文档库 最新最全的文档下载
当前位置:文档库 › 三冲量控制系统原理

三冲量控制系统原理

三冲量控制系统原理
三冲量控制系统原理

锅炉三冲量控制原理及调节过程。

原理:冲量控制系统从结构上来说,是一个带有前馈信号的串级控制系统。液位控制器LC与流量控制器FC构成串级控制系统。汽包液位LIA2104是主变量、给水流量是副变量。副变量的引入使系统对给水压力的波动有较强的克服能力。蒸汽流量的波动是引起汽包液位LIA2104变化的因素,是干扰作用,蒸汽波动时,通过引入FC,使给水流量FA2101作相应的变化,所以这是按干扰进行控制的,是把蒸汽流量信号作为前馈信号引入控制的。

调节过程:根据串级控制系统选择主、副控制器的正、反作用的原则,水位控制器LC反作用选反作用,流量控制器FC为正作用,调节器为气关阀。当水位由于扰动而升高时,因LC反作用,它的输出下降,进入加法器后,使FC给定值减小而输出增加,调节阀的开度减小,给水流量FA2101减小,水位下降,保持在设定值上;当蒸汽流量FAQ2102增加时,FC给定值增加而输出减小,调节阀的开度增加,给水流量增加,保持水蒸汽平衡,使水位不;副回路克服给水自身的扰动,要进一步地稳定了水位的自动控制;给水流量FA2101增加,FC输出增加,调节阀的开度减小,给水量减小,从而保持水蒸汽平衡。

汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上,

即三个被控变量对应一个调节器。

工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;

蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;

给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,

使调节过程稳定,起到稳定给水流量的作用。

汽包水位三冲量给水调节系统

1、所谓冲量,是指调节器接受的被调量的信号;

2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成;

3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。

4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。

5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“+”号;反之,当信号值减小时要求关小调节阀,该信号标以“-”号。在给水调节系统中,当蒸汽流

量信号增大时,要求开大调节阀,该信号标以“+”号;给水流量信号增大时,要求关小调节阀,该信号标以“-”号;当汽包水位升高时,差压减小,水位测量信号减小,要求关小调节阀,则该信号标以“+”号。

汽车各部件工作原理图解

汽车各部件工作原理(图解)

————————————————————————————————作者: ————————————————————————————————日期:

汽车各部位工作原理(图示) ? 差速器具有三种功能: 使发动机动力指向车轮?相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

电子控制系统的组成和工作过程

电子控制系统的组成和工作过程 一、教学分析 1.教材分析 本课是第一章第二节“电子控制系统的组成和工作过程”。从对比分析两种路灯控制系统的基本组成入手,再通过搭接一个路灯自动控制的电子模型,来学习电子控制系统的基本组成和工作过程,从而为学生学习后面各章提供了一把钥匙。 2.学情分析 学生在通用技术必修2的学习中,已学过关于控制系统的一些概念,例如输入、控制、输出,以及功能模拟方法的含义,但对电子控制系统内部电子元件,例如发光二极管、光敏电阻、三极管等的工作原理不太了解,教师可用通俗的语言补充解释其作用,以利于学生的学习。 二、教学目标 1.知识与技能目标 (1)知道电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.过程与方法目标 (1)通过对两种路灯控制系统方框图的对照,知道电子控制系统的基本组成。 (2)通过搭接一个路灯自动控制的电子模型,加深对电子控制系统组成的理解。 3.情感态度和价值观目标 (1)激发学生动手尝试的兴趣和热爱技术的情感。 (2)提高学生比较及分析电子控制系统的能力。 三、教学重难点 1.重点 (1)电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.难点 电子控制系统内部常见电子元件的工作原理。 四、教学策略 本节课程以多媒体技术为辅助教学手段,通过观察、基本知识讲授、小组探究、分析表达、技术试验、能力展示等教学方法和策略,在教师指导下,通过学生自主探究建构知识和技能。 五、教学准备 通用技术专用教室、多媒体、课件、路灯自动控制模型。 六、课时安排 共1课时 七、教学过程 (一)新课导入 教师展示:路灯自动控制模型 板书:第一章电子控制系统概述 第二节电子控制系统的组成和工作过程

