文档库 最新最全的文档下载
当前位置:文档库 › 大一数学分析习题11

大一数学分析习题11

大一数学分析习题11
大一数学分析习题11

数学系一年级《数学分析》期末考试题

一、(满分10分,每小题2分)判断题:

1、无界数列必发散; ( )

2、若对,函数在],[εε-+b a 上连续,则在开区间内连续;

( )

3、初等函数在有定义的点是可导的; ( )

4、,若函数在点可导,在点不可导,则函数在点 必不可导 ; ( )

5、设函数在闭区间上连续,在开区间内可导,但,则对,有 ; ( )

二、(满分20分,每小题4分)填空题 :

7、曲线

的所有切线中,与直线垂直的切线方程

是 ;

9、函数二阶可导,

, 则 ; 10、函数展开成带余项的公式为 三、(满分30分,每小题6分)计算题:

四、(满分40分,每小题8分)证明题:

16、设函数

在区间Ⅰ上满足条件,证明在区间Ⅰ上一致连续;

17、证明函数在点不可导 ;

19、设在上可导,在内可导,证明,使得

20、设函数和可导且,又

证明,其中为常数.

数学分析试题库--证明题

数学分析题库(1-22章) 五.证明题 1.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <; (2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ?=,证明: (1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明 3 52325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞ →lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列. 5.用δε-方法验证: 3) 23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证: 2 11lim 2- =-+-∞ →x x x x . 7 . 设a x x x =→)(lim 0 ?,在0x 某邻域);(10δx U ?内a x ≠)(?,又.)(lim A t f a t =→证明 A x f x x =→))((lim 0 ?. 8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x , (1))(0x U x n ?∈,0x x n →, (2)0010x x x x n n -<-<+,都有A x f n n =∞ →)(lim , 则A x f x x =→)(lim 0 . 9. 证明函数 ? ? ?=为无理数为有理数x , x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析大一上学期考试试题 B

数学分析第一学期期末考试试卷(B 卷) 一、叙述题(每题5分,共10分) 1.上确界; 2.区间套的定义。 二、填空题(每题4分,共20分)1.函数|3|ln 3)(--=x x x f 的全部间断点是. 2.定义在]1,0[区间上的黎曼函数的连续点为. 3.)1ln()(2 x x f +=,已知5 6)2()(lim 000=--→h h x f x f h ,=0x .4.正弦函数x y sin =在其定于内的拐点为.5.点集}1)1({n S n +-=的所有聚点为.三、计算题(每题4分,共28分)(1)求]1 21 11[lim 222n n n n n ++++++∞→ ;(2)求30sin tan lim x x x x -→;(3)求)1ln(sin 1tan 1lim 30x x x x ++-+→;(4)求2210)21(e lim x x x x +-→;(5)求)1ln(2x x y ++=的一阶导; (6)求3)(sin )(+=x x x f 的一阶导; (7)求???==; cos ,sin 22t t y t t x 的一阶导。四、讨论题(共12分)1.极限x x 1sin lim 0 →是否存在,说明原因。2.设000)()(=≠?????-=-x x x e x g x f x ,其中)(x g 具有二阶连续导数,且

1)0(,1)0(-='=g g .求)(x f '并讨论)(x f '在),(+∞-∞上的连续性. 五、证明题(共30分)1.证明.x x f 2cos )(=在),0[+∞上一致连续. 2.设f 在],[b a 上连续,],[,,,21b a x x x n ∈ ,另一组正数n λλλ,,,21 满足121=+++n λλλ .证明:存在一点],[b a ∈ξ,使得 )()()()(2211n n x f x f x f f λλλξ+++= . 3.设函数)(x f 在[]b a ,上连续,在),(b a 内可导,且0>?b a .证明存在),(b a ∈ξ,使得)()()()(1 ξξξf f b f a f b a b a '-=-.

