文档库 最新最全的文档下载
当前位置:文档库 › 单片机按键连接方法

单片机按键连接方法

单片机按键连接方法
单片机按键连接方法

------------------- 看磊诫呎 ....... ....... .....

单片机按键连接方法总结(五种按键扩展方案详细介绍)

单片机在各种领域运用相当广泛,而作为人机交流的按键设计也有很多种。不同的设 计方法,有着不同的优缺点。而又由于单片机 I/O 资源有限,如何用最少的 I/O 口扩展更多

的按键是我所研究的问题。

接下来我给大家展示几种自己觉得比较好的按键扩展方案,

大家

可以在以后的单片机电路设计中灵活运用。

1)、第一种是最为常见的,也就是一个 I/O 口对应一个按钮开关。

GND

这种方案是一对一的, 一个I/O 口对应一个按键。 这里P00到P04,都外接了一个上拉 电阻,在没

有开关按下的时候,是高电平,一旦有按键按下,就被拉成低电平。这种方案优 点是电路简单可靠,程序设计也很简单。缺点是占用 I/O 资源多。如果单片机资源够多,不

紧缺,推荐使用这种方案。

2)、第二种方案也比较常见,但是比第一种的资源利用率要高,硬件电路也不复杂。

P0.0

P0-1

P0.2

P0,3

o

■0 0

S2

O O

这是一种矩阵式键盘,用 8个I/O 控制了 16个按钮开关,优点显而易见。当然这种电路的

程序设计相对也还是很简单的。由

P00到P03循环输出低电平,然后检测

P04到P07的状

态。比方说这里 P00到P03 口输出1000,然后检测P04到P07,如果P04为1则说明按下 的键为si ,如果P05为1则说明按下的是s2等等。为了电路的可靠,也可以和第一种方案 一样加上上拉电阻。

3)、第三种是我自己搞的一种方案,可以使用

4个I/O 控制8个按键,电路多了一些

二极管,稍微复杂了一点。

POO

S1

S2

'

S3

―■—

1 ------------ O --------------------------- -------- o

d ------------

------- &

o ------------

S4

< ----- -

56

S10

S8

S12

o o-

S16

PQ O

S7

S5

POI

o

811

P02

P03

P04

------------------- 磊册时——... .... .... ..

这个电路的原理很简单,就是利用二极管的单向导电性。也是和上面的方案一样,程序需要

采用轮训的方法。比方说,先置P00到P03都为低电平,然后把P00置为高电平,接着查

询P02和P03的状态,如果P02为高则说明按下的是S5,若P03为高则说明按下的是S6, 然后再让P00为低,P01为高,同样检测P02和P03的状态。接下来分别让P02和P03为高,其他为低,分别检测P00和P01的状态,然后再做判断。这种方案的程序其实也不难。

4)这是我在一本书上看到的,感觉设计的非常巧妙,同样它也用到了二极管,不过比

我的上一种方案的I/O利用率更高,他用4个I/O 口控制了12个按键。我相信你了解了之后也会惊奇的。

S13

bl □ g, sin a- c OITI-

cn/iob ?

首先好好品味一下这个方案吧,想想怎么来识别按键呢!

首先,我们让P00到P03全输出高电平。如果这个时候从P00到P03的任意一个端口

检测到低电平,很容易知道是按下了那个键,肯定是S13到S16的其中一个。如果没有检测

到信号,就进行下一次的检测,让P01到P03为高电平,P00为低电平,然后检测P01至U

P03的状态。如果P01为低,则按下的是si,; P02为低,则按下的是s2; P03为低,则按下的是S3。

然后再让P00, P02, P03为高电平,P01为低电平。同理用上面的方法可以检测出按

下的那个按键。(部分程序源代码会在后面贴出来,阅读代码可以更好理解电路)

5)、接下来这种方案则更为强大。不过需要用到一个A/D转换器(有的单片机集成有

A/D转换器,则更为方便)。如果A/D转化器的分辨率为n位,理论上是可以扩展25 (2 的n次方)个按键。

------------------- 布話吻吋 . ..... ....... ...

