法研究三个方面分别综述。

2 试验研究方面

2.1 国外主要试验

综合国外文献资料,法国、美国、西班牙、新加坡等一些国家,在体外预应力混凝土梁试验研究方面都做出了贡献。

(l)法国cebtp的试验

法国是体外预应力混凝土梁试验研究最早的国家,法国建筑与土木工程试验研究中心是具有代表性的试验研究机构。20世纪80年代中期,该中的foure等采用试验方法,对体外预应力混凝土梁的弯曲性能、体外预应力混凝土梁的剪切破坏机理和节段接缝脱开后

的剪切强度等进行研究。这些试验的成果己成为许多国家和学者验证理论分析方法的依据之一。

(2)美国德克萨斯大学奥斯汀分校的试验

美国也是很早开展体外预应力混凝土梁试验研究的国家,美国德克萨斯大学奥斯汀分校是一个代表性的研究机构。该校macgregor 和hindi等在20世纪80年代中后期以一个1/4缩尺的节段式体外预应力混凝土连续梁桥(箱形截面)模型和12根节段式无粘结预应力混凝土梁为研究对象,采用试验方法对体外预应力混凝土梁的弯曲性能、剪切破坏机理和节段接缝开展后的抗剪强度等进行研究。1/4缩尺的节段式体外预应力混凝土连续梁弯曲性能的试验成果、节段式梁剪切性能的试验成果,均为许多国家和学者验证理论分析方法的依据之一。

(3)西班牙加泰罗尼亚理工大学的试验

西班牙是一个较早进行体外预应力混凝土梁试验研究的国家,西班牙巴塞罗那加泰罗尼亚理工大学是一个代表性的研究机构。该校aparicio教授及其博士生ramos在20世纪90年代前期完成的6根整体式和节段式体外预应力混凝土简支梁(箱形截面)弯曲及弯剪试验、2根整体式体外预应力混凝土连续梁(箱形截面)弯曲试验,虽然数量不多但试验梁的长度相对较大、内容较丰富。该项试验研究为西班牙体外预应力混凝土桥梁设计规范的编制,以及有限元数值模拟分析系统的建立提供了依据。

(4)新加坡国立大学的试验

新加坡也是一个较早进行体外预应力混凝土梁试验研究的国家,新加坡国立大学是一个代表性的研究机构。在20世纪90年代前、中期,该校tan教授等以13根整体式体外预应力混凝土梁(t形截面)为对象,完成了针对体外预应力钢束转向构造、体外预应力钢束相关参数的弯曲性能试验,以及以混凝土强度、剪切钢筋及剪跨比为参数的剪切性能试验。试验成果也成为许多国家和学者验证理论分析方法的依据之一。

其它有关体外预应力混凝土梁试验的文献还有不少,但上述试验均有一定特点与创新。

2.2 国内主要试验

综合国内文献资料,福州大学、铁道部科学研究院、哈尔滨建筑(工程学院)大学和哈尔滨工业大学、西南交通大学、同济大学等一些院校,在体外预应力混凝土梁试验研究方面都做出了贡献。(l)福州大学的试验

20世纪80年后期至90年代初期,福州大学的房贞政副教授以福州洪塘大桥为背景,完成了4根整体式体外预应力混凝土连续梁模型试验。该试验以普通钢筋配置率为主要参数,对全体外预应力混凝土梁的弯曲性能,包括塑性铰与结构内力重分布等进行了研究。这是国内针对体外预应力混凝土连续梁最早的、研究内容较多的一次试验。

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

桥梁体外预应力施工技术

桥梁体外预应力加固技术 1体外预应力技术介绍 1.1概述 随着我国路网及交通运输业的快速发展,发现大量的桥梁经过一段时间的营运后,梁体出现裂缝、下扰等不同程度的病害,造成桥梁承载力明显下降,必须进行桥梁加固,提高桥梁承载力才能满足日益增大的交通量的需要。旧桥加固成为一项迫在眉睫的新时期建设任务。 体外预应力体系是后预应力体系的重要的分支之一,是指将布置于承载结构主体之外的预应力筋施加预应力所形成的预应力结构体系。桥梁体外预应力加固技术是一种主动的加固技术,通过预应力材料对桥梁结构受拉区施加预应力,消除部分荷载产生的不利力,提供结构的承载力。体外预应力成为桥梁加固中最有效的加固技术之一,具有良好广泛的应用前景。 1.2体外预应力的特点 1.2.1体外预应力的优点 1、锚固构件尺寸小,自重增加少,但可有效的大幅提高承载能力。 2、简化预应力筋曲线,预应力筋仅在锚固处和转向处与结构相连,减小摩阻损失,提高预应力使用效率。 3、对原结构损伤小,不影响桥下净空。 4、预应力布置灵活,可以根据桥梁病害进行全桥加固也可以进行局部加固。 5、与混凝土无粘结,由荷载产生的应力变化分散在预应力筋全长上,应力变化值小,对结构受力有利。 6、索力根据情况可以进行调整,预应力索可以更换,便于使用期间进行维护。