(完整word版)微积分(数学分析)练习题及答案doc

统计专业和数学专业数学分练习题 计算题 1. 试求极限 .4 2lim )0,0(),(xy xy y x +-→ 2. 试求极限.)() cos(1lim 222222) 0,0(),(y x y x e y x y x ++-→ 3. 试求极限.1 sin 1sin )(lim )0,0(),(y x y x y x +→ 4. 试讨论.lim 4 22 )0,0(),(y x xy y x +→ 5. 试求极限 .1 1lim 2 2 22) 0,0(),(-+++→y x y x y x 6. ),(xy y x f u +=,f 有连续的偏导数,求 .,y u x u ???? 7. ,arctan xy z =,x e y = 求 .dx dz 8. 求抛物面 2 22y x z +=在点 )3,1,1(M 处的切平面方程与法线方程. 9. 求5362),(2 2+----=y x y xy x y x f 在)2,1(-处的泰勒公式. 10. 求函数)2(),(2 2y y x e y x f x ++=的极值. 11. 叙述隐函数的定义. 12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容. 14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线 0333=-+axy y x 所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程 0),,(323=-++=z y x xyz z y x F 在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23 (,,)f x y z xy z =, 方程 2223x y z xyz ++=. (1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组

数学分析试题及答案解析

2014 —--2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ) . 2.若()()x g x f ,为连续函数,则()()()[]()[] ????= dx x g dx x f dx x g x f ( ). 3. 若()? +∞a dx x f 绝对收敛,()? +∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( )。 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I上内闭一致收敛( )。 6。 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发 散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C .可微 D 。不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不

相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C 。 ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D 。 ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D . 不确定 4。设∑n u 为任一项级数,则下列说法正确的是( ) A .若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B 。 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C . 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D 。 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A 。 ∑n n x a 在收敛区间上各点是绝对收敛的; B . ∑n n x a 在收敛域上各点是绝对收敛的; C . ∑n n x a 的和函数在收敛域上各点存在各阶导数;

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析复习题及答案

数学分析复习题及答案 一.单项选择题 1.已知x e x x f +=3)(,则)0(f '=( ) A. 1 B. 2 C. 3 D. 4 2.设3)21(lim -∞ →=+e x kx x ,则=k ( ) A. 6- B. 23 C. 32- D. 23- 3.? =dx xe x ( ) A. C e x + B. C e xe x x +- C. C e x x +- D. C e x ++1 4.下列函数在),(∞-∞内单调增加的是( ) A. x y = B. x y -= C. 3x y = D. x y sin = 二、填空题 1.设函数==+dz e z y x 则全微分,2 2..______________23sin lim 0 =→x x x 3.??? ????>+=<=0)1ln()(00 sin )(x x x k x k x x x x f 为常数在0=x 处连续,则_________=a 三、判断题 1.若函数f 在区间),(b a 上连续,则f 在),(b a 上一致连续。( ) 2.实轴上的任一有界无限点集S 至少有一个聚点。( ) 3.设f 为定义在)(0x U ?上的单调有界函数,则右极限)(lim 0 x f x x +→存在。( ) 四、名词解释 1.用δε-的语言叙述函数极限的定义 2.用N -ε的语言叙述数列极限的定义 五、计算题

1.根据第四题第1小题证明04 )1(lim 2=--+∞→n n n n 2.根据第四题第2小题证明5311lim 22=++→x x x 3.设n n n x x x x x x x ++=++ ==+11,,11110010 ,,求证n n x ∞→lim 存在,并求其值。 4.证明:2)(x x f =在[]b a ,上一致连续,但在()+∞∞-,上不一致连续。 5.证明:若)(0x f '存在,则=??--?+→?x x x f x x f x )()(lim 000)(20x f ' 6.证明:若函数)(x f 在0x 连续,则)(x f 与)(2x f 也在0x 连续,问:若在)(x f 或) (2x f 在I 上连续,那么)(x f 在I 上是否必连续。 一、1.D 2.C 3. B 4.C 二、1. dy e dx e y x y x +++222 2.2 3 3. 1 三、1.× 2.√ 3.√ 四、 1. 函数极限定义:设函数f 在点0x 的某个空心邻域);(0δ'?x U 内有定义,A 为定数。 0>?ε,0>?δ,当δ<-<00x x 时,ε<-A x f )(,则A x f x x =→)(lim 0 。 2.数列极限定义:设为数列}{n a ,a 为定数,0>?ε,0>?N ,当N n >时,有ε<-a a n ,则称数列}{n a 收敛于a 。 五、1.证明:ε<-<-?++=-+<--+2 12121414)1(22n n n n n n n n n )2(>n 0>?∴ε,21+?? ????=?εN ,当N n >时,ε<--+4)1(2n n n ;得证。 2. 证明:)13()2() 1(5)13)(2(531122+-<++-=-++x x x x x x x 令1)2(<-x ,则31<?ε,? ?????=?10,1min εδ,当δ<-<20x 时,ε<-++53112x x