方武一 blog. >jri eLODrfLcri/hb=fULJ

这是一种接AD 转化器的方案,有两种:第一种是并联式;第二种是串联式。在功能上也 有些不同。第一种的话各个电阻值各不相同, 当按下不同按键时, 进入AD 的模拟量是不一

样的,通过AD 转换,就可以得到按下的是哪个按键。方式一还可以同时识别多个按键,即 可以设置组合键,只要电阻取得

合适。

方式二各个电阻可以取一样的,

方便计算,但是不能有组合按键。 因为当按下上面的按键后,

下面所有按键都会被短路。(在实际运用中,还需要接地,这里没有画出)

。前面说理论

上可以扩展25个按键,这只是理论,因为这里电阻的精度有限,所以实际是不可能的,两 个模拟量之间要有足够大的差值,程序才可能准确的分辨。

上面就是我介绍的五种按键扩展方案, 上电路我都仿真过,可以实现。

附方案4键盘扫描源代码:

sbit line_仁 P0.1; sbit lin e_2=P0.2; sbit lin e_3=P0.3; sbit line 4=P0.4 char key=0;

Kii 赛如嘩換器 ■ —

.■ ■(>

a

S1

VCC

T E>

H

R12

R.14

方式二

后面几种比较另类,不过也有他们的优点。以

------------------- 时磊5说----- - ---- -------

void key_sca n()

{

lin e_1=li ne_2=li ne_3=li ne_4=1;

if(~(li ne_1&&line_2&&line_3&&lin e_4))

{

if(line_1==0) {key=13;return;}

if(li ne_2==0) {key=14; return;}

if(line_3==0) {key=15;return;}

if(li ne_4==0) {key=16; return;}

}

lin e_2=li ne_3=li ne_4=1;

line_仁0;

if(~(li ne_2&&li ne_3&&li ne_4))

{

delay();

if(line_2==0) {key=1;return;}

if(line_3==0) {key=2;return;}

if(line_4==0) {key=3;return;}

}

lin e_1=li ne_3=li ne_4=1;

lin e_2=0;

if(~(li ne_1&&line_3&&li ne_4))

{

delay();

if(li ne_3==0) {key=5;retur n;}

if(line_4==0) {key=6;return;}

}

lin e_1=li ne_2=li ne_4=1;

lin e_3=0;

if(~(li ne_2&&line_1&&lin e_4))

{

delay();

if(li ne_4==0) {key=9;retur n;}

}

lin e_4=0;

line_1= li ne_2=li ne_3=1;

if(~(li ne_2&&li ne_3&&li ne_1))

{

delay();

if(line_1==0) {key=10;return;}

if(li ne_2==0) {key=11;return;}

if(line_3==0) {key=12;return;}

------------------- 时需Sr彳 ------- ---- --- --

lin e_3=0;

lin e_1=li ne_2=li ne_4=1;

if(~(li ne_2&&li ne_3&&li ne_4))

{

delay();

if(li ne_1==O) {key=7;retur n; }

if(line_2==0) {key=8;return; }

}

lin e_2=0;

lin e_1=li ne_3=li ne_4=1;

if(~(li ne_2&&li ne_3&&li ne_4))

{

delay();

if(li ne_1==O) {key=4;retur n; }

}

return;

}

自己写的按键单片机程序

自己写的按键单片机程序 用4个按键来控制数码管显示的内容#include#define duan P0//段选#define wei P2//位选unsigned char code wei1[8] = {0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//位选控制查表的方法控制unsigned char code duan1[17] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0 x71};//0、1、2、3、4、5、6、7、8、9、A、b、C、d、E、F的显示码unsigned char ge,shi,bai,a,b;sbit key1=P1;sbit key2=P1 ;sbit key3=P1 ;sbit key4=P1 ;void keys();//按键函数void s(unsigned char xms);//延时函数void DigDisplay(); //动态显示函数void init(); //初始化函数void main(void){init(); while(1){DigDisplay();keys();} }void DigDisplay(){unsigned char i;unsigned int j;bai=a/100;shi=a%100/10;ge=a%10;i=0;wei = wei1[i];//发送位选duan = duan1[bai]; //发送段码j = 10;//扫描间隔时间设定while(j--);duan = 0x00; //消隐i++;wei = wei1[i];//发送位选duan = duan1[shi]; //发送段码j = 10;//扫描间隔时间设定while(j--);duan = 0x00; //消隐i++;wei = wei1[i];//发送位选duan = duan1[ge]; //发送段码j = 10;//扫描间隔时间设定while(j--);duan = 0x00; //消隐}void init() {key1=1;key2=1;key3=1;key4=1;TMOD=0X01;TH0=(65536- 45872)/256;TL0=(65536-45872)%256;EA=1;ET0=1;}void s(unsigned char xms){unsigned char x,y;for(x=xms;x>0;x--)for(y=110;y>0;y--);}void times() interrupt 1{TH0=(65536-45872)/256;TL0=(65536-45872)%256;b++;if(b==20){b=0;a++;if(a==256){a=0;}}}void keys(){if(key1==0){s(10);if(key1==0){a++;TR0=0;if(a==256)a=0;while(!key1)Dig Display();}}if(key2==0){s(10);if(key2==0){TR0=0;if(a==0)a=256;a--

