文档库 最新最全的文档下载
当前位置:文档库 › (完整word版)工程信号处理实验

(完整word版)工程信号处理实验

(完整word版)工程信号处理实验
(完整word版)工程信号处理实验

重庆大学

学生实验报告

实验课程名称

开课实验室

学院年级专业班

学生姓名学号

开课时间至学年第学期

机械工程学院制

《工程信号处理》实验报告

学院 机械工程学院 年级、专业、班

姓名

成绩

课程 名称 工程信号处理实验 实验项目 名 称

数据采集与波形显示

指导教师

教师评语

教师签名:

年 月 日

1.1 实验目的

1、加深对A/D 转换原理及采样定理的理解;

2、掌握几种常用的采样触发方式;

3、掌握采样参数的选择方法;

4、学习信号采集程序的编制。 1.2 实验原理

1、模数转换及其控制

对模拟信号进行采集就是将模拟信号经模/数转换为数字信号,A/D 转换包括三个步骤:采样、量化、编码。

2、信号采集的参数选择

(1)采样频率:采样频率是等间隔采样间隔时间T 的倒数,采样频率f s 最小必须大于或等于信号最高频的两倍,即f s 2f c.。

(2)采样点数:进行时域分析时,采样点数尽可能多一些,采样点数越多信号越容易复原。进行频域分析时,为了快速傅里叶变换(FFT )计算的方便,采样点数一般取2的幂数。

(3) 信号的记录长度:当f s 和采样点数N 确定之后,被分析信号的长度就相应确定了。每一段样本的长度为T=N -(1/f s )。

(4) 触发方式选择:触发方式是启动A/D 开始采样信号。有手动触发、信号电平触发、预触发、外触发这几种触发方式。 1.3 实验装置

信号发生器;测试传感器与预处理器;数据采集器;数据采集与波形显示软件;计算机 1.4 实验步骤

1、按图1.1所示连接仪器

图1.1 数据采集实验装置

2、下面的操作以虚拟式波形显示与数据记录仪为例来说明。

1)手动触发采集,按“示波”按钮,开始信号采集,从显示屏上可看出采集到的信号的波形。按“暂停”按钮,可停止采集;

2)电平触发采集,按“电平触发”按钮; 3)采样频率选择,旋动频率旋钮; 4)数据记录长度选择,旋动长度旋钮。

信号发生器 预处理器 传感器

数据采

集器 计算机 (数据采

集与波形

显示软件) Ch1 Ch2

1.5 实验过程原始记录(数据、图表、计算等)

实验原始记录如下图1.2~1.5所示:

图1.2 采样频率为400Hz的正弦波信号图1.3 采样频率为4000Hz的正弦信号

图1.4采样频率为400Hz的方波信号图1.5 采样频率为4000Hz的方弦信号

1.6 实验结果及分析

实验结果表明:在对信号作采样时,在满足采样定理的同时,采样频率越高,采样得到的信号越好。采样频率过低造成频混,过高则所采得的信号记录长度就短,影响信号的完整性,所以在选取f s时要选取适中的采样频率。但是一些信号处理设备作频域分析时采样点数为固定值,这时提高f s,就会使分析频带宽度值加,从而频率分辨率变差。采样定理即:采样频率f s最小必须大于或等于信号中最高频率f c的2倍,即f s≥2f c。而在实际分析中,一般取f s=(5~10)f c。

1.7 思考题

1、对瞬变信号采用什么采样触发方式采集比较合适?

答:由于电平触发的方式中触发电平大小可设置,利用了电平本身的变化来触发,因此采集瞬变信号应采用电平触发的方式。

2、做数据记录时,记录所花的时间与哪些参数有关?

答:数据记录所花的时间T=N*?,而?与采样频率有关,因此记录时间与采样点数、采样频率有关。采样频率是等间隔采样时间Ts的倒数,是一个表示采样快慢的物理量。一个信号采集系统,采样频率一般在0Hz至几十kHz的范围内,其最高频率受到系统内A/D转换器的限制。进行时域分析时,采样点数尽可能多一些,采样点数越多信号越容易复原。但为了快速傅里叶变换计算的方便,采样点数一般取2的幂数。当f s和采样点数N确定之后,被分析信号的就由公式确定了。

《工程信号处理》实验报告

2.1 实验目的

1、学习信号的时域波形分析,数据统计特征值的计算方法;

2、了解信号的概率密度函数及其应用;

3、了解信号的相关函数的性质及其应用。 2.2 实验原理

1、均值 (Mean):表示集合平均值或数学期望,用x μ表示。

2、均方值(Mean Square):信号x(t)的均方值E[x 2(t)],或称为平均功率2x ψ。

3、方差(Variance):描述信号的波动量,用2x σ表示。

4、概率密度函数

信号的概率密度函数是表示信号幅值落在指定区域的概率。 5、实能量信号的相关函数定义如下: 互相关函数:?

?

∞∞-∞∞

-+=-=dt t y t x dt t y t x R xy )()()()()(τττ 自相关函数:?

?

