文档库 最新最全的文档下载
当前位置:文档库 › 材料力学公式大全(机械)

材料力学公式大全(机械)

材料力学公式大全(机械)
材料力学公式大全(机械)

材料力学常用公式

1.外力偶矩计算公式(P功率,n转速)

2.弯矩、剪力和荷载集度之间的关系式

3.轴向拉压杆横截面上正应力的计算公式(杆件横截面

轴力F N,横截面面积A,拉应力为正)

4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x

轴正方向逆时针转至外法线的方位角为正)

5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;

拉伸前试样直径d,拉伸后试样直径d1)

6.纵向线应变和横向线应变

7.泊松比

8.胡克定律

9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式

11.轴向拉压杆的强度计算公式

12.许用应力,脆性材料,塑性材料

13.延伸率

14.截面收缩率

15.剪切胡克定律(切变模量G,切应变g )

16.拉压弹性模量E、泊松比和切变模量G之间关系式

17.圆截面对圆心的极惯性矩(a)实心圆

(b)空心圆

18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点

到圆心距离r)

19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆

(b)空心圆

21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转

切应力计算公式

22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式

23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如

阶梯轴)时或

24.等直圆轴强度条件

25.塑性材料;脆性材料

26.扭转圆轴的刚度条件? 或

27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式

,

28.平面应力状态下斜截面应力的一般公式

,

29.平面应力状态的三个主应力,

,

30.主平面方位的计算公式

31.面内最大切应力

32.受扭圆轴表面某点的三个主应力,,

33.三向应力状态最大与最小正应力 ,

34.三向应力状态最大切应力

35.广义胡克定律

36.四种强度理论的相当应力

37.一种常见的应力状态的强度条件,

38.组合图形的形心坐标计算公式,

39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正

交坐标轴的惯性矩之和的关系式

40.截面图形对轴z和轴y的惯性半径? ,

41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积

为A)

42.纯弯曲梁的正应力计算公式

43.横力弯曲最大正应力计算公式

44.矩形、圆形、空心圆形的弯曲截面系数? ,

45.几种常见截面的最大弯曲切应力计算公式(为中性轴一

侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)

46.矩形截面梁最大弯曲切应力发生在中性轴处

47.工字形截面梁腹板上的弯曲切应力近似公式

48.轧制工字钢梁最大弯曲切应力计算公式

49.圆形截面梁最大弯曲切应力发生在中性轴处

50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处

51.弯曲正应力强度条件

52.几种常见截面梁的弯曲切应力强度条件

53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条

件或,

54.梁的挠曲线近似微分方程

55.梁的转角方程

56.梁的挠曲线方程?

57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶

部边缘处的正应力计算公式

58.偏心拉伸(压缩)

59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度

条件表达式,

60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩

61.圆截面杆横截面上有两个弯矩和同时作用时强度计算

公式

62.

63.弯拉扭或弯压扭组合作用时强度计算公式

64.剪切实用计算的强度条件

65.挤压实用计算的强度条件

66.等截面细长压杆在四种杆端约束情况下的临界力计算公式

67.压杆的约束条件:(a)两端铰支μ=l

(b)一端固定、一端自由μ=2

(c)一端固定、一端铰支μ=0.7

(d)两端固定μ=0.5

68. 压杆的长细比或柔度计算公式 ,

69. 细长压杆临界应力的欧拉公式

70. 欧拉公式的适用范围

传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。

当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为

m).(N 9549e n

P

M =

当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为

m).(N 7024e n

P

M =

拉(压)杆横截面上的正应力

拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N

F A

σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。

正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件:

(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;

(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;

(4)截面连续变化的直杆,杆件两侧棱边的夹角0

20α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为

全应力

cos p ασα= (3-2)

正应力 2

cos ασσα=(3-3)

切应力1

sin 22

ατα=

(3-4) 式中σ为横截面上的应力。

正负号规定:

α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

ασ 拉应力为正,压应力为负。

ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论:

(1)当0

0α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0

90时,即

纵截面上,ασ=0

90=0。

(2)当0

45α=时,即与杆轴成0

45的斜截面上,ατ达到最大值,即max ()2αα

τ=

1.2 拉(压)杆的应变和胡克定律 (1)变形及应变

杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。

图3-2

轴向变形 1l l l ?=- 轴向线应变 l

l

ε?=

横向变形

1b b b ?=-

横向线应变 b

b

ε?'=

正负号规定 伸长为正,缩短为负。 (2)胡克定律

当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5)

或用轴力及杆件的变形量表示为 N F l

l EA

?=

(3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。

公式(3-6)的适用条件:

(a)材料在线弹性范围内工作,即p σσ?;

(b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即

1

n

i i

i i i

N l l E A =?=∑

(3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。即

ενε

'

=

(3-8)

表1-2 主要性能指标

强度计算

许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得。 塑性材料 [σ]=

s s n σ ; 脆性材料 [σ]=b b

n σ 其中,s b n n 称为安全系数,且大于1。

强度条件:构件工作时的最大工作应力不得超过材料的许用应力。

对轴向拉伸(压缩)杆件

[]N

A

σσ=

≤ (3-9) 按式(1-4)可进行强度校核、截面设计、确定许克载荷等三类强度计算。 2.1 切应力互等定理

受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关。

2.2纯剪切

单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。 2.3切应变

切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示。 2.4 剪切胡克定律

在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= (3-10)

式中G 为材料的切变模量,为材料的又一弹性常数(另两个弹性常数为弹性模量E 及泊松比ν),其数值由实验决定。

对各向同性材料,E 、 ν、G 有下列关系 2(1)

E

G ν=+ (3-11)

2.5.2切应力计算公式

横截面上某一点切应力大小为 p p

T I ρ

τ=

(3-12) 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。

圆截面周边上的切应力为 max t

T

W τ=

(3-13) 式中p t I W R

=

称为扭转截面系数,R 为圆截面半径。

2.5.3 切应力公式讨论

(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆

截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。

(2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3。在面积

不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。因此,设计空心轴比实心轴更为合理。

2.5.4强度条件

圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。因此,强度条件为[]max max

t T W ττ??=≤

??? (3-14) 对等圆截面直杆 []max

max

t

T W ττ=≤ (3-15)式中[]τ为材料的许用切应力。 3.1.1中性层的曲率与弯矩的关系

1

z

M

EI ρ

=

(3-16) 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩。

3.1.2横截面上各点弯曲正应力计算公式 Z

M

y I σ=

(3-17) 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离

最大正应力出现在距中性轴最远点处 max max max max z z

M M

y I W σ=?= (3-18) 式中,max z z I W y =称为抗弯截面系数。对于h b ?的矩形截面,2

16

z W bh =;对于直径为D

的圆形截面,332

z W D π

=

;对于内外径之比为d a D =

的环形截面,3

4(1)32

z W D a π=-。 若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大

拉应力与最大压应力数值不相等。 3.2梁的正应力强度条件

梁的最大工作应力不得超过材料的容许应力,其表达式为 []max

max z

M W σσ=

≤ (3-19)

对于由拉、压强度不等的材料制成的上下不对称截面梁(如T 字形截面、上下不等边的工字形截面等),其强度条件应表达为

[]max

max 1l t z M y I σσ=

≤ (3-20a ) []max

max 2y c z

M y I σσ=

≤ (3-20b ) 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离。

3.3梁的切应力 z z QS I b

τ*

= (3-21)

式中,Q 是横截面上的剪力;z S *

是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;

z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度。

3.3.1矩形截面梁

切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布。

切应力计算公式 2

2364Q h y bh τ??=-

???

(3-22)

3.3.2工字形截面梁

切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担。

切应力沿腹板高度的分布亦为二次曲线。计算公式为

()2222824z Q B b h H h y I b τ????=-+-?? ?????