1.2.2体外预应力的缺点 1、体外索布置在截面外,防腐、保护相对较困难,易受外界影响。 2、锚固及转向区域容易产生应力集中,局部应力大,锚固施工要求高。 3、体外索拉力较小,不能充分发挥体外索强度高的优点,对锚具及夹片的要求很高。 4、体外预应力筋的变形和混凝土的变形不一致,容易造成预应力损失。 1.3体外预应力的组成 体外预应力系统由锚固块、转向块、体外索、锚具、减振装置等主要5部分组成。 1.3.1锚具 体外预应力体系仅靠锚固端传力,因此体外预应力锚固体系的可靠性和安全性比一般体预应力锚固体系要高,需使用专用的体外索锚具和夹片。体外预应力的锚具的外观尺寸较普通锚具更大,且还增加了一些辅助配件,如密封装置、防松装置、防护装置等。 1.3.2体外索 体外索主要有光面钢绞线、无粘结钢绞线、平行钢丝、成品索等类型。体外索较多采用无粘结钢绞线,环氧喷涂带PE的单根钢绞线具有良好的耐腐蚀性能,不需要再进行防护,具有很好的适用性。 1.3.3锚固块及转向块 体外预应力体系仅靠锚固块及转向块传力,锚固块和转向块必须和原结构有效连接,传递应力,锚固块及转向块一般采用钢筋混凝土结构和钢结构。 钢筋混凝土结构锚固块采用在原桥结构上钻、种植钢筋、浇筑混凝土成型。

预应力混凝土桥梁现状与发展

预应力混凝土桥梁现状与发展 Present situation and development of prestressed concrete bridge 【摘要】本文按预应力混凝土桥梁常用的结构型式来说明预应力混凝土结构在桥梁上的应用与发展;分析了这些结构型式的优缺点以及发展趋势;同时还分析了影响其运用和发展的相关因素,以促进预应力混凝土桥梁的更进一步发展。【关键词】预应力混凝土桥梁型式运用与发展结构 【Abstract】The main body of the writing is that according to the prestressed concrete bridge common structure to explain the application and development on Prestressed concrete structure in bridge ;and analyzed advantages and disadvantages of these structure types and the development trend.At the same time,the article also analyzed the effect of the use and development of the related factors to promote the further development of prestressed concrete bridge. 【Key Words】Prestressed concrete Bridge type Application and development Structure 【正文】 一、前言 预应力混凝土是在第二次世界大战后迫切要求恢复战争创伤,从西欧迅速发展起来的。半个多世纪以来,从理论、材料、工艺到土建工程中的应用,都取得了巨大的发展。尤其是随着部分预应力概念的逐步成熟,突破了混凝土不能受拉与开裂的约束,大大扩展了它的应用范围。目前预应力混凝土已成为国内外土建工程最主要的一种结构材料,而且预应力技术已扩大应用到型钢、砖、石、木等各种结构材料,并用以处理结构设计,施工中用常规技术难以解决的各种疑难问题。我国预应力混凝土的起步比西欧大约晚10年,但发展迅速,应用数量庞大。我国近年来在土木工程投资方面,建设规模方面均居世界前列。在混凝土工程技术,预应力技术应用方面取得了巨大进步。近来二三十年来,我国预应力混凝土桥梁发展很快,无论在桥型,跨度以及施工方法与技术方面都有突破性发展,不少预应力混凝土桥梁的修建技术已达到国际先进水平。下面从以下几个方面探讨预应力混凝土结构在桥梁上的应用与发展。 二、公路板式桥

预应力混凝土简支梁桥的毕业设计(25m跨径)

目录 《桥梁工程》课程设计任务书---------------------------------------------2 桥梁设计说明------------------------------------------------------------------3 计算书---------------------------------------------------------------------------4 参考文献------------------------------------------------------------------------24 桥梁总体布置图---------------------------------------------------------------25 主梁纵、横截面布置图-----------------------------------------------------26 桥面构造横截面图-----------------------------------------------------------27

《桥梁工程》课程设计任务书 一、课程设计题目(10人以下为一组) 1、钢筋混凝土简支梁桥上部结构设计(标准跨径为25米,计算跨径为24.5米,预制梁长 为24.96米,桥面净空:净—8.5+2×1.00米) 二、设计基本资料 1、设计荷载:公路—Ⅱ级,人群3.0KN/m2,每侧栏杆及人行道的重量按4.5 KN/m计 2、河床地面线为(从左到右):0/0,-3/5,-4/12,-3/17,-2/22, -2/27,0/35(分子为高程,分母为离第一点的距离,单位为米);地质假定为微风化花岗岩。 3、材料容重:水泥砼23 KN/m3,钢筋砼25 KN/m3,沥青砼21 KN/m3 4、桥梁纵坡为0.3%,桥梁中心处桥面设计高程为2.00米 三、设计内容 1、主梁的设计计算 2、行车道板的设计计算 3、横隔梁设计计算 4、桥面铺装设计 5、桥台设计 四、要求完成的设计图及计算书 1、桥梁总体布置图,主梁纵、横截面布置图(CAD出图) 2、桥面构造横截面图(CAD出图) 3、荷载横向分布系数计算书 4、主梁内力计算书 5、行车道板内力计算书 6、横隔梁内力计算书 五、参考文献 1、《桥梁工程》,姚玲森,2005,人民交通出版社. 2、《梁桥》(公路设计手册),2005,人民交通出版社. 3、《桥梁计算示例集》(砼简支梁(板)桥),2002,人民交通出版社. 4、中华人民共和国行业标准.公路工程技术标准(JTG B01-2003).北京:人民交通出版社,2004 5、中华人民共和国行业标准.公路桥涵设计通用规范(JTG D60-2004)含条文说明.北京:人民交通出版社,2004 6、中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)含条文说明 六、课程设计学时 2周