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析典型题

6个等价定理 1o确界定理 2o单调有界定性 3o闭区间套定理 4o列紧性定理(Weierstrass聚点原理) 5o完备性定理(Cauchy收敛原理) 6o紧性定理(Borel有限覆盖定理) 在一般的教科书上论证它们的线路是:1o(作为公理)→2o→3o→4o→5o及3o→6o. 实际上,它们是等价的,而且可从任何一个直接推出其它任何一个. 这些训练对真正掌握分析学方法以及进一步学习后续课程和考研都是非常重要的. 下面就作其中一些训练,其余留给大家自己作. 1.5o→6o. 即用完备性直接证明紧性. 2.6o→1o. 即用紧性直接证明确界定理. 3.6o→2o. 即用紧性直接证明单调有界定理. 4.6o→3o. 即用紧性直接证明闭区间套定理. 5.6o→4o. 即用紧性直接证明列紧性. 6.6o→5o. 即用紧性直接证明完备性. 7.3o→1o. 即用闭区间套定理直接证明确界定理. 8.3o→2o. 即用闭区间套定理直接证明单调有界定理. 9.3o→5o. 即用闭区间套定理直接证明完备性. 10.1o→3o. 即用确界定理直接证明闭区间套定理. 11.1o→4o. 即用确界定理直接证明列紧性. 12.1o→5o. 即用确界定理直接证明完备性. 13.1o→6o. 即用确界定理直接证明紧性. 14.4o→1o. 即用列紧性直接证明确界定理. 15.4o→2o. 即用列紧性直接证明单调有界定理. 16.4o→3o. 即用列紧性直接证明闭区间套定理.

17.4o→6o. 即用列紧性直接证明紧性定理. 18.5o→1o. 即用完备性直接证明确界定理. 19.5o→2o. 即用完备性直接证明单调有界定理. 20.5o→3o. 即用完备性直接证明闭区间套定理. 21.5o→4o. 即用完备性直接证明列紧性定理. 22.2o→1o. 即用单调有界定理直接证明确界定理. 23.2o→4o. 即用单调有界定理直接证明列紧性定理. 24.2o→5o. 即用单调有界定理直接证明完备性定理. 25.2o→6o. 即用单调有界定理直接证明紧性定理.

大学工科数学分析期末考试_(试题)A

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

一、填空题(每题4分,共20XX 分) 1. 设 ABC L 是从 (1,0) A 到 (0,1) B -再到 (1,0) C -连成的折线,则曲线积分 d d |||| ABC L x y x y +=+? . 2. 设向量场222(1)(1)(1)A x x z i y x z j z x z k =++-+-,则向量场在点012 1M -(,,)处的旋度A =rot . 3. 若x y xe -=和sin y x =为某四阶常系数齐次线性微分方程的两个解,则该方程是 . 4. 函数(),(),(,)x x f x y ?ψ皆可微,设()(),()z f x y xy ?ψ=+,则 z z x y ??-=?? . 5. 锥面 22 z x y +被圆柱面 222,(0) x y ax a +=>截下的曲面的面积 为 . 二、单项选择题(每题4分,共20XXXX 分) 本题分数 20XX 得 分 本题分数 20XXXX 得 分