(3-23)

近似计算腹板上的最大切应力:dh

F

s 1

max =

τ d 为腹板宽度 h 1为上下两翼缘内侧距

3.3.3圆形截面梁

横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化。

最大切应力发生在中性轴上,其大小为

(3-25)

圆环形截面上的切应力分布与圆截面类似。 3.4切应力强度条件

梁的最大工作切应力不得超过材料的许用切应力,即 []max max max

z z Q S I b

ττ*=≤

(3-26)

式中,max Q 是梁上的最大切应力值;max z S *

是中性轴一侧面积对中性轴的静矩;z I 是横截面对中性轴的惯性矩;b 是max τ处截面的宽度。对于等宽度截面,max τ发生在中性轴上,对于宽度变化的截面,max τ不一定发生在中性轴上。 4.2剪切的实用计算

名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 A

Q

=τ (3-27)

剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[]τ,即

[]ττ≤=

A

Q

(3-28) 5.2挤压的实用计算

名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 []bs

bs bs bs

P A σσ=≤ (3-29)

式中,bs A 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影。当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积。

挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力

[]bs bs

bs A P

σσ≤=

(3-30) 1, 变形计算

圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角。相距为l 的两个横截面的相对扭转角为

dx GI T

l

P

?

=0? (rad) (4.4) 若等截面圆轴两截面之间的扭矩为常数,则上式化为

P

GI Tl

=

? (rad) (4.5) 图4.2

式中P GI 称为圆轴的抗扭刚度。显然,?的正负号与扭矩正负号相同。

公式(4.4)的适用条件:

(1) 材料在线弹性范围内的等截面圆轴,即P ττ≤;

(2) 在长度l 内,T 、G 、P I 均为常量。当以上参数沿轴线分段变化时,则应分段

计算扭转角,然后求代数和得总扭转角。即 ∑

==n

i P i i

i i

I G l T 1

? (rad) (4.6)

当T 、P I 沿轴线连续变化时,用式(4.4)计算?。 2, 刚度条件

扭转的刚度条件 圆轴最大的单位长度扭转角max '?不得超过许可的单位长度扭转角[]'?,即

[]''max

max ??≤=

P

GI T (rad/m) (4.7) 式 []'180'max max ?π?≤?=?

P GI T (m /?) (4.8)

2,挠曲线的近似微分方程及其积分

在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系

EI

M

1

对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得

()()EI

x M x =ρ1 利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即

()EI

x M =''ω (4.9)

将上式积分一次得转角方程为 ()C dx EI

x M +==?

'ωθ (4.10) 再积分得挠曲线方程 ()D Cx dx dx EI x M ++??

?

???=??ω (4.11) 式中,C,D 为积分常数,它们可由梁的边界条件确定。当梁分为若干段积分时,

积分常数的确定除需利用边界条件外,还需要利用连续条件。 3,梁的刚度条件

限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即

[]ωω≤max ,[]θθ≤max (4.12) 3,轴向拉伸或压缩杆件的应变能

在线弹性范围内,由功能原理得 l F W V ?=

=2

1

ε 当杆件的横截面面积A 、轴力F N 为常量时,由胡克定律EA

l

F l N =

?,可得 EA

l

F V N 22

=ε (4.14)

杆单位体积内的应变能称为应变能密度,用εV 表示。线弹性范围内,得

σεε2

1

=

V (4.15) 4,圆截面直杆扭转应变能 在线弹性范围内,由功能原 ?e r M W V 2

1

=

= 将T M e =与P GI Tl =?代入上式得 P

r GI l

T V 22=

(4.16) 图4.5

根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度r V :

r V r τ2

1

= (4.17)

5,梁的弯曲应变能

在线弹性范围内,纯弯曲时,由功能原理得

θεe M W V 2

1

==

将M M e =与EI

Ml

=θ代入上式得 EI l M V 22=ε

(4.18)

图4.6

横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用式

(4.18),积分得全梁的弯曲应变能εV ,即()?=l

EI dx

x M V 22ε (4.19)

2.截面几何性质的定义式列表于下:

静 矩

惯性矩

惯性半径

惯性积 极惯性矩

?=A y zdA S

?=A

y dA z I 2

A

I i y y =

?=A yz yzdA

I

?=A

p dA p I 2

?=A z ydA

S

?=A

z dA y I 2

A

I i z

z =

3.惯性矩的平行移轴公式

A a I I C y y 2+= A b I I C z z 2+=

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。 定义式: ?=A

y zdA S ,?

