文档库 最新最全的文档下载
当前位置:文档库 › 北京大学高等代数高代II_2013 期末(1)

北京大学高等代数高代II_2013 期末(1)

北京大学高等代数高代II_2013 期末(1)
北京大学高等代数高代II_2013 期末(1)

北京大学数学学院期末试题

2012-2013学年第二学期

考试科目 高等代数II 考试时间 2013年6月18日 姓 名 学 号

一.(20分)已知A = ??????1011, B =??

????1101. 设S : X AX – XB 是Q-线性空间V =M 2( Q ) 上的线性变换.

1) 求S 在基底E 11 , E 12 , E 21 , E 22 ( E i j 为基本矩阵) 下的矩阵;

2) 求 Im S 与Ker S 的维数与基底;

3) 求E 11在映射S 下的所有原像.

4) 求商空间V / Im S 的维数与一组基.

二(15分)设A 是实线性空间V 上的线性变换, 且A 的

最小多项式为 f ( x ) = x 4 – 17 x 2 + 6 x + 9 0 .

1) 求f ( x )在实数域上的因式分解;

2) 将V 分解为维数 ≥ 1的A-子空间W i ( i =1,2,… ) 的直和;

3) 对每个A-子空间W i , 求多项式 h i ( x ) , 使得线性变换 h i ( A )是沿其余A-子空间的和向W i 所作的投影变换.

三(28分)设 A 是实线性空间V 上的线性变换, 且A 在基底 α 1 , α 2 , α 3 , α 4 下的矩阵为 A = .

????????????----0351010001201202

1) 求A 的特征多项式与最小多项式 ;

2) 求V 的根子空间分解, 给出各个根子空间的基底;

3) 求V 的一组基, 使得A 在此基下的矩阵为Jordan 标准型. 四(30分)填空题.

1) 设A 是3 ? n 矩阵, 且 AX =??????????001无解, AX =??????????011有唯一解,

则 A 秩 = __; n 的取值范围是 __;

2) 若P 既是正交矩阵又是对称矩阵, 且P

??????????221= ??????????00a , a > 0 ,

则a =__, P =__ ;

3) 在复数域上, 以下矩阵的相似分类为__;

??????????=200410321A ??????????=100220321B ??????????-=153001023C ??????????-+=11011i 10i 12D 4) 若复矩阵A 的秩为 3 , 则 A A T 的秩为___(写出所有可能);

5) 若有可逆矩阵U, 使得 T U ??????-+2i 1i 11U = D 是实对角矩阵,

则U =__ , D =__ (写出一组解即可) ;

6) 若n 级矩阵A 与 I – A 都是酉矩阵, 则 tr( A ) 的实部为___.

五 ( 7分) 设 A 是m ? n 实矩阵, 且 A T A 的特征值为

σ 1 ≥ σ 2 ≥ … ≥ σ n ≥ 0 .

证明: 对任意秩 ≤ k 的m ? n 实矩阵B , 都有

tr( ( A - B ) T ( A - B ) ) ≥ σ k + 1 + σ k + 2 + … + σ n .

高等代数-北京大学第三版--北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号 1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

高等代数(北大版)第6章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证 ),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈, X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高等代数(北大版)第6章习题参考答案

第六章线性空间 . 设 M N , 证 明: M N M , M N N 。 1 证任 取M , 由 M N , 得 N , 所 以M N , 即证 M N M 。又因 M N M , 故 M N M 。再证第二式,任 取 M 或N , 但 M N , 因此无论 哪一种情形,都有N , 此即。但 N M N , 所以 M N N 。 2.证明 M ( N L ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。 证x M (N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L. 所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。反之,若 x (M N ) ( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得 x M ( N L ), 在后一情形,因而 x M , x L, x N L ,得 x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M ( N L),则 x M , x N L 。 在前一情形 X x M N ,且 X M L,因而 x ( M N) ( M L)。 在后一情形, x N ,x 因而 x M N , 且 X M ,即 X ( M N)(M L)所以L, L (M N)(M L) M (N L) 故 M ( N L) =()(M L) M N 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量 乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk 1) 2