路桥施工中体外预应力加固技术

路桥施工中体外预应力加固技术 发表时间:2016-03-10T15:29:05.280Z 来源:《基层建设》2015年22期供稿作者:温义顺 [导读] 广东盛安建设工程有限公司在本篇论文中,选取的实例是红棉路线路中的调整路段,作为城市中交通的主干运行。 温义顺 广东盛安建设工程有限公司 摘要:预应力的主要效果是使得建筑的坚固程度得以最大的保障。工作的原理是对结构或者是构件部分的力量的解除,这个过程追求永久性的加固,从而对公路和桥梁的坚固程度有很大的支撑力度,使得整个工程的安全有所保障。 1、工程概况 在本篇论文中,选取的实例是红棉路线路中的调整路段,作为城市中交通的主干运行。公路的建设方面,当地政府以重资支持,不但在桥梁、道路灯交通方面有所成就,而且在排水和电力等生活方面也有所建树。这些举措使得城市的发展得到了一个更加稳定和谐的环境。同时,最为得到重视的是混凝土工程的实施,并在以下文字中表明了自身的总结。 2、预应力技术的实践应用 在对工程进行施工时会,预应力技术的应用是必须的,通常是运用张拉作用的理论,在夹紧须应力筋的锚具上用做功的方式将其完成。而在实际的应用中,预应力施工的具体操作有两种方式,分别是外部和内部的施工手段,而两者之间又是具有显著区别的。前者中主要利用的是机械设施操作,以外部施力中的反力作用为主加以调整,从而完全把握混凝土结构施力的效果,不断满足建设中对施工的需求;后者虽然也是使用的机械设备,但是操作中使用的理论是筋的张拉,以此途径最终达到事先对其标准。 这里对于内部预应力有更详尽的叙述。区别于外部施力,内部施力的办法并不唯一。除了可以使用机械设备达到效果,预应力的施工还可以通过电热法来实现,与此较为相似的是白张法,是可以达到目的的另外一种途径。在一系列的预应力施工过程中,可以施以巨大拉力的大型工具得到了最广泛的应用,例如千斤顶之类的,不仅是由于机械设备在预应力工程中的强大能力,更是由于对此类工程实施的有效促进。当然,这些机械设备的使用并不是一概而论的,在操作中要依据具体情况来决定,一方面分清施工的顺序,另一方面则是据此施以具体的工艺技术。 3、桥梁加固 在工程建设中,对桥梁的加固是十分必要的,为了使得其承载方面的能力和耐持久度的性能可以有大幅度的提高,通常会不断补充加固桥梁中的部分结构物。随着我国经济的不断发展,道路的使用也更加频繁,由此造成一定的损耗,因此在加固方面加注了更多的投资,最经常使用的方法有上部和下部的结构补强加固两种。而前者又有更加具体的分类,主要是依据是否将结构受力体系加以变动。如果变换一下角度,主动和被动则是多被应用在补强材料的情况下。 3.1桥梁主动加固原理 这一措施主要应用在受拉区,以直接增设补强材料的方式进行,运用这一方式进行操作的工程有很多,比如对钢筋的补焊以及对钢板盒和高强复合纤维材料的粘贴等。自理论上来说,完全在被动加固的范畴,但是在实际的设计措施中,需要顾虑到两个特点,分别是带载加固和受力阶段性。 3.2桥梁被动加固原理 桥梁经过后加补强材料容易产生“应变滞后”的现象,为了避免这类现象的发生,并且极大程度的对材料的可利用度,则需要对其加以预应力,同时推动加固补强的进行。预应力的加固自作用原理上来说是集聚主动性的。 就我国现今的情况而言,预应力得以使用的范围主要有以下几种体系,包括体外预应力、高强复合纤维预应力、有粘结预应力三种。 4、体外预应力加固常用方法 4.1横向收紧张拉法 在施工过程中,会出现一些明显的问题,比如钢筋混凝土间的缝非常小的情况,这个时候存在于两端的张力会非常显著,为了减弱甚至避免这种张力,在工程中通常采取横向收紧张拉法来进行操作,这一操作方法也适用于同样情况的预应力混凝土梁。这种方式的操作是通过对梁的下缘对称梁中线的安装预应力筋来实现的,实施的位置是梁端,但要保持一定的距离,首先要弯起,之后则是以支点锚作为途径将其固定。为了使得支点的作用得到充分的发挥,需要将预应力筋在水平范围内分段支撑。为了使得预应力得出更好的结果,需要将分段中的中点部分确定,采用拉紧螺栓的方式将对称筋不断收紧,促进钢板部分的与压力以及预应力筋产出的负弯矩作用在梁上,只是通常情况下弯曲的程度很小,所以这种方式通常被应用在对小梁中正弯矩的减弱上,而对于对端顶剪力的降低上则是基本没有效果的。 4.2纵向张拉法 这一方式主要是依附于预应用力筋的轴线而得以实施的。在进行具体操作时,需要在梁底的位置安装预应力筋,弯起处则需要安装在梁的两个端点,其在腹板和顶板都是可以良好将锚进行固定的位置,为了有效降低梁在顶端处的剪力,可以在梁的底部和顶部实施纵向张拉的方式。由此可见,对于张拉实行,在位置的选择上是比较宽松的,顶底部都可以,而且除了可以水平方向,亦可以斜线方向,不过要注意,进行此类张拉根据具体的构造来决定。 4.3竖向顶撑张拉法 一般情况下,打造为U性的钢锚固板被安置在梁中位置的最底层,同时通过将拉杆在端点的固定,并且安装好张紧夹具,从而在此进行拉杆作用。在预应力的一系列技术中,钢丝束加固法得到了很大的认可,这是由其自身效果所决定的,在对其进行设置的过程中,要沿着梁肋的特定曲线来确定形态,同时放置定位的圆圈将其箍紧,以达到完好保证曲线和限定钢束位置的目的。 5、预应力加固体系中对高强复合纤维的有效利用 根据我国现今的实际情况,纤维在我国工程中得到了大范围的使用,其中最为受到追捧的是高强复合纤维的芳纶和碳纤,经过长期的研究和实践经验总结,在对此应有的技术方面也有一定的先进性,依据此,本文认为碳纤维预应力加固更应该得到推崇和使用。 5.1问题提出 在工程的加固方面不止一种,有很多可行的方式,但是在社会上得到反响而且得到广泛应用的则是直接纤维加固法,这种方式的应用