-∞∞

-+=-=dt t x t x dt t x t x R x )()()()()(τττ

2.3 实验装置

图2.1 实验装置原理图

2.4 实验方法

1.在线法:对现场实际输入信号(例如:信号发生器产生的正弦、方波、三角波等周期信号

或随机信号)进行采集,经数据采集后用虚拟式FFT 分析仪或其它现行的FFT 分析仪分别完成这些信号的特征值表、概率密度、相关函数等实验内容。

2.离线法:直接调用虚拟式FFT 分析仪提供的信号数据库中的相应信号,并用虚拟式FFT 分析仪完成相应信号的特征值表、概率密度、相关函数等实验内容。 2.5 实验步骤

按图2.2连接实验设备

图2.2 实验装置原理图

2.6 实验过程原始记录(数据、图表、计算等)

实验原始记录如下所示:

图2.3 正弦波信号的时域波形 图2.4 正弦波的概率分布函数

图2.5 正弦波信号特征值表 图2.6 正弦波信号的自相关函数

图2.7 随机信号的时域波形 图2.8 随机信号概率分布函数

信号发生器

信号发生器

数据采集器

计算机 (虚拟式FFT 分析软件)

Ch1

Ch2

图2.9 随机信号特征值表图2.10 随机信号的自相关函数图2.11正弦-随机的互相关函数图2.12同频正弦互相关函数

图2.13同频正弦-方波互相关函数图2.14不同频正弦信号的互相关函数

2.7实验结果及分析

(1)在此正弦信号均值不为零,最大最小值绝对值不一样,这是由于仪器自身内部微弱电流的干扰引起的直流分量;

(2)随机信号的自相关函数将随|| 值增大而很快衰减至零。在此由于我们取得时间变化不够长,因而看不出明显的衰减。

(3)理想随机信号,由于其频率随机出现,包含有多种频率信号,其概率密度图应该呈现正态分布,只要所取的时间长度够长,就应该体现出这种特性。

(4)同频周期信号的互相关函数仍是同频周期信号,从上图的同频正弦和方波互相关以及同频正弦信号的互相关可以看出。同时保留了原信号的相位信息。非同频周期信号互不相关。

(5)正弦与随机信号的互相关函数当时间间隔较小时其相关系数几近为零,随着时间间隔稍大相关系数成周期变化同时最大值也逐渐增大。

2.8 思考题

1、均值、均方值、方差三者之间有何关系?

答: 均值x μ,均方值2x ψ,方差2x σ,均值的平方为2x μ,他们之间关系:222x x x μσψ+=。方差2x σ描述了信号的波动量,对应电信号中交流成分的功率;2x μ描述了信号的静态量,对应电信号中直流成分的功率。均方值2x ψ对应电信号中的有效功率。

2、典型信号的概率密度函数图形特点有哪些? 平稳随机信号的概率密度函数服从什么分布? 答:典型信号的概率密度函数图形如下图:

图2.15 四种典型信号及其概率密度函数

(a )正弦信号及其概率密度函数 (b )正弦—随机信号及其概率密度函数 (c )窄带随机信号及其概率密度函数 (d )宽带随机信号及其概率密度函数

信号的概率密度函数是表示信号幅值落在指定区间内的概率,概率密度函数反映了随机信号幅值分布的规律。其表达式为:()01p x lim

lim

x x T T x T ?→→∞?

?=?????

。从上图可以看出概率密度函数呈偶函数对称分布,均在其均值处密度最大,随着延幅值大小的方向扩展时,以正弦信号为主的信号概率密

度呈周期分布,而随机信号为主的概率密度越来越小直至趋于零。

平稳随机信号的概率密度函数服从正态分布。

3、自相关函数的性质有哪些?互相关函数的性质有哪些?

答:自相关函数的性质:①自相关函数是τ的偶函数,即

()()

x x R R ττ=-;②自相关函数在

τ=0时为最大值,并等于该信号的均方值2x ψ;③周期信号的自相关函数仍然是同频率的周期信号,

但不具有原信号的相位信息;④随机信号的自相关函数将随

τ

值的增大而很快率减至零。

互相关函数的性质: ①互相关函数为非奇非偶函数,但满足下式:()()

xy yx R R ττ-=; ②

两周期信号的互相关函数仍然是同频率的周期信号, 但保留了原信号的相位差信息。③两个非同频的周期信号互不相关;

《工程信号处理》实验报告

3.1 实验目的

1、学习信号频谱的分析方法,加深对信号频谱概念的理解。

2、学会用FFT 分析仪对信号进行频谱分析。 3.2 实验原理

傅里叶变换法是对平稳信号进行频域分析的有效手段对已信号x(t)的傅里叶变换为:

2(f)(t)e j ft t X x d π+∞

--∞

=?

(1)幅值谱分析 (2)自功率谱密度函数分析 (3)频谱细化分析 (4)解调分析 3.3 实验内容

(1) 周期信号幅值谱的测量 (2) 随机信号功率谱密度的测量。 (3) 频谱细化分析 (4) 信号解调分析。 3.4 实验装置

3.1 实验装置原理图

3.5 实验方法

实验内容可由两种方法实现:

1 在线法:对现场实际输入信号(如:信号发生器产生的正弦、方波、三角波等周期信号或随机信号)进行采集,经数据采集后用虚拟式FFT 分析仪或其它现行的FFT 分析仪(如HP3528、HP3562、B&K2034等)分别完成这些信号的幅值谱、功率谱密度、细化谱和解调分析等实验内容。

2 离线法:直接调用虚拟式FFT分析仪提供的信号数据库中的相应信号,并用虚拟式FFT分析仪完成相应信号的幅值谱、功率谱密度、细化谱和解调分析等实验内容。

3.6 信号频谱分析操作步骤

1 周期信号幅值谱的测量

2 随机信号自功率谱密度的测量

3 频谱细化分析

4 信号解调分析

3.7 实验过程原始记录(数据、图表、计算等)

实验原始记录如下图3.2~3.14所示:

图3.2 正弦信号时域波形图3.3 正弦信号幅值谱波形

图3.4 随机信号时域波形图3.5 随机信号自功率谱密度图3.6随机信号细化幅值谱图3.7随机信号的细化谱密度

图3.8 信号解调时域波形图3.9 信号解调前幅值谱

图3.10信号解调后幅值谱

3.8 思考题

1、周期信号频谱有何特征?

答:周期信号频谱的特征:(1):周期信号的频谱是离散的;(2):每条谱线只出现在基波频率的整倍数上,基波频率是各高次谐波分量频率的公约数;(3):各频率分量的谱线高度表示该次谐波的幅值和相位角。

2、频谱细化分析的意义?