=

A

z ydA S (Ⅰ-1)

量纲为长度的三次方。

由于均质薄板的重心与平面图形的形心有相同的坐标C z 和C y 。则

y A

C S dA z z A =?=??

由此可得薄板重心的坐标 C z 为 A

S A zdA z y A

C =

=? 同理有 A S

y z C =

所以形心坐标 A S z y C =,A

S

y z C = (Ⅰ-2)

或 C y z A S ?=,C z y A S ?=

由式(Ⅰ-2)得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即 0=C y ,

0=z S ;0=C z ,则 0=y S ;反之,若图形对某一轴的静矩等于零,则该轴必然

通过图形的形心。静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。设第 I 块分图形的面积为 i A ,形心坐标为 Ci Ci z y , ,则其静矩和形心坐标分别为 Ci i n

i z y A S 1

=∑=,

Ci i n

i y z A S 1

=∑= (Ⅰ-3)

∑∑===

=n

i i

n

i Ci

i z C A

y

A A

S y 1

1

,∑∑===

=

n

i i

n

i ci

i y C A

z

A A

S z 1

1 (Ⅰ-4)

§Ⅰ-2 惯性矩和惯性半径

惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

?=A

y dA z I 2,?=A

z dA y I 2 (Ⅰ-5)

量纲为长度的四次方,恒为正。相应定义

A

I i y y =

,A

I i z

z =

(Ⅰ-6) 为图形对 y 轴和对 z 轴的惯性半径。

组合图形的惯性矩。设 zi yi I I , 为分图形的惯性矩,则总图形对同一轴惯性矩为

yi n i y I I 1

=∑=,zi n

i z I I 1

=∑= (Ⅰ-7)若以ρ表示微面积dA 到坐标原点O 的距离,则定

义图形对坐标原点O 的极惯性矩

?=A

p dA I 2ρ (Ⅰ-8)因为 222z y +=ρ

所以极惯性矩与(轴)惯性矩有关系 ()

z y A

p I I dA z y

I +=+=?22

(Ⅰ-9)

式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

下式 ?

=

A

yz yzdA I (Ⅰ-10)

定义为图形对一对正交轴 y 、z 轴的惯性积。量纲是长度的四次方。 yz I 可能为正,为负或为零。若 y ,z 轴中有一根为对称轴则其惯性积为零。 §Ⅰ-3平行移轴公式

由于同一平面图形对于相互平行的两对直角坐标轴的惯性矩或惯性积并不相同,如果其中一对轴是图形的形心轴 ()

c c

z ,y 时,如图Ⅰ-7所示,可得到如下平行移轴公式

?????+=+=+=abA I

I A b I I A a I I C C C C z y yz

z z y y 2

2 (Ⅰ-13) 简单证明之:

()?????++=+==A

A

C A

C A

C A

y dA a dA z a dA z dA a z dA z I 22

2

22

其中

?

A

C dA z 为图形对形心轴 C y 的静矩,其值应等于零,则得

A a I I C y y 2+=

同理可证(I-13)中的其它两式。

结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小。在使用惯性积移轴公式时应注意 a ,b 的正负号。把斜截面上的总应力p 分解成与斜截面垂

直的正应力n σ和相切的切应力n τ(图13.1c ),则其与主应力的关系为

222123n l m n σσσσ=++ (13.1)

2222222123n n l m n τσσσσ=++- (13.2)

在以n σ为横坐标、n τ的正应力n σ和切应力n τ围成区域(图13.213max 2

τ=

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

材料力学基本公式

材料力学基本公式 (1)外力偶矩计算公式(P功率,n转速) M e(N/m)=9459 P(Kw) n(r/min) (2)弯矩、剪力和荷载集度之间的关系式 d2M(x) dx2= dF(x) dx =q(x) (3)轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正) σ=F N A (4)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角α从x轴正方向逆时针转至外法线的方位角为正) σα=pαcosα=σcos2α=σ 2 (1+cos2α) τα=pαsinα=σcosαsinα=σ 2 sin2α (5)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) ?l=l1?l ?d=d1?d (6)纵向线应变和横向线应变ε=?l l ,ε′=?d d (7)泊松比 μ=? ε′(8)胡克定律 ?l=F N l EA