51单片机按键控制数码管程序

#define uint unsigned int #define uchar unsigned char uchar c; sbit p10=P1^0; sbit p11=P1^1; sbit p12=P1^2; sbit p13=P1^3; sbit p14=P1^4; sbit p15=P1^5; sbit p16=P1^6; sbit p17=P1^7; void delay(uint z); int b[]={0,1,2,3,4,5,6,7};//设置每一位显示的数字 unsigned char code Tab[]={0xc0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8, 0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E};//共阳极数码管 int a[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80}; void main() { EA=1; EX0=1; IT0=1; P1=0xff; while(1) { for(c=0;c<8;c++)//数码管扫描显示

P2=a[c]; P0=Tab[b[c]]; delay (1); } } } void delay(uint z) { uint a,b; for(a=z;a>0;a--) for(b=110;b>0;b--); } int_0()interrupt 0 { EA=0; if(p10==0) b[0]=(b[0]+1)%10; if(p11==0) b[1]=(b[1]+1)%10; if(p12==0) b[2]=(b[2]+1)%10; if(p13==0) b[3]=(b[3]+1)%10; if(p14==0) b[4]=(b[4]+1)%10; if(p15==0) b[5]=(b[5]+1)%10; if(p16==0) b[6]=(b[6]+1)%10; if(p17==0) b[7]=(b[7]+1)%10;

单片机按键的解决方法

单片机按键的解决解决方案 1、单片机上的按键控制一般采用两种控制方法:中断和查询。中断必须借助中断引脚,而 查询按键可用任何IO端口。按键较少时,一个按键占用一个端口,而按键较多时,多采用矩阵形式(如:经常用4个端口作为输出,4个端口作为输入的4X4矩阵来获得16个按键);还可以用单片机的AD转换功能一个引脚接多个按键,根据电阻分压原理判断是哪个按键按下。 2、中断形式 STM32可支持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备自己的中断优先级控制字节PRI_n(8位,但是STM32中只使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。68个通道的优先级控制字至少构成17个32位的优先级寄存器. 4bit的中断优先级可以分成2组,从高位看,前面定义的是抢占式优先级,后面是响应优先级。按照这种分组,4bit一共可以分成5组 第0组:所有4bit用于指定响应优先级; 第1组:最高1位用于指定抢占式优先级,后面3位用于指定响应优先级; 第2组:最高2位用于指定抢占式优先级,后面2位用于指定响应优先级; 第3组:最高3位用于指定抢占式优先级,后面1位用于指定响应优先级; 第4组:所有4位用于指定抢占式优先级。 所谓抢占式优先级和响应优先级,他们之间的关系是:具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套。 当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。每一个中断源都必须定义2个优先级。 有几点需要注意的是: 1)如果指定的抢占式优先级别或响应优先级别超出了选定的优先级分组所限定的范围,将可能得到意想不到的结果; 2)抢占式优先级别相同的中断源之间没有嵌套关系; 3)如果某个中断源被指定为某个抢占式优先级别,又没有其它中断源处于同一个抢占式优先级别,则可以为这个中断源指定任意有效的响应优先级别。 GPIO外部中断: STM32中,每一个GPIO都可以触发一个外部中断,但是,GPIO的中断是以组为一个单位的,同组间的外部中断同一时间智能使用一个,如:PA0,PB0,PC0,PD0,PE0,PF0这些为1组,如果我们使用PA0作为外部中断源,那么别的就不能使用了,在此情况下我们使用类似于PB1,PC2这种末端序号不同的外部中断源,每一组使用一个中断标志EXTI x.EXTI0~EXTI4这5个外部中断有着自己单独的中断响应函数。EXTI5~EXTI9共用一个中断响应函数,EXTI10~EXTI15共使用一个中断响应函数。 对于中断的控制,STM32有一个专用的管理机构NVIC.中断的使能,挂起,优先级,活动等等都是由NVIC在管理的。 编写IO口外部中断步骤及其注意事项:

单片机按键控制蜂鸣器发声程序

#include typedef unsigned char uint8; typedef unsigned int uint16; uint8 Count,i; sbit Speak =P1A2; //蜂鸣器器控制脚 sbit keyl =卩3人2;〃按键控制引脚 sbit key2 =P3A3; sbit key3 =P3A4; /* 以下数组是音符编码 */ uint8 code SONG[] ={ 0xff,0x39,0x30,0x33,0x30,0xff,0x30,0x30,0x00,}; void Time0_Init()// 定时器 T0 方式 1 ,定时 10ms { TMOD = 0x01; IE = 0x82; TH0 = 0xDC; TL0 = 0x00; void Time0_Int() interrupt 1 { TH0 = 0xDC; TL0 = 0x00; Count++; } void delay (uint8 k)// 按键防抖延时 { uint8 j; while((k--)!=0) { for(j=0;j<125;j++) {;} } } void Delay_xMs(uint8 x)// 发声延时 { uint8 i,j; for(i=0; i

Count = 0; // 中断计数器清 0 Addr = i *3; while(1) { Temp1 = SONG[Addr++]; if (Temp1 == 0xFF) //休止符 { TR0 = 0; Delay_xMs(100); } else if (Temp1 == 0x00) //歌曲结束符 { return; } else { Temp2 = SONG[Addr++]; TR0 = 1; while(1) { Speak = ~Speak; Delay_xMs(Temp1); if(Temp2 == Count) { Count = 0; break; } } } } }void keyscan (void)// 按键切换声音函数{ if(key1==0) { delay(10); if(key1==0) {

用51单片机中断编写的4x4键盘程序

用51单片机中断编写的4x4键盘程序 应用查询扫描编写键盘程序,由于要给按键去抖动,程序变得比较复杂和冗长(详见2013年9月29日博文《MSP430和 AT89C51单片机4x4键盘C程序》),如果用中断编写,设置中断响应在下降沿时执行中断,则程序编写不用去抖动判断,所以相比较要简单很多!下面用汇编和C语言两种方式编写4X4键盘程序! 一、汇编程序 ORG 0000H LJMP MAIN ORG 0003h Ljmp ZD0

ORG 000Bh LJMP TZD0 ORG 0013h Ljmp ZD1 ORG 001Bh LJMP TZD1 ORG 0040H MAIN: Mov TMOD,#66h MOV TH0,#0ffh MOV TL0,#0ffh MOV TH1,#0ffh MOV TL1,#0ffh SETB EA SETB ET0 SETB TR0 SETB ET1 SETB TR1 SETB IT0 SETB IT1 SETB EX0 SETB EX1 xh: mov P1,#0feh

Lcall Delay mov P1,#0fdh Lcall Delay mov P1,#0fbh Lcall Delay mov P1,#0f7h Lcall Delay SJMP xh ZD0: JNB P1.0,dat1 JNB P1.1,dat2 JNB P1.2,dat3 JNB P1.3,dat4 dat1: mov P2,#06h ;1 sjmp ZD0R dat2: mov P2,#5bh ;2 sjmp ZD0R dat3: mov P2,#4fh ;3 sjmp ZD0R dat4: mov P2,#66h ;4 ZD0R: reti ZD1: JNB P1.0,dat5