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

北京大学高等代数7

北京大学数学学院期中试题 考试科目 高等代数I 考试时间 2012年11月8日 姓 名 学 号 一.(30分)填空题. 1.设 当λ = 时, α1 , α2 , α3不能表出β ; 当λ = 时, 表出方式不唯一. 2. 设α1 , α2是矩阵A = 的行向量, 则 α1 α1T + α2 α2 T = __ , α1T α1 + α2T α2 = ___ ; A T A =__ , A T A 的秩 =__ , A A T = __ . 3.设 若矩阵 能写成 k 1 α1 α1T + k 2 α1 α2T + k 3 α2 α1T + k 4 α2 α2T , 则 [ k 1 , k 2 , k 3 , k 4 ] =__. 4. 已知 B 是3?4矩阵, [ 2 0 1 3 ] T 是齐次线性方程组B X = 0 的一个解. 设A 是将行向量 [ 2 0 1 3 ] 添加到B 下面 得到的方阵. 若A 的 (4,1) 元的余子式为6, 则 | A | =___. 5. 对矩阵做初等行变换, 矩阵的_____ 不变(多选). A 秩 B 行空间 C 列空间 D 解空间 6. 设α = [ 1 1 2 ] T 与 β = [ 3 0 2 ] T 是3维几何空间里的向量. 则 α , β之间夹角的余弦值是__, α , β张成的三角形的面积是__, 与α , β都正交的单位向量是___. 二.(12分)已知 .11α,11α21??????-=??????=?? ????31021121.,,2320202 1211010===b b a a t b b a a b b a a ?? ????d c b a ,???? ??????-=??????????+--=??????????-+=??????????-+=1λ21β,5λ42α,45λ2α,222λα321

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

高等代数北大版第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ?????=-=+=3 32122 11y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 22333142y y y y ++--=, 再作非退化线性替换 ??? ????==+=3 3223 1121 21z y z y z z y (2) 则原二次型的标准形为 ()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为

???? ?????=+-=++=333212321121212121z x z z z x z z z x (3) 于是相应的替换矩阵为 ???????? ? ?-=??????? ??????? ??-=10021121210 2110001021021100011011T , 且有 ???? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 23322221214422x x x x x x x ++++, 由配方法可得 ()()() 233222222121321442,,x x x x x x x x x x x f +++++= ()()2 322212x x x x +++=, 于是可令 ?????=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2221321,,y y x x x f +=, 且非退化线性替换为 ?????=-=+-=33 322321122y x y y x y y y x , 相应的替换矩阵为 ???? ? ??--=100210211T ,

高等代数北大编第1章习题参考答案

第一章 多项式 一 、习题及参考解答 1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。 解 1)由带余除法,可得9 2926)(,9 73 1)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。 解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p , 所以当???=-=++0 12m q m p 时有q px x mx x ++-+32|1。 2)类似可得???=--+=--0 10 )2(2 2m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当?? ?+==10q p m 或???=+=2 12 m p q 时,皆有q px x mx x ++++2 42|1。 3.求()g x 除()f x 的商()q x 与余式: 1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。 解 1)432()261339109()327 q x x x x x r x =-+-+=-; 2) 2()2(52)()98q x x ix i r x i =--+=-+。 4.把()f x 表示成0x x -的方幂和,即表成 2010200()()...()n n c c x x c x x c x x +-+-++-+ 的形式: 1)50(),1f x x x ==; 2)420()23,2f x x x x =-+=-; 3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。 解 1 ) 由 综 合 除 法 , 可 得 2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+-; 2)由综合除法,可得 42234231124(2)22(2)8(2)(2)x x x x x x -+=-+++-+++;