σ=Eε (9)受多个力作用的杆件纵向变形计算公式 ?l =∑?l i i =∑ F N l i (10)承受轴向分布力或变截面的杆件,纵向变形计算公式 ?l =∫F N (x) EA(x) dx (11)轴向拉压杆的强度计算公式 σmax =(|F N | A )max ≤[σ] (12)延伸率 δ= l 1?l l ×100% (13)截面收缩率 ψ= A ?A 1 A ×100% (14)剪切胡克定律(切变模量G ,切应变g ) τ=Gγ (15)拉压弹性模量E 、泊松比μ和切变模量G 之间关系式 G = E (16)圆截面对圆心的极惯性矩(α=D d ) I ρ=π(D 4?d 4)32=πD 432 (1?α4) (17)圆轴扭转时横截面上任一点切应力计算公式(扭矩M x ,所求点到圆心距离ρ) τρ= M x ρ I ρ (18)圆截面周边各点处最大切应力计算公式

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减 函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. *二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+- 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数 分数指数幂 (1)m n a =0,,a m n N *>∈,且1n >). (2)1m n m n a a - = = (0,,a m n N * >∈,且1n >). 根式的性质 (1)当n a =;

材料力学定律公式汇总

材料力学重点及其公式 材料力学的任务变形固体的基本假设外力分类:(1)强度要求;(2)刚度要求;(3)稳定性要求。 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2 )在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力:P Hm —E 兰正应力、切应力。 应变。 杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转; 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷变化的载荷为动 载荷。 失效原因:脆性材料在其强度极限b破坏,塑性材料在其屈服极限 关系为:。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即为弹性模量。将应力与应变的表达式带入得:l 皿 EA 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部 未知力。 圆轴扭转时的应力变形几何关系一圆轴扭转的平面假设d_ 。物理关系——胡克定律 d G G 。力学关系T °d_dx dA 2G d G2 dA圆轴扭转时的应力: dx A A dx dx A max T R T;圆轴扭转的强度条件: I p W t T max W t [],可以进行强度校核、截面设计和确 变形与应变:线应变、切 (4)弯曲;(5)组合变形。动载荷: 载荷和速度随时间急剧 s时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: n3 b n b ,强度条件: max max ,等截面杆max A 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为: l l1l,沿轴线方向的应变和横截面上 的应力分别为: l N P 站b 。横向应变为: l 'A A b E ,这就是胡克定律。E 色-,横向应变与轴向应变的b

2016高中数学诱导公式全集总结

2016高中数学诱导公式全集总结 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα

cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-s inα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如:

材料力学公式大全

材料力学常用公式 1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面 轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转 切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如 阶梯轴)时或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式 , 28.平面应力状态下斜截面应力的一般公式 ,

材料力学基本概念及公式

第一章 绪论 第一节 材料力学的任务 1、组成机械与结构的各组成部分,统称为构件。 2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。 3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。 第二节 材料力学的基本假设 1、连续性假设:材料无空隙地充满整个构件。 2、均匀性假设:构件内每一处的力学性能都相同 3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。木材是各向异性材料。 第三节 内力 1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。 2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。 3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。 4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M 第四节 应力 1、一点的应力: 一点处内力的集(中程)度。 全应力0lim A F p A ?→?=?;正应力σ;切应力τ;p =2、应力单位: (112,11×106 ,11×109 ) 第五节 变形与应变 1、变形:构件尺寸与形状的变化称为变形。除特别声明的以外,材料力学所研究的对象均为变形体。 2、弹性变形:外力解除后能消失的变形成为弹性变形。 3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。 4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。对构件进行受力分析时可忽略其变形。 5、线应变:l l ?=ε。线应变是无量纲量,在同一点不同方向线应变一般不同。