混凝土及预应力混凝土桥梁

混凝土及预应力混凝土桥梁 随着我国基础建设的快速发展,大体积混凝土施工日益增多(如预应力梁、承台及基础、高层建筑的箱型基础或筏型基础),而大体积混凝土施工中普遍会遇到裂缝控制问题,这是因为混凝土体积大,聚集的大量水化热会导致混凝土内外散热不均匀,在受到内外约束的情况下,混凝土内部会产生较大的温度应力并很可能导致裂缝产生,最终为工程结构埋下严重质量隐患。因此,大体积混凝土施工中应严格控制裂缝产生和发展,以保证工程质量。 摘要 本人结合一年实习参与公路桥梁现场施工工作实践,对部分桥梁在建设过程中常见的一些裂缝类型进行归类总结,通过查找原因分析问题,才能让我们真正地了解各种裂缝的引发成因,进而制订防范措施,达到预防布控之目的。关键词:桥梁工程;结构裂缝;裂缝类型;诱发原因;处理;技术措 施 在桥梁工程中混凝土桥梁缝的种类,就基其产生的原因,主要可划分如下几种 荷载引起的裂缝混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:①设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结

构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。②施工阶段,不加限制地堆放施工,擅自更改结构施工顺序,改变结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强充验算等。③使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。次应力裂缝是指由外荷载引起的次生应力产生裂缝。裂缝产生的原因有:①在设计外荷载作用下,由于结构物的、实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。②桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。在长跨预截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。温度变化引起的裂缝①年温差。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。我国年温差一般以一月和七月平均温度的作为变化幅度。考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。②日照。桥面板、

预应力混凝土桥梁工程施工方案

预应力混凝土桥梁工程 本标段内桥梁为石院子中桥长67米,上部为预应力混凝土T梁,下部采用柱式墩,U 型桥台,钻孔灌注桩基础。 1、基础施工 1、1桩基施工方法 钻机施工工艺见钻孔灌注桩施工工艺框图。 1.1.1施工准备: 开钻前根据地层岩性等地质条件、技术要求确定钻进方法和选用合适的钻具;规划施工场地,合理布置临时设施;开孔前,测量班放出桩位中心后将钢护筒埋入土中正确对位。开孔时,采用短钻具、低钻速、轻压慢进。 1.1.2钢护筒的制作: 桩基护筒用δ=10mm的A3钢板卷制,护筒焊接采用开坡口双面焊,要求焊逢连续,保证不漏水。护筒埋置深度须符合下列规定:黏性土不小于1m,砂类土不小于2m,当表层土松软时将护筒埋置到较坚硬密实的土层中至少0.5m;岸滩上埋设护筒,在护筒四周回填黏土并分层夯实;护筒顶面中心与设计桩位偏差不大于5cm,倾斜度不大于1%。 1.1.3钻进施工:

钻孔灌注桩施工工艺框图 钻进施工时,再次将钻头、钻杆、钢丝绳等进行全面检查;钻进时,钻头对准设计桩位中心,匀速下放至作业面,液压装置加压,旋转钻进,钻进过程中,应根据地质资料掌握土层变化,及时捞取钻碴取样,判断土层,记入钻孔记录表,并与地质资料进行核对。根据核对判定的土层调整钻机的转速和钻孔进尺。 1.1.4护壁: 钻孔护壁采用泥浆护壁的形式。选用成品膨润土配制优质泥浆,其具有相对密度低、粘度低、含砂量少、失水量少、泥皮薄、稳定性强、固壁能力高等优点。根据不同的地质情况选择不同的泥浆比重。根据地层情况及时调整泥浆性能,参照<公路桥梁施工规范>(JTG/T F50-2011)泥浆性能指标。 1.1.5第一次清孔: 钻孔至设计高程,经过检查,孔深符合要求后,开始进行清空。清孔采用换浆法,在钻进至设计深度后,稍稍提起钻头,同时保持原有的泥浆比重进行循环浮碴,随着 终 孔 清 孔 测 孔 安放钢筋笼 安放导管 测孔深、孔径、倾斜度 测泥浆性能指标 监理工程师签字认可 监理工程师签字认可 水密性试验 测孔深、孔径 钢筋笼及检测管制作 凿桩头 二次清孔 灌注混凝土 检查泥浆指标及沉渣厚度 制作混凝土试件