单片机按键连接方法

单片机按键连接方法总结(五种按键扩展方案详细介绍) 单片机在各种领域运用相当广泛,而作为人机交流的按键设计也有很多种。不同的设计方法,有着不同的优缺点。而又由于单片机I/O资源有限,如何用最少的I/O口扩展更多的按键是我所研究的问题。接下来我给大家展示几种自己觉得比较好的按键扩展方案,大家可以在以后的单片机电路设计中灵活运用。 1)、第一种是最为常见的,也就是一个I/O口对应一个按钮开关。 这种方案是一对一的,一个I/O口对应一个按键。这里P00到P04,都外接了一个上拉电阻,在没有开关按下的时候,是高电平,一旦有按键按下,就被拉成低电平。这种方案优点是电路简单可靠,程序设计也很简单。缺点是占用I/O资源多。如果单片机资源够多,不紧缺,推荐使用这种方案。 2)、第二种方案也比较常见,但是比第一种的资源利用率要高,硬件电路也不复杂。 这是一种矩阵式键盘,用8个I/O控制了16个按钮开关,优点显而易见。当然这种电路的程序设计相对也还是很简单的。由P00到P03循环输出低电平,然后检测P04到P07的状态。比方说这里P00到P03口输出1000,然后检测P04到P07,如果P04为1则说明按下的键为s1,如果P05为1则说明按下的是s2等等。为了电路的可靠,也可以和第一种方案一样加上上拉电阻。 3)、第三种是我自己搞的一种方案,可以使用4个I/O控制8个按键,电路多了一些二极管,稍微复杂了一点。 这个电路的原理很简单,就是利用二极管的单向导电性。也是和上面的方案一样,程序需要采用轮训的方法。比方说,先置P00到P03都为低电平,然后把P00置为高电平,接着查询P02和P03的状态,如果P02为高则说明按下的是s5,若P03为高则说明按下的是s6,然后再让P00为低,P01为高,同样检测P02和P03的状态。接下来分别让P02和P03为高,其他为低,分别检测P00和P01的状态,然后再做判断。这种方案的程序其实也不难。 4)这是我在一本书上看到的,感觉设计的非常巧妙,同样它也用到了二极管,不过比我的上一种方案的I/O利用率更高,他用4个I/O口控制了12个按键。我相信你了解了之后也会惊奇的。 首先好好品味一下这个方案吧,想想怎么来识别按键呢!

单片机八个按键控制八个led灯程序

#include #include void delay(void) {unsigned char a,b; for(a=0;a<200;a++) for(b=0;b<200;b++);} unsigned char Key_Scan(); void main(void) { unsigned char ledValue, keyNum; ledValue = 0x01; while (1) { keyNum = Key_Scan(); switch (keyNum) { case(0xFE) : ledValue = 0x01; break; case(0xFD) : //返回按键K2的数据 ledValue = 0x02; break; case(0xFB) : //返回按键K3的数据 ledValue = 0x04; break; case(0xF7) : //返回按键K4的数据 ledValue = 0x08; break; case(0xEF) : //返回按键K5的数据 ledValue = 0x10; break; case(0xDF) : //返回按键K6的数据 ledValue = 0x20; break; case(0xBF) : //返回按键K7的数据 ledValue = 0x40; break; case(0x7F) : //返回按键K8的数据 ledValue = 0x80; break; default:

break; } P0 = ledValue;//点亮LED灯 } } /****************************************************************************** * * 函数名: Key_Scan() * 函数功能: 扫描键盘 * 输入: 无 * 输出: 读取到的键值 ******************************************************************************* / unsigned char Key_Scan() { unsigned char keyValue = 0 , i; //保存键值 //--检测按键1--// if (P1 != 0xFF) //检测按键K1是否按下 { void delay(void) {unsigned char a,b; for(a=0;a<200;a++) for(b=0;b<200;b++);} if (P1 != 0xFF) //再次检测按键是否按下 { keyValue = P1; i = 0; while ((i<50) && (P1 != 0xFF)) //检测按键是否松开 { Delay10ms(1); i++; } } } return keyValue; //将读取到键值的值返回 }

单片机按键识别方法之一

单片机按键识别方法之一 1.实验任务 每按下一次开关SP1,计数值加1,通过AT89S51单片机的P1端口的P1.0到P1.3显示出其的二进制计数值。 2.电路原理图 图4.8.1 3.系统板上硬件连线 (1.把“单片机系统”区域中的P3.7/RD端口连接到“独立式键盘”区域中的SP1端口上;