材料力学公式汇总

材料力学常用公式 1.外力偶矩 计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关 系式 3.轴向拉压杆横截面上正应力的计 算公式(杆件横截面轴力 F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴 正方向逆时针转至外法线的方位 角为正) 5. 6.纵向变形和横向变形(拉伸前试 样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样 直径d1) 7. 8.纵向线应变和横向线应变 9.10.泊松比 11.胡克定律 12.受多个力作用的杆件纵向变形计 算公式? 13.承受轴向分布力或变截面的杆 件,纵向变形计算公式 14.轴向拉压杆的强度计算公式 15.许用应力,脆性材 料,塑性材料 16.延伸率 17.截面收缩率 18.剪切胡克定律(切变模量G,切应变g ) 19.拉压弹性模量E、泊松比和切变 模量G之间关系式 20.圆截面对圆心的极惯性矩(a) 实心圆

21.(b)空心 圆 22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到 圆心距离r) 23.圆截面周边各点处最大切应力计 算公式 24.扭转截面系数,(a) 实心圆 25.(b)空心圆 26.薄壁圆管(壁厚δ≤ R0 /10 , R0为圆管的平均半径)扭转切应 力计算公式 27.圆轴扭转角与扭矩T、杆长l、 扭转刚度GH p的关系式 28.同一材料制成的圆轴各段内的扭 矩不同或各段的直径不同(如阶 梯轴)时或 29.等直圆轴强度条件 30.塑性材料;脆性 材料 31.扭转圆轴的刚度条件? 或 32.受内压圆筒形薄壁容器横截面和 纵截面上的应力计算公式 , 33.平面应力状态下斜截面应力的一 般公式 , 34.平面应力状态的三个主应力 ,

高中数学诱导公式全集总结

2019高中数学诱导公式全集总结 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα

材料力学常用基本公式

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面 面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转 至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径 d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数,(a)实心圆

(b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28.平面应力状态下斜截面应力的一般公式 ,

29.平面应力状态的三个主应力, , 30.主平面方位的计算公式 31.面内最大切应力 32.受扭圆轴表面某点的三个主应力,, 33.三向应力状态最大与最小正应力 , 34.三向应力状态最大切应力 35.广义胡克定律 36.四种强度理论的相当应力 37.一种常见的应力状态的强度条件,

孙训方版 材料力学公式总结大全

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为 极限应力理想情形。 塑性材料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横

截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确定许可载荷。 圆轴扭转时的变形:??== l p l p dx GI T dx GI T ?;等直杆:p GI Tl =? 圆轴扭转时的刚度条件: p GI T dx d == '??,][max max ??'≤='p GI T 弯曲内力与分布载荷q 之间的微分关系 )() (x q dx x dQ =; ()()x Q dx x dM =;()()()x q dx x dQ dx x M d ==2 2 Q 、M 图与外力间的关系 a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。 b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。 c )在梁的某一截面。 ()()0==x Q dx x dM ,剪力等于零,弯矩有一最大值或最小值。 d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。

(完整版)三角函数诱导公式总结

三角函数诱导公式与同角的三角函数 【知识点1】诱导公式及其应用 公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-) 公式五: sin( 2π-α) = cos α; cos(2π -α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π +α) =- sin α. 公式七: sin(32π-α)=- cos α; cos(32π -α) = -sin α. 公式八: sin(32π+α) = -cos α; cos(32 π +α) = sin α. 公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角 一、前四组诱导公式可以概括为:函数名不变,符号看象限 公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ +?2 k 或是απ-? 2 k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函 数名,偶数就不变