答:在数字信号分析中,虽然提高信号的采样频率可以改善信号分析的频率分辨率,但是提高信号的采样频率通常需要付出额外的硬件代价,往往受制于可实现性与成本问题而难以实现。因此,就需要使用频谱细化技术在尽可能低的采样频率下提高数字信号分析的频率分辨率的措施。

3、调制、解调的作用是什么?

答:调制的目的是把要传输的模拟信号或数字信号变换成适合信道传输的信号,调制可以通过使高频载波随信号幅度的变化而改变载波的幅度、相位或者频率来实现。调制过程用于通信系统的发端。在接收端需将已调信号还原成要传输的原始信号,也就是将基带信号从载波中提取出来以便预定的接受者处理和理解的过程,该过程称为解调。

4、试讨论信号加窗截断对信号频谱的影响,并说明如何修正?

答:截取有限长度段信号的过程称为对信号的时域截断,相当于通过一个长度有限的时间窗口去观察信号,因而又叫加窗。

影响有:由于加窗是把信号与一个有限宽度的时窗函数相乘。信号加窗后,窗外数据全部置零,波形发生畸变,其频谱自然也又变化,这就产生了截断误差,即频谱泄漏。泄漏导致谱分析时出现两个主要问题:(1)降低了谱分析的频率分辨率;(2)由于谱窗具有无限延伸的旁瓣,就等于在频谱中引入了虚假的频谱分量。

修正方法:(1)选择适当的时窗函数,可以减少截断对信号谱分析的不利影响。常用的窗函数对泄漏误差都有一定的抑制作用。实际分析时要根据不同类型的信号和具体要求选择适当的窗函数。(2)整周期截断,调整窗函数的宽度使其为整周期截断能,这样就可以完全避免泄露。

《工程信号处理》实验报告

4.1 实验目的

1、掌握系统传递函数的测定方法及其估算方法;

2、熟悉传递函数的多种表现形式及其应用;

3、掌握相干函数计算方法及其应用。

4.2 实验原理

1、传递函数:传递函数表示电气系统或结构的振动传递系统的输入和输出的关系,用输出的傅里叶频谱Y(f)与输入的傅里叶变换X(f)之比表示。

传递函数用增益特性和相位特性表示。增益特性表示信号通过系统时振幅如何变化的性能,相位特性表示输入信号和输出信号之间相位的提前或滞后。

2、相干函数:利用互谱密度函数可以定义相干函数及系统的频率响应函数,在系统辨识中相干函数可以判明输入x(t)与输出y(t)的关系。

4.3 实验装置

图4.1实验装置原理图

4.4 实验方法

实验内容可由两种方法实现:

1.在线法:对现场实际输入信号进行采集,经数据采集后用虚拟式双通道FFT分析仪或其它现行的FFT分析仪分别完成这些信号的传递函数分析、相干函数分析等实验内容。

2.离线法:直接调用虚拟式双通道FFT分析仪提供的信号数据库中的相应信号,并用虚拟式双通道FFT分析仪完成相应信号的传递函数分析、相干函数分析等实验内容。

4.5 实验步骤

1、按图4-2连接实验设备

图4.2 实验设备连接

2、本实验选用虚拟式波形显示与数据记录仪、虚拟式双通道FFT分析仪为实验设备;

3、对双通道信号进行传递函数分析;

4、对双通道信号进行相干函数分析;

4.6 实验过程原始记录(数据、图表、计算等)

实验原始记录如下图4.3~4.11所示:

图4.3 传递函数增益特性图4.4 传递函数相位特性图4.5 传递函数的实部图4.6 传递函数的虚部

图4.7 传递函数的脉冲响应图4.8 传递函数的波德图

系统

)(t

x

数据采

集器

)(t

y计算机

(传递相干

分析软件)

Ch1

Ch2

图4.9 传递函数的奈奎斯特图 图4.10 相干函数图谱

图4.11 相干输出功率谱

4.7 思考题

1、对系统的输入和输出信号采集作传递函数分析时,是否要求同步采集?对采集器有何要求? 答:对系统的输入和输出信号采集作传递函数分析时,要求同步采集,可保证信号同步。 对采集器要求输入输出采样参数一样,同时触发采样。

2、传递函数有几种表示形式,每种形式有何作用? 答:传递函数的表示方式及作用: ①传递函数可由输入、输出间的互谱被输入的功率谱除而求得,常用来描述系统的传递特性。 ②传递函数用增益特性和相位特性表示。增益特性表示信号通过系统时振幅如何变化的性能,X 轴以频率、Y 轴以)(log 2010f H 的分贝(dB )表示。另外,由于相位特性表示输入信号和输出信号间相位的提前或滞后,所以X 轴以频率、Y 轴以度式弧度表示。

③传递函数的实部和虚部,该图可用于推测系统固有频率。

④传递函数的伯德图:即将传递函数增益特性和相位特性两者合为1组的频率特性显示,频率轴的频率以对数分度。用于判别控制系统稳定性的增益裕度、相位裕度。

⑤传递函数的奈奎斯特图:将传递函数的实部作横轴、虚部作纵轴描绘的图,叫做奈奎斯特图。主要用于判别控制系统的稳定性。

3、相干函数的作用是什么?信噪比如何计算?