三冲量汽包水位控制原理及应用教程

锅炉汽包水位是锅炉生产过程的主要工艺指标,同时也是保证锅炉安全运行的主要条件之一。汽包水位过高,使蒸汽产生带液现象,不仅降低蒸汽的产量和质量,而且还会使过热器结垢,或使汽轮机叶片损坏;当汽包水位过低时,轻则影响水汽平衡,重则烧干锅炉,严重时会导致锅炉爆炸事故的发生。所以锅炉水位是一个极为重要的被控变量。在具体工艺生产过程中,常常由于蒸汽负荷的波动和给水流量的变化打破汽包内的平衡状态,对汽包水位造成干扰,最终导致假液位。所谓“冲量”实际就是变量,多冲量控制中的冲量,是指引入系统的测量信号。在锅炉控制中,主要冲量是水位。辅助冲量是蒸汽负荷和给水流量,它们是为了提高控制品质而引入的。 1、三冲量控制的引入 目前锅炉汽包水位调节常采用单冲量、双冲量及三冲量等三种调节方案,现分别对它们的基本原理和特性加以讨论。 ①单冲量水位调节系统 单冲量水位调节系统的原理如图1所示。由图1可知,这种类型的水位调节系统,是一个典型的单回路调节系统,被调参数是汽包水位,调节参数是锅炉的给水量。它适用于停留时间较长(亦即蒸发量与汽包的单位面积相比很小),负荷变化小的小型锅炉(一般为10t/h以下)。但对于停留时间较短,负荷变化大的系统就不适应了。

图1 单冲量水位调节原理图2 单冲量水位调节系统控制策略 从图2可以看出:单冲量水位调节系统控制策略由汽包水位测量差压变送器、PID调节器和调节阀(或变频器)构成。 当蒸汽负荷突然大幅度增加时,由于汽包内蒸汽压力瞬间下降,水的沸腾加剧,汽泡量迅速增加,汽泡不仅出现于水的表面,而且出现于水面以下,由于汽泡的体积比水的体积大许多倍,结果形成汽包内液位升高的现象。因为这种升高的液位不代表汽包内储液量的真实情况,所以称为“假液位”。此时PID调节器会错误地认为测量值升高,从而关小给水调节阀,减小给水量。等到这种暂时汽化现象一旦平稳下来,由于蒸汽量的增加,给水量反而减少,会使水位严重下降,甚至降到液位危险区,造成事故。 为了克服由于蒸汽负荷量波动造成“假液位”的现象,我们把蒸汽流量的信号引

汽车ABS工作原理

汽车ABS工作原理 王登伟原创 | 2009-11-9 22:54 | 投票 关键字: wdw 汽车ABS是由控制装置,电磁阀,传感器;总成线束;齿圈;BS警示灯等组成,在不同的ABS 系统中,制动压力调节装置的结构形式和工作原理往往不同,电子控制装置的内部结构和控制逻辑也可能ABS通常都由车轮转速传感器、制动压力调节装置、电子不尽相同。 在常见的ABS系统中,每个车轮上各安装一个转速传感器,将有关各车轮转速的信号输入电子控制装置。电子控制装置根据各车轮转速传感器输入的信号对各个车轮的运动状态进行监测和判定,并形成相应的控制指令。制动压力调节装置主要由调压电磁阀组成,电动泵组成和储液器等组成一个独立的整体,通过制动管路与制动主缸和各制动轮缸相连。制动压力调节装置受电子控制装置的控制,对各制动轮缸的制动压力进行调节。 ABS的工作过程可以分为常规制动,制动压力保持制动压力减小和制动压力增大等阶段。在常规制动阶段,ABS并不介入制动压力控制,调压电磁阀总成中的各进液电磁阀均不通电而处于开启状态,各出液电磁阀均不通电而处于关闭状态,电动泵也不通电运转,制动主缸至各制动轮缸的制动管路均处于沟通状态,而各制动轮缸至储液器的制动管路均处于封闭状态,各制动轮缸的制动压力将随制动主缸的输出压力而变化,此时的制动过程与常规制动系统的制动过程完全相同。