例1、求值(1)29cos( )6π= __________. (2)0tan(855)-= _______ ___. (3)16 sin()3 π-= __________. 的值。 求:已知、例)sin(2)4cos() 3sin()2cos( , 3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2 B .cos2-sin2 C .±(sin2-cos2) D .sin2+cos2 例4、下列各式不正确的是【 】 A . sin (α+180°)=-sin α B .cos (-α+β)=-cos (α-β) C . sin (-α-360°)=-sin α D .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .3 2 m 例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】 A .5 B .-5 C .6 D .-6 例7、试判断 sin(2)cos() (9tan (5) 2αππαα παπα-+??+- ??? ··cos 为第三象限角)符号 例8、化简3 sin(3)cos()cos(4) 25 tan(3)cos()sin() 22 πααππαπαπααπ-?-?+-?+?- 例9、已知方程sin(α - 3π) = 2cos(α - 4π),求 ) sin()2 3sin(2) 2cos(5)sin(α--α-π α-π+α-π 例10、若1sin()3 πθ-= ,求 []cos() cos(2) 3 3 cos()1cos sin()cos()sin() 22 πθθππθθ θπθπθπ+-+ --?-?--+的值. 提示:先化简,再将1sin 3 θ=代入化简式即可.

材料力学的基本计算公式

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1、弯矩、剪力和荷载集度之间的关系式 2、轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截面面积A,拉应力为正) 3、轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 4、纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5、纵向线应变和横向线应变 6、泊松比 7、胡克定律 8、受多个力作用的杆件纵向变形计算公式? 9、承受轴向分布力或变截面的杆件,纵向变形计算公式 10、轴向拉压杆的强度计算公式1 1、许用应力,脆性材料,塑性材料1 2、延伸率1 3、截面收缩率1 4、剪切胡克定律(切变模量G,切应变g )1 5、拉压弹性模量E、泊松比和切变模量G之间关系式1 6、圆截面对圆心的极惯性矩(a)实心圆(b)空心圆1

7、圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r )1 8、圆截面周边各点处最大切应力计算公式1 9、扭转截面系数,(a)实心圆(b)空心圆20、薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式2 1、圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式2 2、同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或2 3、等直圆轴强度条件2 4、塑性材料;脆性材料2 5、扭转圆轴的刚度条件? 或2 6、受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,2 7、平面应力状态下斜截面应力的一般公式 ,2 8、平面应力状态的三个主应力 , ,2 9、主平面方位的计算公式30、面内最大切应力3 1、受扭圆轴表面某点的三个主应力,,3 2、三向应力状态最大与最小正应力 ,3 3、三向应力状态最大切应力3 4、广义胡克定律3 5、四种强度理论的相当应力3

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

诱导公式总结大全

诱导公式1 诱导公式的本质 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。 常用的诱导公式 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα

cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 同角三角函数的基本关系式 倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α)

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上与内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷与速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理 想情形。塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]b b n σσ=,强度条件:[]σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变与横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-='。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l =? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===22ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计与确定许可载荷。

材料力学常用基本公式

材料力学常用基本公式 Prepared on 24 November 2020

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积 A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至 外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径 d,拉伸后试样直径d1) 6. 7.纵向线应变和横向线应变 8. 9.泊松比 10.胡克定律

11.受多个力作用的杆件纵向变形计算公式 12.承受轴向分布力或变截面的杆件,纵向变形计算公式 13.轴向拉压杆的强度计算公式 14.许用应力,脆性材料,塑性材料 15.延伸率 16.截面收缩率 17.剪切胡克定律(切变模量G,切应变g ) 18.拉压弹性模量E、泊松比和切变模量G之间关系式 19.圆截面对圆心的极惯性矩(a)实心圆 20.(b)空心圆 21.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)

22.圆截面周边各点处最大切应力计算公式 23.扭转截面系数,(a)实心圆 (b)空心圆 24.薄壁圆管(壁厚δ≤ R /10 ,R 为圆管的平均半径)扭转切应力计算公式 25.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 26.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 27.等直圆轴强度条件 28.塑性材料;脆性材料

29.扭转圆轴的刚度条件或 30.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 31.平面应力状态下斜截面应力的一般公式 , 32.平面应力状态的三个主应力, , 33.主平面方位的计算公式 34.面内最大切应力 35.受扭圆轴表面某点的三个主应力,, 36.三向应力状态最大与最小正应力 , 37.三向应力状态最大切应力

诱导公式总结大全

诱导公式总结大全 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

诱导公式1 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

相关文档