(2.把“单片机系统”区域中的P1.0-P1.4端口用8芯排线连接到“八路发光二极管指示模块”区域中的“L1-L8”端口上;要求,P1.0连接到L1,P1.1连接到L2,P1.2连接到L3,P1.3连接到L4上。 4.程序设计方法 (1.其实,作为一个按键从没有按下到按下以及释放是一个完整的过程,也就是说, 当我们按下一个按键 时,总希望某个命令只 执行一次,而在按键按 下的过程中,不要有干 扰进来,因为,在按下的过程中,一旦有干扰过来,可能造成误触发过程,这并不是我们所想要的。 因此在按键按下的时候,图4.8.2 要把我们手上的干扰信号以及按键的机械接触等干扰信号给滤除掉,一般情况 下,我们可以采用电容来滤除掉这些干扰信号,但实际上,会增加硬件成本及 硬件电路的体积,这是我们不希望,总得有个办法解决这个问题,因此我们可 以采用软件滤波的方法去除这些干扰信号,一般情况下,一个按键按下的时候, 总是在按下的时刻存在着一定的干扰信号,按下之后就基本上进入了稳定的状 态。具体的一个按键从按下到释放的全过程的信号图如上图所示: 从图中可以看出,我们在程序设计时,从按键被识别按下之后,延时5ms以上,从而避开了干扰信号区域,我们再来检测一次,看按键是否真得已经按下,若真得已经按下,这时肯定输出为低电平,若这时检测到的是高电平,证明刚才是由于干扰信号引起的误触发,CPU 就认为是误触发信号而舍弃这次的按键识别过程。从而提高了系统的可靠性。 由于要求每按下一次,命令被执行一次,直到下一次再按下的时候,再执行一次命令,因此从按键被识别出来之后,我们就可以执行这次的命令,所以要有一个等待按键释放的过程,显然释放的过程,就是使其恢复成高电平状态。

51单片机按键控制花样灯

51单片机按键控制花样灯 时间:2012-09-10 13:50:11 来源:51hei 作者: /**************************************************** * 本程序实现用按键控制花样灯。 * * 当K1按下时,灯从0xfe向左跑一遍; * * 当K2按下时,LED灯从0x7f向右跑一遍到了0xfe右跑回到起始位置;* * 当K3键按下时,LED灯从0xfe开始作流水灯形式运行一次,然后再流回来。* * 当K4键按下时,LED灯先亮前四个,接着再转向亮后四个。* * 当K5键按下时,结束任意正在进行的程序,使LED灯全部熄灭。* ******************************************************/ ************************************************* 连接方法:P0接独立按键JP5;P2接LED灯接口JP1 * ***********************************************************/ #include //头文件,函数声明 #include //定义按键所在位 sbit K1=P0^0; sbit K2=P0^1; sbit K3=P0^2; 页脚内容1

sbit K4=P0^3; sbit K5=P0^4; unsigned char led; unsigned char j; void delayms(unsigned char ms) // 1ms标准延时 { while(ms--) { for(j=0;j<110;j++); //还是无法设置比较标准的延时,如1S等;所以应该用定时器延时才最准确} } void main() { //P2=led; unsigned int i; while(1) { /********************************************* 页脚内容2

按键控制单片机PWM输出设计

学号1322010110 天津城建大学 单片机原理及应用A课程 设计说明书 按键控制单片机PWM输出设计起止日期:2016年05月30日至2016年6月10日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2016年6月10日

目录 第一章系统方案设计 (1) 1.1 PWM (1) 1.2 STC12C5A60S2简介 (1) 1.3 仿真工具介绍 (2) 1.3.1 Protues简介 (2) 1.3.2 Keil uVision3简介 (4) 第二章硬件电路设计 (5) 2.1 复位电路 (5) 2.2 时钟电路 (5) 2.3 按键中断 (5) 2.4 显示电路 (6) 第三章程序设计流程图 (7) 第四章系统仿真 (8) 4.1 仿真图 (8) 4.2 程序 (8) 4.3 PCB............................................................................................................... 错误!未定义书签。参考资料 .................................................................................................................... 错误!未定义书签。