在制动过程中,电子控制装置根据车轮转速传感器输入的车轮转速信号判定有车轮趋于抱死时,ABS就进入防抱制动压力调节过程。例如,电子控制装置判定右前轮趋于抱死时,电子控制装置就使控制右前轮刮动压力的进液电磁阀通电,使右前进液电磁阀转入关闭状态,制动主缸输出的制动液不再进入右前制动轮缸,此时,右前出液电磁阀仍末通电而处于关闭状态,右前制动轮缸中的制动液也不会流出,右前制动轮缸的刮动压力就保持一定,而其它末趋于抱死车轮的制动压力仍会随制动主缸输出压力的增大而增大;如果在右前制动轮缸的制动压力保持一定时,电子控制装置判定右前轮仍然趋于抱死,电子控制装置又使右前出液电磁阀也通电而转入开启状态,右前制动轮缸中的部分制动波就会经过处于开启状态的出液电磁阀流回储液器,使右前制动轮缸的制动压力迅速减小右前轮的抱死趋势将开始消除,随着右前制动轮缸制动压力的减小,右前轮会在汽车惯性力的作用下逐渐加速;当电子控制装置根据车轮转速传感器输入的信号判定右前轮的抱死趋势已经完全消除时,电子控制装置就使右前进液电磁阀和出液电磁阀都断电,使进液电磁阀转入开启状态,使出液电磁阀转入关闭状态,同时也使电动泵通电运转,向制动轮缸泵输送制动液,由制动主缸输出的制动液经电磁阀进入右前制动轮缸, 使右前制动轮缸的制动压力迅速增大,右前轮又开抬减速转动。

前馈、反馈、三冲量控制介绍

一.前馈控制原理 前面讨论的所有控制系统,都属于反馈控制系统,无论其系统结构如何,它们的调节回路的基本工作原理都是一样的。下面要介绍的前馈控制系统则有着截然不同的控制思想。前馈控制思想及应用由来已久,但主要是由于技术条件的限制,发展较慢。随着计算机和现代检测技术的飞速发展,前馈控制正受到更多的重视和应用。 在反馈控制系统中,都是把被控变量测量出来,并与给定值相比较;而在前馈控制系统中,不测量被控变量,而是测量干扰变量,也不与被控变量的给定值进行比较。这是前馈与反馈的主要区别。为了系统地说明前馈控制思想,同时也为了在比较中进一步加深对反馈控制思想的理解,画出图8-31进行比较分析。 (a)反馈控制(b)前馈控制 图8-31 两种加热炉温度控制系统 图8-31中的(a)是反馈控制,(b)是前馈控制。在前馈控制中,测量需要被加热的原油的流量,流量偏大就增加燃料量,原油流量偏小就减少燃料量,以达到稳定原油出口温度的目的。从动态过程分析,当原油流量增大时,一段时间后,出口温度会下降。但前馈测量出原油流量的增加量,迅速增加燃料量。如果燃料增加的量和时机都很好,有可能在炉膛中将干扰克服,几乎不影响原油出口温度。 如果该加热炉只存在原油流量这一个干扰,那么理论上讲,前馈控制可以把原油出口温度控制得很精确,甚至被控变量一点也不波动。这就是前馈控制思想,也是前馈控制的生命力所在。 二.前馈控制与反馈控制的比较 通常认为,前馈控制有如下几个特点: (l)是“开环”控制系统; (2)对所测干扰反应快,控制及时; (3)采用专用调节器; (4)只能克服系统中所能测量的干扰。 下面从几个方面比较前馈控制与反馈控制。画出图8-31两个控制系统的方块图如图8-32所示。

柴油发电机组控制系统工作原理

柴油发电机组控系统工作原理 LIXISE 作者: 作者:LIXISE 柴油发电机组控制系统工作原理和算法是相当的复杂,每个电路的设计都有其特定的算法来予以实现。柴油发电机组的控制器系统犹如发电机组的心脏,智能控制系统的使用大大提高了柴油发电机组的运行,保障了柴油发电机组的稳定工作,那么控制系统是通过何种原理和算法来实现呢?柴油发电机组的控制部分,数字式励磁控制器较传统的模拟电路励磁控制器具有精度高,反应快,控制算法适应性强,对于不同特性的电机只要通过调整程序参数就能适应,甚至可以实现更高端的自适应智能控制算法等优点。 一、数字励磁控制器软件实现与算法研究 主要是对数字式励磁控制器的软件和所采用的控制算法进行论述。首先对数字励磁控制器的主程序进行设计,然后对电量参数采集算法和智能励磁控制算法进行研究,并在CPU上进行实现。为了实现精确的数字励磁控制,需要得到实时、精确的电量数据,而要获得实时、精确的电量数据,则需要采用交