体外预应力加固法

体外预应力加固法 一、体外预应力加固法基本概念 钢筋混凝土梁式桥通常包括简支梁(T型梁、少筋微弯板组合梁、π形梁及板梁等)、悬臂梁和连续梁等。当其存在结构缺陷,尤其是承载力不足或需要提高荷载等级,即需要对桥梁主要受力结构进行加固时,可在梁体外部(梁底与梁两侧)设置钢筋或钢丝束,并施加预应力,以改善桥梁的受力状况,达到提高桥梁承载能力的目的。 体外预应力是针对体内预应力而言的,即把预应力筋布置在主体结构之外。当体外预应力索应用于混凝土结构时就被称为体外预应力混凝土结构。体外预应力技术用于桥梁加固称为体外预应力加固。从力学特征上说,体外预应力索与周围结构主体在同一截面上的变形是不协调的。 体外预应力索加固结构的实质,是以粗钢筋、钢绞线或高强钢丝等钢材作为施力工具,对桥梁上部结构施加体外预应力,以预加力产生的反弯矩部分抵消外荷载产生的内力,从而达到改善旧桥使用性能并提高其极限承载能力的目的。 体外预应力加固法具有加固、卸荷、改变结构内力的三重效果,适用于中小跨径的梁式桥;对于较大跨径的桥梁,采用本方法加固时,宜同时配合其他加固方法进行综合加固,以达到较好的加固效果。 工程实践表明,用体外预应力索加固桥梁具有如下优点: (1)能够较大幅度地提高旧桥承载能力。加固后所能达到的荷载等级与原桥设计标准及安全储备有关,一般情况下可将原桥承载力提高30%--40%。 (2)体外预应力索加固技术所需设备简单,人力投入少,施工工期短,经济效益明显。 (3)在加固过程中,可以实现不中断交通或短时限制交通。 (4)对原桥损伤较小,可以做到不影响桥下净空,且不增加路面高程。 常用的体外预应力加固技术包括体外预应力钢丝束加固法和下撑式预应力拉杆(粗钢筋)加固法。 (5)体外预应力加固法与梁底增焊(或粘贴)钢筋(或钢板)的加固方法相比,不需清凿混凝土保护层,且损伤梁体程度小,加固时不影响或少影响交通,能恢复或提高桥梁的荷载等级,经济效果较明显。 但对于梁体外的预应力筋和有关构件,应采取切实有效的防护措施,否则在温度、腐蚀等外界条件作用下,容易造成预应力筋断裂,从而使加固工作失败。 二、体外预应力加固法原理 常用的体外预应力加固技术包括体外预应力钢丝束加固法和下撑式预应力拉杆(粗钢筋)加固法。 (一)外部预应力钢丝束加固法 采用外部预应力钢丝束(钢绞线)加固梁式上部结构,一般沿梁肋侧面按某种曲线线形(常用的有抛物线形等)设置预应力钢丝束,通过张拉预应力筋实现体外预应力。为保证曲线线形并固定钢束位置,在梁底每隔一定间距离(50——100c m)设置一个定位箍圈(由梁底向上兜),或者在梁肋侧面埋设定位销。钢

预应力混凝土桥梁发展概况

预应力混凝土桥梁发展概况 同济大学混凝土桥梁研究室 事○○三年十月

一、引言 预应力混凝土桥梁自出现以来的每次重大技术収展,都和材料、结极体系和施工工艺等 创新密切联系在一起,它们相互促进不断収展: 1. 预应力材料 ?高强、高性能及轻质混凝土技术収展,使混凝土受力性能改善、耐久性提高、浇筑更方便,也使预应 力混凝土桥梁结极自重荷载下降 ?高强、低松弛预应力钢材収展,使预应力混凝土的效率大大提高,也促进了预应力器具和设备収展

一、引言 1. 预应力材料 ?纤维增强聚合物预应力筋技术収展,使预应力筋兼轻质、高强、耐腐蚀、耐疲劳、非磁性等优点于一 体,一些钢材难以兊服的弱点消除,将预应力混凝 土桥梁带入了一个崭新的収展领域 ?利用现代传感和通讯等技术的智能化预应力混凝土材料,不间断监视结极的工作状态、生命轨迹,将 对预应力混凝土桥梁健康、安全运行提供有利保障

一、引言 2. 预应力桥梁结极体系 ?部分预应力混凝土结极,兼有预应力和钢筋混凝土结极的优点,兊服了全预应力混凝土结极的缺点?无粘结体内预应力混凝土结极,消除了后张预应力筋管道的压浆,降低了预应力摩阻损失 ?双向预应力、预弯预应力体系是预应力概念的新収展,它们使结极的高跨比显著减小,满足了一些特 殊的使用要求

一、引言 2. 预应力桥梁结极体系 ?体外预应力混凝土结极,极造简化、补索方便、施工简单,维护方便、总体经济性优越,逐步成为在 经济、施工质量和安全性方面最有竞争力的方案?钢—混凝土组合式预应力桥梁,利用钢腹、预应力混凝土顶板与底板在受力、极造及施工等方面的优 点,成为预应力桥梁一种新的収展方向