答:相干函数定义如下:)

()()

()(2

2

f G f G f G f r yy xx xy xy ?=

。可以证明:1)(02

≤≤f r xy 。

相干函数是谱相关分析的重要参数,特别是在系统辨识中,相干函数可以判明输出)(t y 与输

入)(t x 之间的关系。当1)(2=f r xy 时,说明)(t y 与)(t x 完全相关;当0)(2

=f r xy 时,说明)(t y 与

《工程信号处理》实验报告

5.1 实验目的

1.理解小波变换的变焦特性或多分辨特性(俗称“数学显微镜”特性)。

2.通过方波信号、变频信号和叠加信号等几种特殊信号的连续小波变换、小波分解(离散小波变换)和小波包分解的结果,了解小波分析的原理。

3.了解不同母小波对连续小波变换、小波分解和小波包分解结果的影响,认识小波分析有许多小波基可供选择的特点。

5.2 实验内容

1.小波变换的变焦特性或多分辨特性(“数学显微镜”特性)实验:观察Mexican hat小波,Daubiches5小波和Meyer小波等小波的时域波形、频域波形及它们随尺度的变化情况。

2.连续小波变换实验:用Mexican hat小波、Meyer小波和Daubiches5小波等小波分别队方波信号、叠加信号和变频信号等几种特殊信号和随机信号进行连续小波变换。

3.小波分解实验:用Daubiches10小波、Meyer小波和Mexican hat小波等小波分别对方波信号、叠加信号和变频信号等几种特殊信号和随机信号进行小波分解和重构。

4.小波包分解实验:用Daubiches10小波等小波分别对方波信号、叠加信号和变频信号等几种特殊信号和随机信号进行不同分解层次和位置的小波包分解。

5.小波分解和小波包分解识别微弱奇异信号实验:用Daubiches5小波、Meyer小波、Mexican hat小波、sym8小波和coif5小波等小波的小波分解和小波包分解识别微弱奇异信号。

5.3 实验装置

由于还未发现硬件小波变换信号分析仪,这里采用重庆大学机械学院研制开发的虚拟式小波变换信号分析仪作为实验装置。它包括传感器、信号调理器、采集器(A/D采集卡)和虚拟式小波变换信号分析仪三部分组成,如图5.1所示。

图5.1 小波变换实验装置示意图

5.4 实验步骤

1 观察小波变换的变焦特性或多分辨特性(“数学显微镜”特性)实验。

2 连续小波变换实验

3 小波分解实验

4 小波包分解实验

5 小波分解和小波包分解识别微弱奇异信号实验

5.5 实验过程原始记录(数据、图表、计算等)

实验原始记录如下图5.2~5.11所示(其它实验数据作为观察数据,在实验报告中没有给出):

图5.2 Mexican Hat小波基

图5.3 Mexican Hat小波分解基图5.4 方波频谱Mexican Hat小波分解(离散谱)

图5.5 方波Mexican Hat小波分解(连续谱)

图5.6 Meyer小波基

图5.7 Meyer小波分解基图5.8 方波频谱DU20小波分解(离散谱)

图5.9 方波DU20小波分解(连续谱)

图5.10 方波Mexican Hat小波包分解图5.11 方波DU20小波包分解

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理实验报告

一、实验名称:基本信号的产生 二、实验目的:I 利用MATLAB 产生连续信号并作图 II 利用MATLAB 产生离散序列并作图 III 利用MATLAB 进行噪声处理 三、 实验内容: I 利用MATLAB 产生下列连续信号并作图 ①X(t)=-2u(t-1),-1=0); plot(t,x); 图形如右: ② X(t)=-(e^-0.1t)*sin(2/3*t),0

-1.5-1 -0.5 0.5 1 1.5 2 II 利用MATLAB 产生下列离散序列并作图 ① X(t)=1,-5<=t<=5 else 0,-15<=t<=15 MATLAB 程序如下: k= -15: 15; x=[zeros(1,10),ones(1,11),zeros(1,10)]; stem(k,x) 图形如下: ② X(t)=0.9^k*(cos(0.25*pi*k)+sin(0.25*pi*p),-20

信号处理实验指导

目录 绪论 (1) 1离散时间信号和系统分析 1.1 离散时间信号产生与运算 (2) 1.2 离散时间系统的时域分析 (9) 1.3 离散时间系统的频域分析 (13) 1.4 离散时间系统频响的零极点确定 (14) 2快速傅立叶变换的应用 2.1 FFT的计算 (17) 2.2 利用FFT进行谱分析 (18) 2.3利用FFT实现快速卷积 (19) 3数字滤波器的设计 3.1数字滤波器的结构 (23) 3.2无限冲激响应(IIR)数字滤波器的设计 (25) 3.3有限冲激响应(FIR)数字滤波器的设计 (27) 4综合应用举例 4.1 语音信号处理 (32) 4.2 电话拨号音的合成与识别 (32)

绪论 数字信号处理主要研究如何对信号进行分析、变换、综合、估计与识别等加工处理的基本理论和方法。随着计算机技术和大规模集成电路技术的发展,数字信号处理以其方便、灵活等特点引起人们越来越多的重视。在40多年的发展过程中,这门学科基本形成了一套完整的理论体系,其中也包括各种快速、优良的算法,而且数字信号处理的理论和技术也在不断、快速地丰富和完善,新理论和新技术也层出不穷。学习这门课程的过程中,容易使人感到数字信号处理的概念抽象难懂,其中的分析方法与基本理论不容易很好地理解与掌握。因此,如何理解与掌握课程中的基本概念、基本原理、基本分析方法以及综合应用所学知识解决实际问题的能力,是本课程学习中所要解决的关键问题。 Matlab是一种面向科学和工程的高级语言,现已成为国际上公认的优秀的科技界应用软件,在世界范围内广为流行和使用。在欧美高等院校里,Matlab已成为大专院校学生、教师的必要基本技能,广泛应用于科学研究、工程计算、教学等。上世纪90年代末和本世纪初Matlab在我国也被越来越多地应用于科研和教学工作中。Matlab是一套功能强大的工程计算及数据处理软件,在工业,电子,医疗和建筑等众多领域均被广泛运用。它是一种面向对象的,交互式程序设计语言,其结构完整又具有优良的可移植性。它在矩阵运算,数字信号处理方面有强大的功能。另外,Matlab提供了方便的绘图功能,便于用户直观地输出处理结果。 本文通过Matlab系列仿真,旨在掌握基本的数字信号处理的理论和方法,提高综合运用所学知识,提高Matlab计算机编程的能力。进一步加强独立分析问题、解决问题的能力、综合设计及创新能力的培养,同时注意培养实事求是、严肃认真的科学作风和良好的实验习惯。