流采样方法,并推导出交流采样下各个电量的计算公式,最终编写计算出电量数据的算法程序。交流采样是按一定的规律对被测信号的瞬时值进行采样,再按照一定的数学算法求出被测电量参数的测量方法。下面给出交流电压,交流电流,有功功率,无功功率,功率因素的各种算法中的离散公式。 二、数字式励磁控制器总体设计方案 工作电源:由于微处理器的工作电源要求,我们需要一个5V的稳定直流电源,信号调理电路的运算电路的供电需要一组±12V的直流电源,另外,开关量输出需要驱动继电器,所以需要一个+24V的直流电源,为此我们需要设计一个电源转化模块得到系统正常工作所需的三组DC电源。 三、交流采样锁相环电路 要进行交流采样,通常需要进行同步采样,目前交流采样方式主要有硬件同步采样、软件同步采样和异步采样三种。硬件同步由硬件同步电路向CPU提出中断实现同步。硬件同步电路有多种形式,常见的如锁相环同步电路等。硬件同步采样法是由专门的硬件电路产生同步于被测信号的采样脉冲。它能克服软件同步采样法存在截断误差等缺点,测量精度高。利用锁相频率跟踪原理实

锅炉水位三冲量控制及调节

汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上, 即三个被控变量对应一个调节器。 工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰, 使调节过程稳定,起到稳定给水流量的作用。 锅炉汽包水位三冲量调节系统是火电厂锅炉核心控制之一。汽包水位三冲量调节系统的给水调节阀动作频繁,锅炉水位对给水调节阀执行机构的动作比较敏感,稍有不慎就可能出现严重的危险情况,汽包水位三冲量调节系统关系到整个机组的安全运行:若汽包水位过高,会造成蒸汽带水;若汽包水位过低,会造成锅炉“干锅”,可能严重烧坏锅炉设备。汽包水位三冲量调节系统的重要性由此可见一斑,所以汽包水位的相关保护要完善可靠、汽包水位自动调节系统运行要平稳。 目前,汽包水位三冲量自动调节控制策略已经相当成熟,但在实际锅炉运行中会各种原因导致水位自动调节系统投入困难,甚至自动不能投入。这种现象让人对串级三冲量调节系统的调节能力和控制策略产生疑问。为此云润与大家交流运用心得,对级三冲量调节系统进行定性分析,并对一些异常情况的处理办法进行探讨。 1、水位三冲量调节控制策略 汽包水位三冲量调节系统使用的三个冲量分别是汽包水位、给水流量和蒸汽流量。 汽包水位作为主调(PID调节器)的输入信号,去抑制水位本身的偏差。副调(外给定调节器)使用了一个反馈信号(给水流量)和一个前馈信号(蒸汽流量),以消除扰动和虚假水位。各种介绍汽包水位三冲量调节系统的书籍中,都有对传递函数的计算,这些计算对系统设计很重要。如果用经验调节法对于系统维护,则完全可以抛开理论计算。在此只对其物理意义进行定性思考和作一番揣测。 1.1?反馈信号 反馈信号指给水流量信号,也叫内扰。 水位三冲量调节系统中被调量发生变化的时候,PID 经过运算,去控制执行机构进行合理的动作,执行机构改变给水调节阀的开度,阀门控制介质变化,达到控制给水流量的目的。可是给水调节阀执行机构特性、水位三冲量调节系统的运行状况存在很多差异,这些差异主要有: (1)执行机构线性:执行机构改变开度后,流量随之改变的大小。 (2)执行机构死区:PID 输出每变化多少,执行机构才能动作一次。 (3)执行机构空行程:执行机构在改变动作方向的时候,改变多少开度,给水流量才发生变化(减去死区的值)。 (4)执行机构回差:执行机构进行开、关两个方向的动作的时候,流量变化不相等,这个流量变化绝对值的差叫回差。 (5)执行机构及阀门的特性曲线改变:阀门线性改变,阀门每变化1%,流量变化量与以往不同。 (6)水位三冲量调节系统软故障:偶尔发生的系统故障使得给水流量变化不均匀,或者时有停顿。 (7)系统介质参数发生变化:指因给水压力、蒸汽压力变化导致给水流量变化。

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

汽车两大机构和五大系统及工作原理汇总

1、对照实物总体介绍讲解发动机两大机构和发动机的工作原理; 总的来说,目前发动机由两大机构、五大系统组成 一、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 二、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 三、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 四、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 五、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 六、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火

系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 七、起动系 理解这个并不难,要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转,发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系统。 发动机的基本工作原理 我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。 气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。 活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。 活塞从上止点到下止点所扫过的容积称为发动机的工作容积或发动机排量,用符号VL 表示。 四冲程发动机的工作循环包括四个活塞行程,既进气行程、压缩行程、膨胀行程(作功行程)和排气行程。 进气行程 化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混