后张体外预应力加固技术及其工程应用

收稿日期:2011-11-28 作者简介:刘航(1971-),男,湖南醴陵人,教授级高级工程师,副总工程师,e-mail :liuhang71@https://www.wendangku.net/doc/678548383.html,. 建筑技术Architecture Technology 第43卷第1期2012年1月 Vol.43No.1Jan.2012 后张预应力技术除在各类新建建筑、构筑物以及桥梁结构中广泛应用外,在结构加固改造领域也有着广阔的应用前景。本文结合一些工程实例,介绍了后张预应力加固技术的相关研究及其在结构加固改造工程中的应用。 1后张预应力技术应用 (1)采用后张体外预应力筋加固钢筋混凝土结构 最为常见,如对于承载能力或刚度不足的混凝土受弯构件,包括框架梁、楼板等采用后张预应力筋加固,以提高其刚度及承载能力;再如对于受压承载力不足的轴心受压柱、偏心受压柱采用预应力撑杆加固,对于混凝土桁架结构中承载力不足的轴心受拉构件和偏心受拉构件等采用预应力拉杆加固等。 (2)后张预应力技术还可用于钢结构和钢与混凝土组合结构的加固。通过对钢结构和钢与混凝土组合结构施加预应力,产生与外荷载反向的变形和内力,一方面可提高钢结构以及钢与混凝土组合结构的正常使用性能,另一方面也可显著提高结构的承载能力。 (3)后张预应力技术还开始用于砖砌体结构的抗震加固。自20世纪90年代开始,新西兰、澳大利亚、欧洲等国家和地区开展了将后张预应力技术用于砖砌体结构抗震加固的研究。结果表明,采用后张预应力技术加固砖砌体结构可以显著提高砖砌体结构的延性和耗能能力,使砖砌体结构抗震能力大幅度提高。 2 后张预应力加固混凝土受弯构件常用布置及节点做法 2.1 预应力筋常用束形布置 对于因承载力不足而采用后张预应力进行加固的 混凝土受弯构件,宜采用接近于其弯矩图布置的折线预应力筋进行加固;对于简支梁,也可采用布置于受拉区的直线预应力筋进行加固。图1~3为几种常用的加固预应力筋布置形式。 后张体外预应力加固技术及其工程应用 刘 航1,高会宗2,杨学中1,吴文奇1 (1.北京市建筑工程研究院有限责任公司,100039,北京;2.中广国际建筑设计研究院,100045,北京) 摘 要:对后张体外预应力技术在结构加固工程中的应用进行了较为全面的分析。探讨了后张预应力加固 钢筋混凝土受弯构件的设计计算方法,提出了预应力筋的常用束形布置和节点做法,并结合某工程实例分析了预应力加固框架梁的有关施工方法。后张预应力技术目前在国际上还被用于砖砌体结构的抗震加固,对其原理和效果也进行了简要的介绍。 关键词:体外预应力;后张法;加固;受弯构件;砌体结构中图分类号:TU 746.3;TU 757 文献标识码:B 文章编号:1000-4726(2012)01-0049-04 EXTERNAL POST-TENSIONING TECHNIQUES AND APPLICATIONS FOR STRUCTURES RETROFITTING LIU Hang 1,GAO Hui-zong 2,YANG Xue-zhong 1,WU Wen-qi 1 (1.Beijing Building Construction Research Institute Co.,Ltd.,100039,Beijing,China; 2.Architectural Design &Research Institute of CRTV,100045,Beijing,China ) Abstract:The external post -tensioning techniques used for structures retrofitting are analyzed comprehensively.The design and calculating methods of RC flexural members strengthened with external tendons are discussed.Meanwhile,the general profiles of external tendons and the joint detail are also presented.Moreover,the construction techniques of using post -tensioning to strengthening frame beams are introduced.Post-tensioning is also used as seismic retrofitting techniques for masonry structures in foreign countries and the related principles and methods are also introduced briefly. Key words:external prestressing;post-tensioned;retrofitting; flexural members;masonry structure ·49 ·

预应力混凝土连续梁桥及例子

4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

条件腹板宽度Bmin(cm) 腹板内无纵向或竖向后张预应力钢筋时20 腹板内有纵向或竖向后张预应力钢筋之一时30 腹板同时有纵向和竖向后张预应力钢筋时38 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m 抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于

体外预应力混凝土桥梁

体外预应力混凝土桥梁研究现状浅析 摘要:本文对体外预应力混凝土桥梁的国内外研究现状在试验研究、全过程分析方法及简化计算方法研究三个方面分别综述,并指出其中存在的不足。 关键词:体外预应力;混凝土桥梁;国内研究;国外研究 1 前言 体外预应力混凝土桥梁自出现以来,围绕着这种结构开展的研究,除针对体外预应力系统之外,主要集中在模型试验、全过程分析方法及简化计算方法三个方面。这些研究从20世纪70年代后期开始逐步深入,20世纪80中期至90年中期相关问题的研究达到了高潮。下面就试验研究、全过程分析方法及简化计算方法研究三个方面分别综述。 2 试验研究方面 2.1 国外主要试验 综合国外文献资料,法国、美国、西班牙、新加坡等一些国家,在体外预应力混凝土梁试验研究方面都做出了贡献。 (l)法国cebtp的试验 法国是体外预应力混凝土梁试验研究最早的国家,法国建筑与土木工程试验研究中心是具有代表性的试验研究机构。20世纪80年代中期,该中的foure等采用试验方法,对体外预应力混凝土梁的弯曲性能、体外预应力混凝土梁的剪切破坏机理和节段接缝脱开后