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

《数字信号处理》实验报告

数字信号处理》 实验报告 年级:2011 级班级:信通 4 班姓名:朱明贵学号: 111100443 老师:李娟 福州大学 2013 年11 月

实验一快速傅里叶变换(FFT)及其应用 一、实验目的 1. 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB^的有关函数。 2. 熟悉应用FFT对典型信号进行频谱分析的方法。 3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。 4. 熟悉应用FFT实现两个序列的线性卷积和相关的方法。 二、实验类型 演示型 三、实验仪器 装有MATLA爵言的计算机 四、实验原理 在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以 使用离散Fouier变换(DFT)。这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为: JV-1 $生 反变换为: 如-器冃吋 科— 有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等 距采样,因此可以用于序列的谱分析。 FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。它 是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。常用的FFT 是以2为基数的,其长度A - o它的效率高,程序简单,使用非常方便,当要变换的 序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。 (一)在运用DFT进行频谱分析的过程中可能的产生三种误差 1 .混叠 序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会 发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。避免混叠现象的 唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须

信号处理实验报告、

第一题 如何用计算机模拟一个随机事件,并估计随机事件发生的概率以计算圆周率π。 解: (一)蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看以这两个实数为横纵坐标的点是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和外切正方形面积之比为π:4),当随机点取得越多时,其结果越接近于圆周率。 代码: N=100000000; x=rand(N,1); y=rand(N,1); count=0; for i=1:N if (x(i)^2+y(i)^2<=1) count=count+1; end end PI=vpa(4*count/N,10) PI = 3.1420384

蒙特卡洛法实验结果与试验次数相关,试验次数增加,结果更接近理论值 (二)18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d的平行线,将一根长度为l (l

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

数字信号处理期末综合实验报告

数字信号处理综合实验报告 实验题目:基于Matlab的语音信号去噪及仿真 专业名称: 学号: 姓名: 日期: 报告内容: 一、实验原理 1、去噪的原理 1.1 采样定理 在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的

2倍 频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。这是时域采样定理的一种表述方式。 时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率f≥2fM。图为模拟信号和采样样本的示意图。 时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值 (1-1) 采样值来表示,只要这些采样点的频率间隔 (1-2) 。 1.2 采样频率 采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算

哈尔滨工程大学 语音信号处理实验报告

实 验 报 告 实验课程名称: 语音信号处理实验 姓名: 班级: 20120811 学号: 指导教师 张磊 实验教室 21B#293 实验时间 2015年4月12日 实验成绩 实验序号 实验名称 实验过程 实验结果 实验成绩 实验一 语音信号的端点检测 实验二 语音信号的特征提取 实验三 语音信号的基频提取

实验一 语音信号的端点检测 一、实验目的 1、掌握短时能量的求解方法 2、掌握短时平均过零率的求解方法 3、掌握利用短时平均过零率和短时能量等特征,对输入的语音信号进行端点检测。 二、实验设备 HP 计算机、Matlab 软件 三、实验原理 1、短时能量 语音信号的短时能量分析给出了反应这些幅度变化的一个合适的描述方法。对于信号)}({n x ,短时能量的定义如下: ∑ ∑∞ -∞ =∞ -∞ =*=-= -= m m n n h n x m n h m x m n w m x E )()()()()]()([222 2、短时平均过零率 短时平均过零率是指每帧内信号通过零值的次数。对于连续语音信号,可以 考察其时域波形通过时间轴的情况。对于离散信号,实质上就是信号采样点符号变化的次数。过零率在一定程度上可以反映出频率的信息。短时平均过零率的公式为: ∑∑-+=∞ -∞=--= ---=1)] 1(sgn[)](sgn[2 1 ) ()]1(sgn[)](sgn[21N n n m w w m n m x m x m n w m x m x Z 其中,sgn[.]是符号函数,即 ? ? ?<-≥=0)(10)(1 )](sgn[n x n x n x

数字信号处理实验指导手册

数字信号处理实验指导手册 西安文理学院 机械电子工程系

目录 实验一离散时间信号 (2) 实验二时域采样定理 (7) 实验三离散时间系统 (10) 实验四线性卷积与圆周卷积 (13) 实验五用FFT作谱分析 (16) 实验六用双线性变换法设计IIR数字滤波器 (18) 实验七 FIR滤波器设计 (20)

实验一 离散时间信号 【实验目的】 用MATLAB 实现离散时间信号的表示和运算,掌握MATLAB 的基本命令和编程方法,为后续实验打基础。 【实验原理】 在数字信号处理中,所有的信号都是离散时间信号,因此应首先解决在MATLAB 中如何表示离散信号。 设一模拟信号经A/D 变换后,得到序列信号 }),1(),0(),1(,{)}({)( x x x n x n x -== 由于MATLAB 对下标的约定为从1开始递增,因此要表示)(n x ,一般应采用两个矢量,如: ]5,4,3,2,1,0,1,2,3[---=n ]1,2,5,4,0,2,3,1,1[-=y 这表示了一个含9个采样点的矢量: )}5(,),1(),2(),3({)(x x x x n y ---= 【实验内容】 熟悉下面序列(信号)的产生方法及相关运算 1、 单位采样序列 2、 单位阶跃序列 3、 信号翻转 4、 信号相加 5、 信号折叠 6、 信号移位 【参考程序】 单位采样序列 1、impluse1.m (图1-1) n=10; x=zeros(1,n); x(1)=1;

plot(x,'*'); 2、 impluse2.m (图1-2) n=-5:5; x=[n==0]; stem(x,'*'); 3、impluse3.m (图1-3) n=1:10; n0=3; x=[(n-n0)==1]; plot(x,'*'); 单位阶跃序列 1、steps1.m (图1-4) n=10; x=ones(1,n); plot(x,'*'); 2、steps2.m (图1-5) n=10; x=ones(1,n); x(1)=0; x(2)=0; 图1-1 单位采样序列1 图1-2 单位采样序列2 图1-3 单位采样序列3