(多选不得分) 6.若 ()() 0000,,, x y x y f f x y ????都存在,则(,)f x y 在()00,x y ( ) (A )极限存在但不一定连续 (B )极限存在且连续 (C )沿任意方向的方向导数存在 (D )极限不一定存在,也不一定连续 7. 12,L L 是含原点的两条同向封闭曲线,若已知122 d d L y x x y K x y -+=+?(常数), 则222d d L y x x y I x y -+= +?的值 ( ) (A )一定等于 K (B )一定等于K - (C ) 与2L 的形状有关 (D )因为 Q P x y ??=??,所以0I = 8.∑为球面2222x y z a ++=外侧,Ω为球体2222x y z a ++≤,则有 ( )

数学分析习题及答案 (50)

习 题 12.5 偏导数在几何中的应用 1. 求下列曲线在指定点处的切线与法平面方程: (1)?????+==.1,2x x z x y 在??? ??21,1,1点; (2)??? ? ??? =-=-=.2sin 4,cos 1, sin t z t y t t x 在2π=t 的点; (3)???=++=++.6, 0222z y x z y x 在)1,2,1(-点; (4)???=+=+. ,2 22222R z x R y x 在??? ??2,2,2R R R 点。 解 (1)曲线的切向量函数为2 1(1,2, )(1)x x +,在?? ? ??21,1,1点的切向量为1(1,2,)4。于是曲线在?? ? ??21,1,1点的切线方程为 )12(41)1(2-=-=-z y x , 法平面方程为 252168=++z y x 。 (2)曲线的切向量函数为(1cos ,sin ,2cos )2 t t t -,在2 π =t 对应点的切向 量为(1,1。于是曲线在2 π = t 对应点的切线方程为 22 2 112 -= -=+- z y x π , 法平面方程为 (1)(1)2 x y z π - ++-+- =402 x y π ++- -=。 (3)曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为 (6,0,6)-。于是曲线在)1,2,1(-点的切线方程为

?? ?-==+2 2 y z x , 法平面方程为 z x =。 (4)曲线的切向量函数为4(,,)yz xz xy --,在?? ? ??2, 2 , 2 R R R 点的切向量为22(1,1,1)R --。于是曲线在?? ? ??2, 2,2R R R 点的切线方程为 2 22R z R y R x +-=+-=-, 法平面方程为 02 2 =+ --R z y x 。 2.在曲线32,,t z t y t x ===上求一点,使曲线在这一点的切线与平面102=++z y x 平行。 解 曲线的切向量为2(1,2,3)t t ,平面的法向量为(1,2,1),由题设, 22(1,2,3)(1,2,1)1430t t t t ?=++=, 由此解出1t =-或13 -,于是 )1,1,1(-- 和 )27 1 ,91,31(-- 为满足题目要求的点。 3. 求曲线t z t t y t x 22cos ,cos sin ,sin ===在2 π =t 所对应的点处的切线的 方向余弦。 解曲线的切向量函数为(sin 2,cos 2,sin 2)t t t -,将2 t π =代入得)0,1,0(-,它是单位向量,所以是方向余弦。 4. 求下列曲面在指定点的切平面与法线方程: (1)3432y x z +=,在点)35,1,2(; (2)4e e =+z y z x ,在点)1,2ln ,2(ln ; (3)3322,,v u z v u y v u x +=+=+=,在点1,0==v u 所对应的点。 解(1)曲面的法向量函数为32(8,9,1)x y -,以(,,)(2,1,35)x y z =代入,得