第一章系统方案设计 1.1 PWM PWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。 1.2 STC12C5A60S2简介 STC12C5A60S2是STC生产的单时钟/机器周期(1T)的单片机,是高速、低功耗、超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换,针对电机控制,强干扰场合。 1)管脚说明: 1、P0.0~P0.7 P0:P0口既可以作为输入/输出口,也可以作为地址/数据复用总线使用。当P0口 作为输入/输出口时,P0是一个8位准双向口,内部有弱上拉电阻,无需外接上拉电阻。当P0作为地址/数据复用总线使用时,是低8位地址线A0~A7,数据线D0~D7 2、P1.0/ADC0/CLKOUT2 标准IO口、ADC输入通道0、独立波特率发生器的时钟输出 3、P1.1/ADC1 4、P1.2/ADC2/ECI/RxD2 标准IO口、ADC输入通道2、PCA计数器的外部脉冲输入脚,第二串口数据接收端 5、P1.3/ADC3/CCP0/TxD2 外部信号捕获,高速脉冲输出及脉宽调制输出、第二串口数据发送端 6、P1.4/ADC4/CCP1/SS非 SPI同步串行接口的从机选择信号 7、P1.5/ADC5/MOSI SPI同步串行接口的主出从入(主器件的输入和从器件的输出) 8、P1.6/ADC7/SCLK SPI同步串行接口的主入从出 9、P2.0~P2.7 10、P2口内部有上拉电阻,既可作为输入输出口(8位准双向口),也可作为高8位地址总线使用。 11、P3.0/RxD 标准IO口、串口1数据接收端 12、P3.1/INT0非 外部中断0,下降沿中断或低电平中断 13、P3.3/INT1 14、P3.4/T0/INT非/CLKOUT0 定时器计数器0外部输入、定时器0下降沿中断、定时计数器0的时钟输出 2)A/D转换器的结构: STC12C5A60AD/S2系列带A/D转换的单片机的A/D转换口在P1口,有8路10位高速A/D转换器,速度可达到250KHz(25万次/秒)。8路电压输入型A/D,可做温度检测、电池电压检测、按键扫描、频谱检测等。上电复位后P1口为弱上拉型IO口,用户可以通过软件设置将8路中的任何一路设置为A/D 转换,不须作为A/D使用的口可继续作为IO口使用。 单片机ADC由多路开关、比较器、逐次比较寄存器、10位DAC、转换结果寄存器以及ADC_CONTER

基于AT89C51单片机键盘控制动态显示器的设计

键盘控制动态显示器 目录 摘要-----------------------------------------------------------------------------------------3 关键字--------------------------------------------------------------------------------------3 第一章绪论-------------------------------------------------------------------------------4 1.1 课题简介---------------------------------------------------------------------------4 1.2 系统功能要求---------------------------------------------------------------------4 1.3技术指标----------------------------------------------------------------------------4 第二章方案论证及硬件设计----------------------------------------------------------5 2.1 方案论证---------------------------------------------------------------------------5 2.2 单片机简介------------------------------------------------------------------------5 2.2.1 MSC-51系列单片机简介-------------------------------------------------------6 2.2.2MSC-51系列单片机内部结构-----------------------------------------------7 2. 2.3 MSC-51系列单片引脚及其功能----------------------------------------------8 2.3 键盘部分--------------------------------------------------------------------------9 2.4 LED显示器简介----------------------------------------------------------------10 2.5 电路工作过程---------------------------------------------------------------------10 第三章键盘控制电路原理图----------------------------------------------------------11 3.1 硬件框图---------------------------------------------------------------------------11 3.2 电路原理图------------------------------------------------------------------------12 第四章软件设计-------------------------------------------------------------------------13 4.1键盘扫描、按键判断程序------------------------------------------------------13 4.2显示子程序------------------------------------------------------------------------13 4.3程序框图----------------------------------------------------------------------------15 4.4 完整的源程序---------------------------------------------------------------------16 第五章检测与调试--------------------------------------------------------19 5.1 硬件调试---------------------------------------------------------------------------19 5.2 软件调试---------------------------------------------------------------------------19 第六章元器件清单----------------------------------------------------------------------20 第七章心得体会-------------------------------------------------------------------------21 第八章参考文献-------------------------------------------------------------------------23

用计数器中断实现100以内的按键计数[1]

3.33 用计数器中断实现100以内的按键计数 一. 单片机系统功能简介: 本例利用计数器中断实现按键计数,这与此前的按键计数程序看起来比较相似,但是用方法完全不同。 本例用T0计数器中断实现按键计数,由于计数寄存器初值为1,因此P3.4引脚的每次负跳变都会触发T0中断,实现计数值累加。 二.单片机系统硬件电路设计: 2.1 proteus原理图: 2.2 原件清单:

三.软件设计: 3.1 主程序流程图: 3.2 程序清单: #include #define uchar unsigned char #define uint unsigned int uchar code DSY_CODE[]={0X3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00 }; uchar Count=100; void main() { P0=0x00; P2=0x00; TMOD=0X06; TH0=TL0=256-1; ET0=1; EX0=1; EA=1; IP=0X02; IT0=1; TR0=1; while (1)