工程信号处理实验报告

( 2011-2012 学年 第二学期) 重庆理工大学研究生课程论文 课程论文题目: 《工程信号处理实验报告》 课程名称 工程信号处理实验 课程类别 □学位课 非学位课 任课教师 谢明 所在学院 汽车学院 学科专业 机械设计及理念 姓名 李文中 学 号 50110802313 提交日期 2012年4月12日

工程信号处理实验报告 姓名:李文中学号:50110802313 实验报告一 实验名称:数据信号采集及采样参数选定 1实验目的 1.1了解信号采集系统的组成,初步掌握信号采集系统的使用。 1.2加深对采样定理的理解,掌握采样参数的选择方法 1.3了解信号采集在工程信号处理中的实际应用,及注意事项。 2 实验原理 2.1 模数转换及其控制 对模拟信号进行采集,就是将模拟信号转换为数字信号,即模/数(A/D)转换,然后送入计算机或专用设备进行处理。模数转换包括三个步骤:(1)采样,(2)量化,(3)编码。采样,是对已知的模拟信号按一定的间隔抽出一个样本数据。若间隔为一定时间 T,则称这种采样为等时间间隔采样。除特别注明外,一般都采用等时间间隔采样;量化,是一种用有限字长的数字量逼近模拟量的过程。编码,是将已经量化的数字量变为二进制数码,因为数字处理器只能接受有限长的二进制数。模拟信号经过这三步转换后,变成了时间上离散、幅值上量化的数字信号。A/D转换器是完成这三个步骤的主要器件。 在信号采集系统中,A/D 转换器与计算机联合使用完成模数转换。用计算机的时钟或用软件产生等间隔采样脉冲控制 A/D 转换器采样。A/D 转换器通过内部电路进行量化与编码,输出有限长的二进制代码。信号采集系统中,通常由以 A/D转换器为核心的接口电路及控制软件,进行信号采集控制。 *注这部分是由本实验所用的信号采集器自动完成的,以上也是实验器材-信号采集器的部分工作原理。以后实验中就不再赘述。 2.2 信号采集的参数选择

数字信号处理实验报告

语音信号的数字滤波 一、实验目的: 1、掌握使用FFT进行信号谱分析的方法 2、设计数字滤波器对指定的语音信号进行滤波处理 二、实验内容 设计数字滤波器滤除语音信号中的干扰(4 学时) 1、使用Matlab的fft函数对语音信号进行频谱分析,找出干扰信号的频谱; 2、设计数字滤波器滤除语音信号中的干扰分量,并进行播放对比。 三、实验原理 通过观察原语音信号的频谱,幅值特别大的地方即为噪声频谱分量,根据对称性,发现有四个频率的正弦波干扰,将它们分别滤掉即可。采用梳状滤波器,经过计算可知,梳状滤波器h[n]={1,A,1}的频响|H(w)|=|A+2cos(w)|,由需要滤掉的频率分量的频响w,即可得到A,进而得到滤波器的系统函数h[n]。而由于是在离散频域内进行滤波,所以令w=(2k*pi/N)即可。 对原信号和四次滤波后的信号分别进行FFT变换,可以得到它们的幅度相应。最后,将四次滤波后的声音信号输出。 四、matlab代码 clc;clear;close all; [audio_data,fs]=wavread('SunshineSquare.wav'); %读取未处理声音 sound(audio_data,fs); N = length(audio_data); K = 0:2/N:2*(N-1)/N; %K为频率采样点

%sound(audio_data,fs); %进行一次FFT变换 FFT_audio_data=fft(audio_data); mag_FFT_audio_data = abs(FFT_audio_data); %画图 figure(1) %原信号时域 subplot(2,1,1);plot(audio_data);grid; title('未滤波时原信号时域');xlabel('以1/fs为单位的时间');ylabel('采样值'); %FFT幅度相位 subplot(2,1,2);plot(K,mag_FFT_audio_data);grid; title('原信号幅度');xlabel('以pi为单位的频率');ylabel('幅度'); %构造h[n]={1,A,1}的梳状滤波器,计算A=2cosW,妻子W为要滤掉的频率%由原信号频谱可知要分四次滤波,滤掉频响中幅度大的频率分量 %第一次滤波 a = [1,0,0,0];%y[n]的系数 [temp,k]=max(FFT_audio_data); A1=-2*cos(2*pi*k/N); h1=[1,A1,1]; audio_data_h1 = filter(h1,a,audio_data); FFT_audio_data_h1=fft(audio_data_h1);