电控系统工作原理

电控系统工作原理 一、电控系统工作原理 随着科技进步和电子工业的发展,国产轿车采用电子控制燃油喷射系统的比率逐年增加,早在2000年,一汽—大众就宣布停止化油器式发动机的生产,产品全部采用电子控制燃油喷射系统。最早研究和开发汽油喷射式发动机的是德国博世(Bosch)公司,汽油喷射技术首先应用于飞机发动机,随着对汽车节能降耗、降低排放和提高舒适性、增加动力性的要求,这一技术被应用于汽车发动机上。目前,博世公司在这一领域的技术和产品仍处于世界领先地位。捷达王轿车就采用了博世公司最新开发的Motronic M3.8.2发动机电控管理系统,并根据中国的国情做了改进和匹配。Motronic M3.8.2发动机电控管理系统为电子控制多点燃油顺序喷射系统,闭环控制,其突出特点是喷油量及点火时刻综合控制。该系统由电子控制单元、传感器、执行器等组成,传感器为燃油喷射系统和点火系统所共用。 1.Motronic M3.8.2发动机电控管理系统的组成及工作原理 Motronic M3.8.2电控系统由电控单元(即ECU,俗称电脑)、发动机转速传感器(也称曲轴位置传感器)、空气流量传感器、节流阀体、进气温度传感器、冷却液温度传感器(发动机水温传感器)、k传感器(即氧传感器)、爆震传感器、相位传感器(也称凸轮轴位置传感器或霍尔传感器)、双点火线圈、油压调节器和喷油器等组成。 驾驶员通过节气门(俗称油门)控制发动机进气量,控制单元通过节气门位置传感器得知节气门开度,再综合发动机转速、空气流量、进气温度、λ探测值等各传感器及电子开关提供的信息,经分析、计算,确定出最佳喷油量和点火时刻,向喷油器和点火线圈发出喷油和点火指令。发动机转速和空气流量信号是ECU计算基本喷油量的主信号,ECU再根据进气温度传感器、冷却液温度传感器、A传感器、爆震传感器和节气门位置等信号对喷油量进行必要的修正,确定出实际喷油量,然后根据转速传感器得到的曲轴位置信号和相位传感器检测到的1缸压缩上止点信号,适时地向喷油器和点火线圈发出动作指令。 发动机工作可分为如下工况: (1)起动工况 发动机被起动机带动运转,当转速低于某值时,ECU识别出发动机处于起动工况,根据转速传感器、凸轮轴位置传感器、节流阀位置传感器、冷却液温度传感器、进气温度传感器等提供的信号,以及ECU中存储的最佳控制参数,计算出起动喷油量、点火角度和怠速直流电机的位置,并驱动喷油器和点火动力组件动作,使节气门处于起动位置,保证发动机顺利起动。发动机起动后,当转速超过某值时,则起动工况结束。捷达王轿车起动时,司机无需踏油门踏板、节气门会自动处于最佳起动位置。 (2)怠速工况 发动机起动后,怠速运转时,节流阀体内的怠速开关触点闭合,ECU根据此信号得知发动机处于怠速工况,同时根据冷却液温度传感器信号计算出目标转速(存储在ECU中的理论转速,温度越低,理论转速越高,以保证发动机在低温时稳定运转并快速暖机),并与实际转速进行比较,根据转速差的正负和大小,使节气门处于目标位置,以保证发动机怠速转速达到目标值。KCU同时还通过改变点火提前角来稳定发动机怠速。捷达王发动机热车后怠速转速理论值设置为840r/mjn,怠速点火提前角设置为上止点前12°,这些值存储在ECU中,人工不能调整。 (3)运行工况 运行工况又包括部分负荷、全负荷、加减速过渡及被拖动等工况。ECU根据转

三冲量控制系统原理之令狐文艳创作

锅炉三冲量控制原理及调节过程。 令狐文艳 原理:冲量控制系统从结构上来说,是一个带有前馈信号的串级控制系统。液位控制器LC与流量控制器FC构成串级控制系统。汽包液位LIA2104是主变量、给水流量是副变量。副变量的引入使系统对给水压力的波动有较强的克服能力。蒸汽流量的波动是引起汽包液位LIA2104变化的因素,是干扰作用,蒸汽波动时,通过引入FC,使给水流量FA2101作相应的变化,所以这是按干扰进行控制的,是把蒸汽流量信号作为前馈信号引入控制的。 调节过程:根据串级控制系统选择主、副控制器的正、反作用的原则,水位控制器LC反作用选反作用,流量控制器FC为正作用,调节器为气关阀。当水位由于扰动而升高时,因LC反作用,它的输出下降,进入加法器后,使FC 给定值减小而输出增加,调节阀的开度减小,给水流量FA2101减小,水位下降,保持在设定值上;当蒸汽流量FAQ2102增加时,FC给定值增加而输出减小,调节阀的开度增加,给水流量增加,保持水蒸汽平衡,使水位不;副回路克服给水自身的扰动,要进一步地稳定了水位的自动控制;给水流量FA2101增加,FC输出增加,调节阀的开度减小,给水量减小,从而保持水蒸汽平衡。 汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水