数学分析习题

《数学分析Ⅱ》期中考试题 一、选择题(每小题3分,共30分) 1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 ) A 、8x+10y+7z-12=0; B 、8x+10y+7z+12=0; C 、8x -10y+7z-12=0; D 、8x+10y+7z+12=0 2、L 为单位圆周,则 L y ds =? ( 4 ) A 、1 B 、2 C 、3 D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则 L zdx xdz +? = ( 3 ) A 、3 B 、5 C 、7 D 、9 4、 ()1 3x y x y dxdy +≤+?? =( 2 ) A 、2 B 、4 C 、6 D 、8 5、 02 11(,)y dy f x y dx --? ? ,改变积分顺序得( 1 ) A 、2 110 (,)x dx f x y dy -?? B 、2 111(,)x dx f x y dy --?? C 、 2 11 (,)x dx f x y dy +? ? D 、2 11 1 (,)x dx f x y dy +-?? 6、V=[-2, 5]?[-3, 3]?[0,1],则 2()V xy z dv +??? =( 3 ) A 、1 B 、7 C 、14 D 、21 7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4 8、曲面S 为上半单位球面z =S yzdxdz ?? =( 2 ) A 、π/2 B 、 π/4 C 、π/6 D 、π/8 9、函数2 3 u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。 0cos x e xdx -∞ ? ,10 ? ,3cos ln x dx x +∞?,20?,1+∞? A 、2 B 、3 C 、4 D 、5 二、填空题(28分,每空4分) 1、区域Ω由1z =与22 z x y =+围成的有界闭区域,则 (,,)f x y z dv Ω ??? 在直角坐标下的三 次积分为 柱坐标下三次积分

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

数学分析试题及答案4

(十四) 《数学分析Ⅱ》考试题 一 填空(共15分,每题5分): 1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 2 设 =--='→5 ) 5()(lim ,2)5(5 x f x f f x 则54; 3 设?? ?>++≤=0 , )1ln(,0, sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。 二 计算下列极限:(共20分,每题5分) 1 n n n 1 )1 31211(lim ++++ ∞→ ; 解: 由于,n n n n 1 1)131211(1≤++++≤ 又,1lim =∞→n n n 故 。1)131211(lim 1 =++++∞→n n n 2 3 )(21lim n n n ++∞→; 解: 由stolz 定理, 3 )(21lim n n n ++∞→33)1()(lim --=∞→n n n n ) 1)1()(1(lim -+-+ -- =∞ →n n n n n n n n ) 1)1(2))(1(() 1(lim --+---+=∞→n n n n n n n n n .3 2)1)11(21 11lim 2=-- +- + =∞ →n n n n 3 a x a x a x --→sin sin lim ;

解: a x a x a x --→sin sin lim a x a x a x a x --+=→2sin 2cos 2lim .cos 2 2sin 2 cos lim a a x a x a x a x =--+=→ 4 x x x 10 ) 21(lim + →。 解: x x x 10 )21(lim +→.)21(lim 2 2 210e x x x =?? ??? ?+=→ 三 计算导数(共15分,每题5分): 1 );(),1ln(1)(22x f x x x x f '++-+= 求 解: 。 1 11 11 1 1221122)(2 2 2 22 2+-= +- +=++++ - +='x x x x x x x x x x x x f 2 解: 3 设。 求)100(2 ,2sin )23(y x x y -= 解: 由Leibniz 公式 )23()2(sin )23()2(sin )23()2(sin 2)98(2 1002)99(11002)100(0100)100(' '-+'-+-=x x C x x C x x C y 6)2sin(26)2sin(2100)23)(2sin(22 98982991002999922100100?+++?+-+=?πππx x x x x x x x x x 2sin 2297002cos 26002sin )23(298992100?-?--= 。 ]2cos 12002sin )22970812[(2298x x x x --= 四 (12分)设0>a ,}{n x 满足: ,00>x ,2,1,0),(211 =+= +n x a x x n n n ;sin cos 33 表示的函数的二阶导数求由方程???==t a y t a x , tan sin cos 3cos sin 3)cos ()sin (22 33t t t a t t a t a t a dx dy -=-=''=。t t a t t a t dx y d sin cos 3sec )cos (sec 223222='-=