武汉工程大学数字信号处理实验二时域离散系统及系统响应

实验二时域离散系统及系统响应 一、实验目的 1、掌握求解离散时间系统冲激响应和阶跃响应的方法; 2、进一步理解卷积定理,掌握应用线性卷积求解离散时间系统响应的基本方法; 3、掌握离散系统的响应特点。 二、实验内容 1、请分别用impz 和dstep函数求解下面离散时间系统的冲激响应和阶跃响应。(1)系统的差分方程为:) y n n n y - = (n - + y+ x )2 .0 866 ) ( ( 8.0 64 ( )1 .0 a=[1,-0.8,0.64]; b=[0.866,0,0]; n=20; hn=impz(b,a,n); %冲激响应 gn=dstep(b,a,n); %阶跃响应 subplot(2,1,1),stem(hn,'filled'); %显示冲激响应曲线 title('系统的单位冲激响应'); ylabel('h(n)');xlabel('n'); axis([0,n,1.1*min(hn),1.1*max(hn)]); subplot(2,1,2),stem(gn,'filled'); %显示阶跃响应曲线

title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,n,1.1*min(gn),1.1*max(gn)]); 2 4 6 8 10121416 18 20 -0.4 -0.200.20.40.6 0.8系统的单位冲激响应 h (n )n 2 4 6 8 1012 14 16 18 20 11.21.4 1.6系统的单位阶跃响应 g (n ) n (2)系统的系统函数为:2 11 15.01)(---+--=z z z z H a=[1,-1,1]; b=[1,-0.5,0]; n=20; hn=impz(b,a,n); %冲激响应 gn=dstep(b,a,n); %阶跃响应

信号处理实验报告

数字信号处理 第四次实验报告 一、 实验目的 1.了解离散系统的零极点与系统因果性能和稳定性的关系 2.观察离散系统零极点对系统冲激响应的影响 3.熟悉MATLAB 中进行离散系统零极点分析的常用子函数 4.加深对离散系统的频率响应特性基本概念的理解 5.了解离散系统的零极点与频响特性之间的关系 6.熟悉MATLAB 中进行离散系统分析频响特性的常用子函数,掌握离散系统幅频响应和相频响应的求解方法。 二、实验过程 9.2已知离散时间系统函数分别为 ) 7.05.0)(7.05.0(3 .0)(1j z j z z z H ++-+-= )1)(1(3 .0)() 8.06.0)(8.06.0(3 .0)(32j z j z z z H j z j z z z H ++-+-= ++-+-= 求这些系统的零极点分布图以及系统的冲击响应,并判断系统因果稳定性。 %---------第一式-----------------------------------------------------------------------------% z1=[0.3,0]';p1=[-0.5+0.7j,-0.5-0.7j]';k=1; %z1零点向量矩阵,p1极点向量矩阵,k 系统增益系数---------------------------% [bl,al]=zp2tf(z1,p1,k); %将零极点增益函数转换为系统传递函数 subplot(3,2,1),zplane(bl,al); %zplane 显示离散系统的零极点分布图 ylabel('极点在单位圆内'); subplot(3,2,2),impz(bl,al,20); %impz 绘制系统的冲激响应图 %---------第二式-----------------------------------------------------------------------------% z2=[0,3,0]';p2=[-0.6+0.8j,-0.6-0.8j]'; %z2零点向量矩阵,p2极点向量矩阵---------------------------------------------------% [b2,a2]=zp2tf(z2,p2,k); %将零极点增益函数转换为系统传递函数 subplot(3,2,3),zplane(b2,a2); %zplane 显示离散系统的零极点分布图 ylabel('极点在单位圆上'); subplot(3,2,4),impz(b2,a2,20); %impz 绘制系统的冲激响应图 %---------第三式-----------------------------------------------------------------------------%

matlab数字信号处理实验指导

电工电子实验中心实验指导书 数字信号处理 实验教程 二○○九年三月

高等学校电工电子实验系列 数字信号处理实验教程 主编石海霞周玉荣 攀枝花学院电气信息工程学院 电工电子实验中心

内容简介 数字信号处理是一门理论与实践紧密联系的课程,适当的上机实验有助于深入理解和巩固验证基本理论知识,了解并体会数字信号处理的CAD手段和方法,锻炼初学者用计算机和MATLAB语言及其工具箱函数解决数字信号处理算法的仿真和滤波器设计问题的能力。 本实验指导书结合数字信号处理的基本理论和基本内容设计了八个上机实验,每个实验对应一个主题内容,包括常见离散信号的MATLAB产生和图形显示、离散时间系统的时域分析、离散时间信号的DTFT、离散时间信号的Z变换、离散傅立叶变换DFT、快速傅立叶变换FFT及其应用、基于MATLAB的IIR和FIR数字滤波器设计等。此外,在附录中,还简单介绍了MATLAB的基本用法。每个实验中,均给出了实验方法和步骤,还有部分的MATLAB程序,通过实验可以使学生掌握数字信号处理的基本原理和方法。

目录 绪论 (1) 实验一常见离散信号的MATLAB产生和图形显示 (2) 实验二离散时间系统的时域分析 (6) 实验三离散时间信号的DTFT (9) 实验四离散时间信号的Z变换 (14) 实验五离散傅立叶变换DFT (18) 实验六快速傅立叶变换FFT及其应用 (24) 实验七基于MATLAB的IIR数字滤波器设计 (30) 实验八基于MATLAB的FIR数字滤波器设计 (33) 附录 (37) 参考文献 (40)

绪论 绪论 随着电子技术迅速地向数字化发展,《数字信号处理》越来越成为广大理工科,特别是IT领域的学生和技术人员的必修内容。 数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。数字信号处理的理论和技术一出现就受到人们的极大关注,发展非常迅速。而且随着各种电子技术及计算机技术的飞速发展,数字信号处理的理论和技术还在不断丰富和完善,新的理论和技术层出不穷。目前数字信号处理已广泛地应用在语音、雷达、声纳、地震、图象、通信、控制、生物医学、遥感遥测、地质勘探、航空航天、故障检测、自动化仪表等领域。 数字信号处理是一门理论和实践、原理和应用结合紧密的课程,由于信号处理涉及大量的运算,可以说离开了计算机及相应的软件,就不可能解决任何稍微复杂的实际应用问题。Matlab是1984年美国Math Works公司的产品,MATLAB 语言具备高效、可视化及推理能力强等特点,它的推出得到了各个领域专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础,是目前工程界流行最广的科学计算语言。早在20世纪90年代中期,MATLAB就己成为国际公认的信号处理的标准软件和开发平台。从1996年后,美国新出版的信号处理教材就没有一本是不用MATLAB的。 本实验指导书结合数字信号处理的基本理论和基本内容,用科学计算语言MATLAB实现数字信号处理的方法和实践,通过实验用所学理论来分析解释程序的运行结果,进一步验证、理解和巩固学到的理论知识,从而达到掌握数字信号处理的基本原理和方法的目的。