北京大学高等代数高代II_2016 期末

北京大学数学学院期末试题 2015-2016学年第二学期 考试科目 高等代数II 考试时间 2016年6月16日 姓 名 学 号 一. (14分)设V 是n 维线性空间, 设U , W 分别是V 的m 维 与r 维线性子空间, 且满足条件 U + W = V . 记 S = { A ∈ Hom( V ) | A ( U ) ? U 且 A ( W ) ? W } . 1) 证明集合S 是线性空间Hom( V )的子空间. 2) 求线性空间S 的维数 , 用n , m , r 表示. 二.(15分)设实线性空间V 上的双线性函数 f ( α , β )在 V 的基底 α 1 , α 2 , α 3 下度量矩阵为 ???? ??????531351111. 1) 证明 f ( α , β ) 构成V 上的内积 ; 2) 求内积 f 下的一组标准正交基 β1 , β2 , β3 ; 3) 问在内积 f 下, 是否存在正交变换A , 使得A α1 = α1 , 且A α2 = α3 ? 若存在, 写出A 在β1 , β2 , β3下的矩阵. 三(16分)设 V 是域K 上的n 维线性空间, 由V 的基底 α1 , … , αn 到基β1 , … , βn 的过渡矩阵为U . 1) 若线性变换A ∈ Hom( V ) 在基 α1 , … , αn 下的矩阵为A , 求基底β1 , … , βn 下A 的矩阵;

2) 若双线性函数 f 在基 α1 , … , αn 下的度量矩阵为A , 求f 在 基β1 , … , βn 下的度量矩阵; (此题要求推导过程, 每一步注明理由) 四(32分)设 A 是实线性空间V 上的线性变换, 且A 在基底 α 1 , α 2 , α 3 , α 4 下的矩阵为 A = . 1) 求A 的特征多项式与最小多项式 ; 2) 求V 的根子空间分解, 确定每个根子空间W 的基底, 并 计算限制变换 A |W 在此基底下的矩阵 ; 3) 对每个根子空间 W , 求多项式 h W ( x ) , 使得 h W ( A )是 沿其余根子空间向W 所作的投影变换 ; 4) 求V 的一组基, 使得A 的矩阵为Jordan 形矩阵. 五(15分)设A : X A X 是(带标准内积的)欧氏空间R 4到R 3的 线性映射, 其中A = ???? ??????--210020101001. 求在条件 || X || = 1下, || A X || 能取到的最大与最小值, 并确定它们分别在何处取到. 六 ( 8分) 设 A 是一个n 级复矩阵, S : X A X – X A 是n 级复 矩阵空间M n (C)上的线性变换 . 证明: S 的秩至多是n 2 – n . ????????????-1122020000010012

高等代数北大版第章习题参考答案

高等代数北大版第章习 题参考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第六章 线 性空 间 1.设,N M ?证明:,M N M M N N ==。 证任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈,X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;

高等代数(北大版)第7章习题参考答案

第七章线性变换 1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量; 2)在线性空间V中,A其中V是一固定的向量; 3)在P 322 中,A(,,)(,,) x1xxxxxx; 231233 4)在P 3中,A(,,)(2,,) x1xxxxxxx 2312231 ; 5)在P[x]中,A f(x)f(x1); 6)在P[x]中,A()(), fxfx其中 0 x P是一固定的数;0 7)把复数域上看作复数域上的线性空间,A 。 nn 中,A X=BXC其中B,CP 8)在P 解1)当0时,是;当0时,不是。nn 是两个固定的矩阵. 2)当0时,是;当0时,不是。 3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。 4)是.因取(x1,x2,x3),(y1,y2,y3),有 A()=A(x1y1,x2y2,x3y3) =(2x12y1x2y2,x2y2x3y3,x1y1) =(2x1x2,x2x3,x1)(2y1y2,y2y3,y1) =A+A, A(k)A(kx1,kx2,kx3) (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 =k A(), 3 故A是P 上的线性变换。 5)是.因任取f(x)P[x],g(x)P[x],并令 u(x)f(x)g(x)则 A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)), 再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。 6)是.因任取f(x)P[x],g(x)P[x]则. A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)), A(kf(x))kf(x0)k A(f(x))。 7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。 8)是,因任取二矩阵X,Y nn