大一期末考试试题

一、单项选择题(共10分) 1.在代码中引用一个控件时,应使用控件的()属性。 A.C a p t i o n B.N a m e C.T e x t D.I n d e x 2.设变量x = 4,y = -1,a = 7,b = -8,下面表达式()的值为“假”。 A.x+a <= b-y B.x > 0 AND y < 0 C.a = b OR x>y D.x+y > a+b AND NOT (y < b) 3.表达式Int(Rnd*71)+10产生的随机整数范围是()。 A.(10,80)B.(10,81)C.[10,80] D.[10,81] 4.函数Sgn(3.1416)的返回值是()。 A.-1 B.0 C.1 D.以上都不对 5.67890属于()类型数据。 A.整型B.单精度浮点数C.货币型D.长整型 6.下列变量名中正确的是()。 A.3S B.Print C.Select My Name D.Select_1 7.下列赋值语句()是有效的。 A.sum = sum -sum B.x+2 = x + 2 C.x + y = sum D.last = y / 0 8.以下的控件或方法具有输入和输出双重功能的为()。 A.Print B.Textbox C.Optionbutton D.Checkbox 9.若要获得列表框中被选中的列表项的内容,可以通过访问()属性来实现。 A 10.下列代码的运行结果为()。

Private Sub command1_click() Dim m(10) For k = 1 To 10 m(k) = 11 - k Next k x = 5 Print m(2 + m(x)) End Sub A.2 B.3 C.4 D.5 二、填空题(10分) 1.写出整数n能同时被13和17整除的Basic表达式。 2.代码窗口中有两个下拉列表框:左侧是列表框,右侧是过程列表框。 3.写出在字符串”Visual Basic 6.0”中截取”Visual”的Basic表达 式。 4.函数Len(“abcdef”)的返回值是。 5.设a = 2,b = 5,c = -2,d = 100,则a > b >= c AND a < b >= d的值为。 6.要使标签的大小自动与所显示的文本相适应,可以通过设置 属性为True来实现。 7.若要在一行书写多条语句,则各语句间应加分隔符,Visual Basic的语句分隔符 为。 8.要强制显式声明变量,使用__________语句完成。 9.在VB中,用户定义常量使用语句,声明变量使用语句。

(完整word版)数学分析—极限练习题及详细答案

一、选择题 1.若0 () lim 1sin x x x φ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。 A.sin ||x B.ln(1)x - C. 1 1.【答案】D 。 2.设f(x)在x=0处存在3阶导数,且0() lim 1tan sin x f x x x →=-则'''f (0)=( ) A.5 B.3 C.1 D.0 2. 【 答 案 】 B. 解 析 由 洛 必达 法 则 可 得 300 02() '() ''() lim lim lim 1 tan sin 2cos sin sin cos cos x x x f x f x f x x x x x x x x -→→→==-+-42200''()''() lim lim 16cos sin 2cos cos 21 x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3x B.3 4 x C.3 2 x D.x 3.【答案】A.解析 .1 2 2 33 31233 2000311(1)1133lim lim (1)3313 x x x x x x x ---→→→-+?==+=选A 。 4.函数2sin f ()lim 1(2)n n x x x π→∞=+的间断点有( )个 A.4 B.3 C.2 D.1 4.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故 20.5sin 12lim 1(2(0.5))2n x π →-- =- +?-, 20.5sin 12lim 1(20.5)2n x π →= +?,故,有两个跳跃间断点,选C 。 5.已知()bx x f x a e =-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )

数学分析下册》期末考试卷及参考答案

数学分析下册期末模拟试卷及参考答案 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已 知u =则u x ?=? ,u y ?=? ,du = 。 2、设22L y a +=2:x ,则L xdy ydx -=? 。 3、设L ???x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ?22L (x +y )= 。 4、改变累次积分32dy f dx ??3 y (x ,y )的次序为 。 5、设1D x y +≤: ,则1)D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y ) 在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y ) 在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)x y y x f x y f x y =。 ( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =??。 ( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。( ) 三、计算题 ( 每小题9分,共45分) 1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AO I e y y dx e y dy =-+-? , 其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。 、计算三重积分 22()V x y dxdydz +???, 是由抛物面22z x y =+与平面4z =围成的立体。 、计算第一型曲面积分

相关文档
相关文档 最新文档