工程信号处理MATLAB实验指导书v1p0_2008完全版

工程信号处理——MATLAB实验指导书—— 伍星机电工程学院KUST-HMI联合实验室 2008.02

目录 1信号分析基础 (3) 1.1实验1典型时间信号的波形图 (3) 1.2实验2信号数据文件的读取与显示 (4) 2确定信号的频谱分析 (4) 2.1实验3周期信号的傅立叶级数三角函数展开式 (4) 2.2实验4非周期信号的傅立叶变换 (4) 2.3实验5时域有限信号的周期延拓 (5) 3时域分析 (5) 3.1实验6自相关和互相关分析 (5) 4随机信号分析 (5) 4.1实验7随机信号的数字特征 (5) 4.2实验8随机信号的功率谱分析 (6) 5系统分析概述 (6) 5.1实验9线性系统的主要性质 (6) 5.2实验10测定系统特性参数的方法 (7) 6模拟信号的离散化 (7) 6.1实验11时域采样定理 (7) 6.2实验12时域截断与泄露 (7) 7离散傅立叶变换 (7) 7.1实验13离散傅立叶变换 (7) 7.2实验14用X K计算信号的频谱 (8) 8快速傅立叶变换及其工程应用 (8) 8.1实验15快速傅立叶变换 (8) 8.2实验16快速傅立叶变换的应用 (9)

【预备知识】 机械工程测试技术、机械控制工程、MATLAB、虚拟仪器技术等。 【资料检索方法】 1.校图书馆相关书籍。 2.校图书馆数据库:维普中文科技期刊全文数据库,万方会议论文全文库, 万方硕博论文全文库,Elsevier外文期刊数据库,国外免费学位论文全文 数据库,超星电子图书系统。 3.互联网搜索引擎:https://www.wendangku.net/doc/679497155.html,,https://www.wendangku.net/doc/679497155.html,,https://www.wendangku.net/doc/679497155.html,。1信号分析基础 1.1实验1典型时间信号的波形图 【实验目的】 (1)熟悉MATLAB环境,掌握与信号处理相关的常用MATLAB语句和命令; (2)熟悉MATLAB生成典型信号的方法; (3)掌握MATLAB绘制信号波形图的方法; (4)掌握M脚本文件和函数文件的编制方法。 【实验内容】 (1)熟悉各种典型信号生成的关键参数,对于大多数的连续时间信号,两个 关键要素是信号的起止时间、信号的幅值、频率等; (2)编制确定信号和随机信号的M自定义函数文件,包括的典型信号如下: z确定信号 周期信号:正弦信号(MySin),三角波信号(MyTri),方波信号(MySquare)。 非周期信号:准周期信号(MyStdPeriod),矩形脉冲信号(MyImpulse),指数衰减正弦信号(MyExpSin)。 z随机信号:白噪声信号(MyWhiteNoise) (3)使用上述M函数产生如下信号: z幅值为5,频率为10Hz的正弦信号; z幅值为1,频率为8Hz的三角波信号; z幅值为2.5,频率为20Hz,占空比为50%的方波信号; z使用两个幅值为1的正弦信号构成一个准周期信号; z幅值为10,脉宽为1,时间范围0~6s的矩形脉冲信号; z幅值为5,频率为20Hz,衰减系数为-10的指数衰减正弦信号; z幅值范围为-3~3的白噪声信号。

数字信号处理综合设计实验报告

数字信号处理实验八 调制解调系统的实现 一、实验目的: (1)深刻理解滤波器的设计指标及根据指标进行数字滤波器设计的过程(2)了解滤波器在通信系统中的应用 二、实验步骤: 1.通过SYSTEMVIEW软件设计与仿真工具,设计一个FIR数字带通滤波器,预先给定截止频率和在截止频率上的幅度值,通过软件设计完后,确认滤波器的阶数和系统函数,画出该滤波器的频率响应曲线,进行技术指标的验证。 建立一个两载波幅度调制与解调的通信系统,将该滤波器作为两个载波分别解调的关键部件,验证其带通的频率特性的有效性。系统框图如下: 规划整个系统,确定系统的采样频率、观测时间、细化并设计整个系统,仿真调整并不断改进达到正确调制、正确滤波、正确解调的目的。(参考文件

zhan3.svu) (1)检查滤波器的波特图,看是否达到预定要求; (2)检查幅度调制的波形以及相加后的信号的波形与频谱是否正常; (3)检查解调后的的基带信号是否正常,分析波形变形的原因和解决措施;(4)实验中必须体现带通滤波器的物理意义和在实际中的应用价值。 2.熟悉matlab中的仿真系统; 3.将1.中设计的SYSTEMVIEW(如zhan3.svu)系统移植到matlab中的仿真环境中,使其达到相同的效果; 4.或者不用仿真环境,编写程序实现该系统,并验证调制解调前后的信号是否一致。 实验总共提供三个单元的时间(6节课)给学生,由学生自行学习和自行设计与移植 三、系统设计 本系统是基于matlab的simulink仿真软件设计的基带信号调制与解调的系统,利用matlab自带的数字信号仿真模块构成其原理框图并通过设置载波、带通滤波器以及低通滤波器等把基带信号经过载波调制后再经乘法器、带通滤波器和低通滤波器等电路系统能解调出基带信号。 1、实验原理框图

相关文档
相关文档 最新文档