高等代数(北大版)第10章习题参考答案

第十章 双线性函数与辛空间 个线性函数,已知 解此方程组可得 f ( 1) =4,f ( 2)=-7,f ( 3)=- 3 =4 X 1-7 X 2 - 3 X 3 设 f 为所求 V 上的线性函数,则由题设有 解此方程组可得 f (a)=f (X 1 1+X 2 2 +X 3 3 ) 1、 设 V 是数域 P 上的一个三维线性空间, 12 3 是它的一组基, f 是 V 上的 f ( 1+ 3 )=1,f ( 2 -2 3 )=-1,f ( 1+ 2 )=-3 求 f (X 1 1+X 2 2 +X 3 3 ). 解 因为 f 是 V 上线性函数, 所以有 1) + f ( 3)=1 2 )-2 f ( 3)=-1 1)+f ( 2 )=-3 f (X 1 1+X 2 2+X 3 3).=X 1 f ( 1)+X 2 f ( 2)+X 3 f ( 3) 2、 设V 及 1 , 2 , 3 同上题,试找出一个线性函数 f ,使 f ( 1+ 3) = f ( 2 -2 3)=0, f ( 1+ 2 )=1 1) + f ( 3)=0 2 )-2 f ( 3)=0 1)+f ( 2 )=1 1) =-1,f ( 2)=2,f ( a V,当 a 在 V 的给定基 3 下的坐标表示为 a= X 1 1+X 2 2 +X 3 3 时, 就有

= X 1 f ( 1)+X2 f ( 2)+X3 f ( 3) =-X 1 +2 X 2+ X3 3、设 1,2,3是线性空间V 的一组基,f1,f2,f3 是它的对偶基,令 1= 1 -3, 2 =1+2-3,3= 2 +3 试证: 1 ,2, 3 是V 的一组基,并求它的对偶基。 证:设 ( 1,2,3)=( 1 ,2,3)A 由已 知, 得 1 1 0 A=0 1 1 1 1 1 因为A ≠0,所以1,2,3是V 的一组基。 设g1,g2,g3 是 1 , 2 , 3 得对偶基,则 g1,g2,g3)=( f1,f2,f3 )(Aˊ) 0 1 1 =( f1,f2,f3 ) 1 1 2 1 1 1 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V 是一个线性空间,f1,f2 , ?fs 是V*中非零向量,试证:∈V,使 fi( )≠0 (i=1,2 ?,s) 证:对s 采用数学归纳法。 当s=1 时,f1≠0,所以∈V,使fi( ) ≠0,即当s=1 时命题成立。 假设当s=k 时命题成立,即∈V,使fi( )= i ≠0 (i=1,2 ?,k) 下面证明s=k+1 时命题成立。 若f k1( )≠ 0,则命题成立,若 f k1( ) =0,则由 f k 1≠0知,一定∈V 使f k1( )=b,设fi( )=di(i=1,2 ?,k), 于是总可取数c≠0,使 c ,则∈V,且 ai+cdi ≠0(i=1,2 ?,k)

高等代数-北京大学第三版--北京大学精品课程

一个集合,如果在它里面存在一种或若干种代数运算, 这些运算满足一定的运算法则, 则称这样的一个体系为 定义(数域) 设K 是某些复数所组成的集合。如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、 四则运算 是封闭的,即对K 内任 两个数a 、 b ( a 可 以等于b ), 必有 b K , ab K ,且当b 0时,a/b K ,则称 K 为一个数域。 1.1典型的数域举例: 复数域C ;实数域R ;有理数域 Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = ?. 1 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素 K ,且 a 0。于是 进而 最后, m, n Z 巴K 。这就证明了 n K 。证毕。 1.1.3 集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为 A 与 B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩 定义(集合的映射) 设A 、B 为集合。如果存在法则 f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定 若a a'代都有f (a) 第一章代数学的经典课题 § 1若干准备知识 1.1.1代数系统的概念 个代数系统。 1.1.2数域的定义 定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为 A 与 B 的交集,记作A B ;把A 下的元素组成的集合成为 A 与 B 的差集,记做A B 。 的元素(记做f(a)),则称f 是A 到B 的一个映射,记为 B, f (a). 如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的 B 的 子集称为A 在f 下的像,记做 f (A),即 f (A) f(a)| a A 。 f(a'),则称f 为单射。若 b B,都存在a A ,使得f(a) b ,则称f 为满射。 1.1.4 求和号与求积号 1 ?求和号与乘积号的定义.为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数a 1,a 2, ,a n ,我们使用如下记号: 第一学期第一次课 如果f 既是单射又是满射,则称 f 为双射,或称一一对应。