流量三个信号作用于调节器上, 即三个被控变量对应一个调节器。 工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量, 使水位恢复到给定值; 蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作; 给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰, 使调节过程稳定,起到稳定给水流量的作用。汽包水位三冲量给水调节系统 1、所谓冲量,是指调节器接受的被调量的信号; 2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成; 3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

汽车空调制冷系统组成与工作原理教案-doc

复习旧课: 对上次课以提问的形式复习 1、影响蒸发的因素? 2、影响液化的因素? 新课引入: 主要以讲解方式 上一节我们讲了物质的基本状态参数,以及影响物质蒸发和液化的几个因素,这一节我们就来讲一下汽车空调中的常用制冷剂的种类特点以及制冷循环原理。 §1.1.4制冷剂 制冷剂是制冷循环当中传热的载体,通过状态变化吸收和放出热量,因此要求制冷剂在常温下很容易气化,加压后很容易液化,同时在状态变化时要尽可能多的吸收或放出热量(较大的气化或液化潜热)。同时制冷剂还应具备以下的性质: ·不易燃易爆; ·无毒; ·无腐蚀性; ·对环境无害。 制冷剂的英文名称为refrigerant,所以常用其头一个字母R来代表制冷剂,后面表示制冷剂名称,如R12、R22、R134a等。 过去常用的制冷剂是R12(又称为氟立昂), 这种制冷剂各方面的性能都很好,但是有一个致命的缺点,就是对大气环境的破坏,它能够破坏大气中的臭氧层,使太阳的紫外线直接照射到地球,对植物和动物造成伤害。我国目前已停止生产用R12作为制冷剂的汽车空调系统。

R12的替代品目前汽车上广泛采用的是。R134a在大气压下的沸腾点为-26.9℃,在98kPa的压力下沸腾点为-10.6℃(图6-18)。如果在常温常压的情况下,将其释放,R134a便会立即吸收热量开始沸腾并转化为气体,对R134a加压后,它也很容易转化为液体。R134a的特性见图6-19。该曲线上方为气态,下方为液态,如果要使R134a从气态转变为液态,可以将低温度,也可以提高压力,反之亦然。 注意:R12和R134a两种制冷剂不可以互换使用。 §1.1.5 冷冻润滑油 在空调制冷系统中有相对运动的部件,需要对其润滑。由于制冷系统中的工作条件比较特殊,所以需要专门的润滑油——冷冻润滑油。冷冻润滑油除了起到润滑作用以外,还可以起到冷却、密封和降低机械噪音的作用。在制冷系统中的润滑油还有一个特殊的要求,就是要与制冷剂相容,并且随着制冷剂一起循环。因此在冷冻润滑油的选用上,一定要注意正确选用冷冻润滑油的型号,切不可乱用,否则将造成严重后果。 §1.2汽车空调暖风系统 作用:供暖、除霜、调节温湿度 汽车空调暖风系统是一种将空气送入加热器(又称为热交换器),同时吸入某种热源的热量,以提高空气温度的装置。按使用热源的不同可分为发动机冷却液采暖系统、发动机废气采暖系统和独立热源式采暖系统。 1、发动机冷却液采暖系统采暖时,将送入加热器中的车外或车内空气,与升温后的发动机冷却液进行热交换,由电动鼓风机将升温的空气经出风口送入车内。冷却液通过热水阀流入加热器,散热后的冷却液再流回水泵参与循环。热水阀对通过加热器的水流量进行调节,而加热器则将冷却液的热量传给空气。鼓风机多为离心式叶片鼓风机,具有高、中、低三挡转速,可以调节换气强度,一般与空调制冷系统送风共用。这种采暖系统没有独立的