的剪切强度等进行研究。这些试验的成果己成为许多国家和学者验证理论分析方法的依据之一。 (2)美国德克萨斯大学奥斯汀分校的试验 美国也是很早开展体外预应力混凝土梁试验研究的国家,美国德克萨斯大学奥斯汀分校是一个代表性的研究机构。该校macgregor 和hindi等在20世纪80年代中后期以一个1/4缩尺的节段式体外预应力混凝土连续梁桥(箱形截面)模型和12根节段式无粘结预应力混凝土梁为研究对象,采用试验方法对体外预应力混凝土梁的弯曲性能、剪切破坏机理和节段接缝开展后的抗剪强度等进行研究。1/4缩尺的节段式体外预应力混凝土连续梁弯曲性能的试验成果、节段式梁剪切性能的试验成果,均为许多国家和学者验证理论分析方法的依据之一。 (3)西班牙加泰罗尼亚理工大学的试验 西班牙是一个较早进行体外预应力混凝土梁试验研究的国家,西班牙巴塞罗那加泰罗尼亚理工大学是一个代表性的研究机构。该校aparicio教授及其博士生ramos在20世纪90年代前期完成的6根整体式和节段式体外预应力混凝土简支梁(箱形截面)弯曲及弯剪试验、2根整体式体外预应力混凝土连续梁(箱形截面)弯曲试验,虽然数量不多但试验梁的长度相对较大、内容较丰富。该项试验研究为西班牙体外预应力混凝土桥梁设计规范的编制,以及有限元数值模拟分析系统的建立提供了依据。

桥梁预应力混凝土现状与发展论文

桥梁预应力混凝土现状与发展论文 简介:本文从组成混凝土的材料,张拉技术和施工方法及结构抗震性能上的发展状况来进行阐述,提出了提高预应力混凝土工艺水平的建议. 关键字:混凝土钢材施工工艺抗震性能 引言 预应力混凝土是在第二次世界大战后迫切要求恢复战争创伤,从西欧迅速发展起来的。半个多世纪以来,从理论,材料,工艺到土建工程中的应用,都取得了巨大的发展。尤其是随着部分预应力概念的逐步成熟,突破了混凝土不能受拉与开裂的约束,大大扩展了它的应用范围。目前预应力混凝土已成为国内外土建工程最主要的一种结构材料,而且预应力技术已扩大应用到型钢,砖,石,木等各种结构材料,并用以处理结构设计,施工中用常规技术难以解决的各种疑难问题。我国预应力混凝土的起步比西欧大约晚10年,但发展迅速,应用数量庞大。我国近年来在土木工程投资方面,建设规模方面均居世界前列。在混凝土工程技术,预应力技术应用方面取得了巨大进步。近来二三十年来,我国预应力混凝土桥梁发展很快,无论在桥型,跨度以及施工方法与技术方面都有突破性发展,不少预应力混凝土桥梁的修建技术已达到国际先进水平。本文着重从其组成材料和特性上探讨预应力混凝土发展现状及前景。 混凝土

从我国已建成的预应力混凝土桥梁来看,大多都采用40~50混凝土,进而采用减水剂等添加剂制备塑性混凝土,并发展了泵送混凝土工艺。随着桥梁跨度的增加,为减少桥梁结构的自重,混凝土逐渐向高强,轻质方向发展。日本早在70年代采用80混凝土修建了几座跨径为45的简支预应力混凝土铁路桥,德国在主跨136的富林格尔桥上采用了轻质混凝土。我国目前在高强,轻质混凝土方面已经有所成就。如建设中的重庆大佛寺长江大桥,是一座主跨450米的双塔双索面预应力混凝土斜拉桥。由重庆大佛寺长江大桥试验忠心研制成功的60微硅粉高强混凝土首次在该桥主梁浇注使用。作为混凝土的改性材料,微硅粉高强混凝土具有易浇注,整体密实,长期稳定及强度高等特点,可提高建筑的内在质量,在桥梁建筑市场上具有极大的推广应用价值。 钢材 目前使用的预应力钢材主要有高强钢丝,钢绞线及高强度粗钢筋三大类。桥梁上使用的预应力钢材一直在朝着高强度,低松弛,大直径的方向发展。80年代中期以前,我国的预应力钢材的性能比国际上落后较多,近20年差距逐渐缩小。预应力钢材的生产过程由于工厂的不断改进而成为性能更好,更经济的材料。为提高效率,近年来,材料强度有所增加,但在某些情况下,强度的增长是以降低材料的延性与韧性为代价的。强度较高的预应力钢材,有时会增加氢的应力腐蚀的危险。这些不利的特性应予以重视。新型材料如纤维增强塑料,过去主要用于航天和航空工业,现已进入建筑工业。采用这些材料主要由于