高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间 1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的 一个线性函数,已知 f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3 求f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ). 解因为f是V上线性函数,所以有 f (ε1)+ f (ε3)=1 f (ε2)-2 f (ε3)=-1 f (ε1)+f (ε2)=-3 解此方程组可得 f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是 f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ).=X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =4 X 1 -7 X 2 -3 X 3 2、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使 f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1 解设f为所求V上的线性函数,则由题设有 f (ε1)+ f (ε3)=0 f (ε2)-2 f (ε3)=0 f (ε1)+f (ε2)=1 解此方程组可得 f (ε1)=-1,f (ε2)=2,f (ε3)=1 于是?a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为 a= X 1ε 1 +X 2 ε 2 +X 3 ε 3 时,就有 f (a)=f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 )

= X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =-X 1+2 X 2 + X 3 3、设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3 试证:α1,α2,α3是V的一组基,并求它的对偶基。 证:设 (α1,α2,α3)=(ε1,ε2,ε3)A 由已知,得 A= 110 011 111????????-?? 因为A≠0,所以α1,α2,α3是V的一组基。设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(Aˊ)1- =(f1,f2,f3) 011 112 111 -???? - ????--?? 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V是一个线性空间,f1,f2,…fs是V*中非零向量,试证:?α∈V,使 fi(α)≠0 (i=1,2…,s) 证:对s采用数学归纳法。 当s=1时,f1≠0,所以?α∈V,使fi(α)≠0,即当s=1时命题成立。 假设当s=k时命题成立,即?α∈V,使fi(α)=αi≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。 若f 1 k+(α)≠0,则命题成立,若f 1 k+ (α)=0,则由f 1 k+ ≠0知,一定?β∈V 使f 1 k+ (β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c≠0,使 ai+cdi≠0(i=1,2…,k) 令c γαβ =+,则γ∈V,且

(完整版)高等代数(北大版)第7章习题参考答案

第七章 线性变换 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ; 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

北京大学高等代数 I_2011 期末答案

北京大学数学学院期末试题 2011-2012学年第一学期 考试科目 高等代数I 考试时间 2012年1月3日 姓 名 学 号 一. (10分)已知n 阶方阵A =????????????111 011001 , B =????????????????n 321332122211111 . 求矩阵X , 使得 A X = B . 解: 对矩阵 [ A | B ] 作初等行变换 ????????????????-→????????????????1n 2101110022101101110001011110001n 3211 111033211112221001111110001 ??????? ?????????→????????????????-→100010000110010011100010111100012n 10011000 110010011100 01011110 001 故 X =????? ???????100 110111 .

二.(15分)设 A : X A X 是R 3上的线性变换, 其中A = ???? ??????200211011. (1) 求线性变换 A 像空间的维数和一组基; (2) 求矩阵A 的特征值与特征向量; (3) 判断矩阵A 能否对角化并说明理由. 解: (1) 在标准基下, A 像空间就是矩阵A 的列空间, 它的一组基 为 ???? ????????????????220011,, 维数是2 . (2) A 的特征值为λ = 2 (代数二重), 0 . 对λ = 2解齐次方程组 ( A - 2 I ) X = 0 : ???? ??????-→??????????--000100011000211011 通解为x 1 = x 2 , x 3 = 0 , x 2 为自由变量. 写成向量形式 ???? ??????=??????????=??????????0110222321x x x x x x α1 = [ 1 1 0 ] T 构成λ = 2特征子空间的一组基. 2 2)2λ(λ)λ2λ()2λ(1λ111λ)2λ(2λ0021λ1011λλ-=--=-----=------=-|A I |

高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间

注: 答案分三部分,该为第二部分,其他请搜索,谢谢! 12.设A 为一个n 级实对称矩阵,且0

相关文档
相关文档 最新文档