控制系统的工作过程及方式

控制系统的工作过程与方式 一、教学目标 1.通过案例分析,归纳控制系统的基本特征; 2.了解开环控制和闭环控制的特点; 3.分析典型案例,熟悉简单的开环控制系统的基本组成和简单的工作过程 4.学会用框图来归纳控制系统实例的基本特征,逐步形成理解和分析简单开环和闭环控制系统的一般方法 二、教学内容分析 本节是“控制与设计”第二节的内容,其内容包括“控制系统”、“开环控制系统与闭环控制系统的组成及其工作过程”是学生在学习控制在我们的生活和生产中的应用后,进一步学习有关控制系统的组成、工作方式以及两种重要的控制系统:开环控制和闭环控制,并熟悉它们工作原理和作用。 生活中不乏简单控制系统的应用,人们对此往往象看待日出日落一类自然景色般的习以为常。本部分内容的学习,正是要引导学生,从技术的角度、用控制的思维看周围的存在,分析其道理,理解其基本的组成和工作过程。 本课教学内容,从学生生活经验出发,从实例分析入手,归纳出对控制系统的一般认识,以及根据控制系统方式分类的开环控制系统和闭环控制系统两类,并侧重对开环控制系统的工作过程、方框图、重要参数进行分析。本课要解决的重点是:开环控制系统的工作过程分析,用方框图描述开环控制系统的工作过程。 三、学习者分析 学生在前面的学习中已经学习和分析了控制在生活生产中的应用,获得了有关控制及其应用的初步感性认识和体验,但是对控制的基本工作方式和工作机理还缺乏了解,他们对进一步了解控制系统的知识是有探究的欲望的。结合前面的应用案例分析,进一步分析案例中控制是如何工作的,以及有怎样的工作方式,是学生学习的最近发展区。 四、教学策略: 1. 教法: 本章的教学结合具体的教学内容和目标我们采用“案例情景—机理分析—总结归纳-认识提升”的模式展开。在教学中把知识点的教与学置于具体的案例情景当中,通过丰富而贴近生活的案例使学生从生活体验到理性分析的思维升华过程。同时关注学生能否用不同的语言表达、交流自己的体验和想法。通过富有吸引力的现实生活中的问题,使学生回想和体会控制系统的工作过程,激发学生的好奇心和主动学习的欲望。让学生本着“回想—分析—联想—猜想”的思维过程,对教学内容进行步步展开,使学生亲历自主探索和思维升华的过程。 2. 学法: 鼓励学生自主探究和合作交流,引导学生自主观察、总结,在与他人的交流中丰富自己的思维方式,获得不同的体验和不同的发展。注意引导学生体会控制系统的工作过程和方式,特别是引导学生会学用系统框图来抽象概括控制系统、帮助分析和理解控制系统的组成及其工作过程的方法 五、教学资源准备 多媒体设备、相关图片资料、技术试验工具、材料等

汽车刹车系统的工作原理简述

汽车刹车系统的工作原理 在汽车的性能测试环节中,加速和是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车好不好,但问题在于速度慢多数情况下不会有什么太大问题而不好很可能关系到生命安全,所以今天我们就来说说汽车的。 系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,时系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里到静止可能只需要XX秒而已,可见系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下踏板,向总泵中的油施加压力,液体将压力通过管路传递到每个车轮卡钳的上,驱动卡钳夹紧盘从而产生巨大摩擦力令车辆减速。 我们先从总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的总泵“小得可怜”,甚至让人怀疑它是否能提供足够的力。其实完全不必为此担心,因为系统运用了“帕斯卡定律”。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到总泵液体上的压强等于盘处的液体压强,但因为压强等于单位面积的压力,所以只要增大的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形,左侧直径是2英寸,右侧直径是6英寸,也就是左侧的3倍,那么如果给左侧施加一定量的力,那么右侧将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

汽车各部件工作原理(图解)

汽车各部位工作原理(图示) 差速器具有三种功能: 使发动机动力指向车轮 相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组

件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。 现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

分时四轮驱动系统在前轮和后轮之间没有差速器,相反,他们被锁止在一起,以便前轮和后轮以相同的平均速度转弯。这就是当四轮驱动系统啮合时这些车辆在混凝土路面上很难转弯的原因。以不同的速度旋转我们将介绍最简单的差速器——开式差速器。首先,我们需要了解一些术语:下面的图像标示的是开式差速器的组件。