桥梁预应力施工技术及原理

桥梁预应力施工技术及原理摘要:预应力混凝土桥的问世时梁式桥梁的跨度飞速增长。在当前全世界的 桥梁中,有70%以上都采用了预应力结构。预应力混凝土技术在桥梁中的地位已经非常的重要。本文就预应力施工工艺作简要说明。 预应力混凝土是一种缓解混凝土先天上对抗拉力不足的方法。这种方法可以用来制作梁、地板以及常规钢筋混凝土难以建造的大垮距的桥梁。预应力混凝土利用钢索(通常是高抗张力钢索或者是杆件)来提供两端的压力去抵抗和抵消由弯距产生在混凝土部份拉力,而传统的钢筋混凝土则是把钢筋直接置入浇筑了的混凝土之中。 预应力混凝土结构的特点:由于采用了高强度钢材和高强度混凝土,预应力混凝土构件具有抗裂能力强、抗渗性能好、刚度大、强度高、抗剪能力和抗疲劳性能好的特点,对节约钢材(可节约钢材40%~50%、混凝土20%~40%)、减小结构截面尺寸、降低结构自重、防止开裂和减少挠度都十分有效,可以使结构设计得更为经济、轻巧与美观。 基本原理 预应力混凝土虽然只有几十年的历史,然而人们对预应力原理的应用却由来已久。也有利于恢复预应力筋与混凝土之间的粘结力。如中国古代的工匠早就运用预应力的原理来制作木桶。木桶的环向预压应力通过套紧竹箍的方法产生。只要水对桶壁产生的环向拉应力不超过环向预压应力,则桶壁木板之间将始终保持受压的紧密状态,预压应力通过两端锚具传给构件混凝土。木桶就不会开裂和漏水。 混凝土的抗压强度虽高,而抗拉强度却很低,预应力筋可先穿入套管也可以后穿。通过对预期受拉的部位施加预压应力的方法,就能克服混凝土抗拉强度低的弱点,达到利用预压应力建成不开裂的结构。 预应力混凝土简支梁结构的基本原理 (a)预应力作用;(b)使用荷载作用;(c)预应力和荷载共同作用

桥梁体外预应力加固技术综述

桥梁体外预应力加固技术综述 体外预应力技术是后张预应力体系的分支,是无粘结预应力结构技术的一种。它对置于混凝土截面之外的预应力筋进行张拉,通过体外筋端部锚具和转向块将预应力传递给混凝土结构。由于体外预应力技术具有结构自重轻,预应力筋替换、维护方便,预应力损失和应力变化幅度小,施工工期短,混凝土质量高、耐久性强等优点,已被广泛地应用于混凝土桥梁结构的加固维修。 1 体外预应力的概念与体系 体外预应力是指对布置于承载桥梁结构本体之外的钢束张拉而产生预应力。设计时仅把钢束锚固区域设置在桥梁结构本体内,转向块可设在桥梁结构体内或体外。 体外预应力体系由体外预应力管道(高密度聚乙烯管HDPE或钢管等)、浆体(防腐油脂或水泥浆体)、锚固体系和转向块等部件组成。体外预应力体系分为有粘结体外预应力体系和无粘结体外预应力体系。有粘结预应力体系是将钢铰线穿入孔道内张拉后,向孔道管内灌入水泥浆。无粘结预应力体系的体外预应力筋由若干单根无粘结筋组成,将单根无粘结筋平行穿入管内,张拉之前,先完成灌浆工艺,由水泥浆体将单根无粘结筋定位,张拉后不灌入水泥浆。 2 体外预应力加固的组成构造特点及作用机理 2.1 组成构造特点 桥梁体外预应力加固体系的形式是多种多样的。从构造形式上看,该体系主要由以下几部分组成:水平筋、斜筋、上锚固点、滑块、U形承托、水平筋固定支座。 (1) 体外预应力索、管道和灌浆材料 体外预应力体系采用的预应力索一般由钢铰线组成,包括与体内预应力混凝土结构完全相同的普通钢铰线以及镀锌钢铰线或外表涂层和外包PE防护的单根无粘结钢铰线。体外预应力索管道主要起防腐作用,它通常有两种形式:一是全部采用钢管道,二是钢管与高密度聚乙烯管道相结合的方式,即除在锚固段及转向弯曲段采用钢管外在其它直线段均采用高密度聚乙烯管道。 体外预应力索管道的灌浆材料可分为刚性灌浆材料和非刚性灌浆材料。刚性灌浆材料通常指水泥非刚性灌浆材料(如油脂和石蜡)。水泥灌浆是最简单和常用的,它可以适用于与结构有离散粘结的体外预应力结构,也适用于与结构完全无粘结的体外预应力结构。而油脂和石蜡通常用在由普通钢铰线和钢管道组成的预应力系统中,以达到钢索与结构无粘结的目的。 (2) 体外预应力索的锚固系统 体外预应力索的锚固体系一般可分为可更换和不可更换两大类。在可更换的体外预应力锚具中又包括钢索无法放松和可放松两种类型。使用无法放松的钢索可以是普通的钢铰线也可以是单根无粘结钢铰线。使用普通钢铰线时在管道中灌注非刚性灌浆材料(油脂或石蜡),使用无粘结钢铰线时管道中一般灌注水泥浆。但两种类型的锚具中均使用防腐材料填密而不使用水泥浆以满足钢索可更换的要求。可放松的类型在锚具后需预留一定长度的钢索以满足钢索放松的需要,这种锚具的体外预应力索只能是无粘结钢索。 (3) 体外预应力索的转向装置 体外预应力索的转向装置是体外预应力索在跨内唯一与混凝土体有联系的构件,起体外预应力索转向的重要作用。图1~图4是体外预应力混凝土结构中最常见的转向装置。 图1为块状式转向构造,只能承受钢索的竖向分力,大量应用于跨径较小、采用阶段施工的体外预应力混凝土结构。图2为底横肋式转向构造,能承受体外预应力索产生的横向水平分力。转向构造的混凝土在箱梁底板上是贯通的,这种构造常用于斜、弯的体外预应力

相关文档