欧洲总线EI控制系统的工作原理及应用

欧洲总线EIB控制系统的工作原理及应用 一、EIB 系统工作原理 1、EIB 总线系统的发展进程 20 世纪80 年代中期,随着微电子技术和通讯技术的迅猛发展,自动控制领域尤其是工业界的过程控制领域对现场底层设备之间的通讯和控制问题提出了越来越高的要求,促使了控制技术的又一次大变革,即现场总线技术的产生。现场总线技术从出现开始,就以其在性能和结构上的巨大优势吸引了专家和用户的注意,众多知名的自动化集团公司纷纷独自或联合推出了各有特色的现场总线协议标准。这些优秀的总线标准在全世界得到了广泛的应用。 相对于对实时性、精确性及通讯效率等要求极高的工业自动化领域而言,建筑自动化领域的要求相对要低一些,从经济成本角度考虑,上面那些造价昂贵的现场总线技术并不非常适合于建筑领域。但是作为建筑本身的发展而言,随着用户对建筑提出的功能要求越来越高,满足这些功能而使用的现代化技术也日益复杂,在所谓的智能建筑中就集成了现代的通讯技术、微电子技术等多项尖端技术。这些技术的应用,不仅给建筑带来了较重的建设成本压力,其运行和维护的管理成本也越来越高,正是建筑对安全性、经济性、舒适性、应变性等各方面的不断提高的要求成为建筑领域的现场总线技术标准――欧洲安装总线(European Installation Bus)技术产生和发展的基础。 1990 年,欧洲著名的电气产品制造商为核心组成联盟,制定了

EIB 技术标准并成立了中立的非商业性组织EIBA(EIB Associate,欧洲安装总线协会),总部设在比利时的布鲁塞尔。这个协会的成立极大的推动了EIB 标准的发展,迄今为止,已有一百多家制造厂商成为了EIBA 的会员,按照开放的EIB 标准生产能够相互兼容和交互操作的各种元器件,各类产品品种多达4000 多种,几乎覆盖了建筑中各个行业和各种用途的需要。经过十多年的发展,EIB 不仅成为事实上的欧洲标准,也被成功地引入世界各地,2000 年时在IEC 国际现场总线标准大会上被作为提名国际标准之一。 1999 年,EIB 技术开始被引入中国,在短短的三年多时间内,以其优越的性能和质量获得了很大的成功,2001 年 3 月,为配合EIB 技术的推广,在同济大学建立了亚洲规模最大的EIB 认证技术培训中心。 2、EIB 总线系统基本原理 现代的建筑离开电是无法想象的。无论是传统的照明和插座,还是现代化的通讯、安保等技术,都离不开电源的供应。EIB 技术本身在传统电气安装技术基础上引入现场总线概念而发展起来的,它对传统电气安装技术而言是一次突破性的革命,它具有现场总线技术的核心优点如系统结构简单,设计、安装和维护方便,全分散控制等,解决了建筑由于涉及工种和功能过多而导致系统过于独立和操作复杂的问题,是当今技术领域非常优秀的技术标准。 2.1 总线传输介质

汽车各系统工作原理

发动机工作原理概述 汽车的引擎是汽车的动力源泉,就像人的心脏一样重要。所以,一部车引擎的特性可以作为决定整部车性能的重要指标。也就是说,如果一部车的引擎非常出色,那么这部车的性能也一定很出色。 汽车的引擎是通过燃油和空气所形成的混合气体燃烧、爆炸来产生动力的。这一切的物理、化学变化都是在燃烧室内进行的。 首先,起动机带动引擎的曲轴运动,而曲轴通过特有的曲柄连杆机构带动气缸内的活塞上下运动。在活塞向下运动时,气缸内产生了真空效应,同时外界的新鲜空气通过空气过滤器被吸入到进气腔,并通过此时开启的进气门而被引入到气缸内。 在空气进入气缸的同时,燃油也通过喷油嘴以绝对雾化状态喷射到气缸的燃烧室内(目前多数喷射引擎都是将燃油喷射到进气门处,然后与空气一起进入到气缸内)并与空气形成混合气体。 在混合气体形成同时,汽缸的燃烧室内火花塞开始打火,形成高达几万伏特的高压电火花,迅速点燃混合气体,混合气体发生爆炸,推动活塞向下运动。这时气缸的排气们开启,将燃烧后的废气引入到排气管内,通过消音器被排放到空气中。在活塞运动到下止点后,一个完整的工作流程结束。由于运动的特性及曲柄连杆机构的特性,活塞会再度向上运动,同时开始第二个工作流程。

通过上图我们不难了解整个运动的过程(由于是剖视图,气缸未标出,活塞位于气缸内,活塞到达运动的上止点时与缸盖之间的空间为燃烧室),正是因为引擎的多个气缸内的活塞有顺序的交替运 汽车总体工作原理概述 可以说,汽车是当代科学与艺术的结晶。从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。

相关文档
相关文档 最新文档