{ P0=DSY_CODE[Count/10]; P2=DSY_CODE[Count%10]; } } void Clear_Counter()interrupt 0 { Count=0; } void Key_Counter() interrupt 1 { Count=(Count-1)%100; } 四.系统调试 4.1 在PROTEUS7.5仿真步骤 1将程序在KEIL中编译,直到达到要求的功能为止; 2在PROTEUS中绘制硬件图(在PROTEUS仿真时可以不添加最小系统电路;实际电路中需要); 3将KEIL C中编译好的HEX文档加载到PROTEUS中; 4按下K1开始计数,按下K2可以清零。

51单片机C语言实验及实践教程_8.按键识别方法之一

51单片机C语言实验及实践教程_8.按键识别方法之一 发布: 2009-4-04 12:57 | 作者: 孙青安 | 查看: 88次 1.实验任务 I/O并行口直接驱动LED显示 每按下一次开关SP1,计数值加1,通过AT89S51单片机的P1端口的P1.0到P1.3显示出其的二进制计数值。 2.电路原理图 图4.8.1 3.系统板上硬件连线

(1.把“单片机系统”区域中的P3.7/RD端 口连接到“独立式键盘”区域中的SP1端口上; (2.把“单片机系统”区域中的P1.0-P1.4端口用8芯排线连接到“八路发光二极管指示模块”区域中的“L1-L8”端口上;要求,P1.0连接到 L1,P1.1连接到L2,P1.2连接到L3,P1.3连接到L4上。 4.程序设计方法 (1.其实,作为一个按键从没有按下到按下以及释放是一个完整的过程,也就是说,当我们按下一个按键时,总希望某个命令只执行一次,而 在按键按下的过程中,不要有干扰进来,因为,在按下的过程中, 一旦有干扰过来,可能造成误触发过程,这并不是我们所想要的。因 此在按键按下的时候,图4.8.2 要把我们手上的干扰信号以及按键的机械接触等干扰信号给滤除 掉,一般情况下,我们可以采用电容来滤除掉这些干扰信号,但实际 上,会增加硬件成本及硬件电路的体积,这是我们不希望,总得有个 办法解决这个问题,因此我们可以采用软件滤波的方法去除这些干扰 信号,一般情况下,一个按键按下的时候,总是在按下的时刻存在着 一定的干扰信号,按下之后就基本上进入了稳定的状态。具体的一个 按键从按下到释放的全过程的信号图如上图所示: 从图中可以看出,我们在程序设计时,从按键被识别按下之后,延时5ms 以上,从而避开了干扰信号区域,我们再来检测一次,看按键是否真得已经按下,若真得已经按下,这时肯定输出为低电平,若这时检测到的是高电平,证明刚才是由于干扰信号引起的误触发,CPU就认为是误触发信号而舍弃这次的按键识别过程。从而提高了系统的可靠性。 由于要求每按下一次,命令被执行一次,直到下一次再按下的时候,再执行一次命令,因此从按键被识别出来之后,我们就可以执行这次的命令,所以要有一个等待按键释放的过程,显然释放的过程,就是使其恢复成高电平状态。

51单片机键盘设置

\\\§8.3 键盘接口技术 一、键盘输入应解决的问题 键盘是一组按键的集合,它是最常用的单片机输入设备. 操作人员可以通过键盘输入数据或命令,实现简单的人机通讯。 键是一种常开型按钮开关,平时(常态)键的二个触点处于断开状态,按下键时它们才闭合(短路)。 键盘分编码键盘和非编码键盘。 键盘上闭合键的识别由专用的硬件译码器实现并产生编号或键值的称为编码键盘, 如:ASCⅡ码键盘、BCD码键盘等; 靠软件识别的称为非编码键盘。 在单片机组成的测控系统及智能化仪器中用得最多的是非编码键盘。 本节着重讨论非编码键盘的原理、接口技术和程序设计。 键盘中每个按键都是—个常开关电路,如图所示。

1.按键的确认:P1.7=1 无按键; P1.7=0 有按键; 2.去抖动 去抖动的方法: ①硬件去抖动采用RS触发器: 优点: 速度快,实时, 缺点: 增加了硬件成本 ②软件去抖动采用延时方法 延时5—10ms 延时5—10ms P1.7=0 确认P1.7=0 P1.7=1 (去前沿抖动) (去后沿抖动) 二、独立式键盘

每个I/O口连接一个按,S1 P1.0 S2 P1.1 ………………………. S8 P1.7 软件: START:MOV P1,#0FFH ;置P1口为高电平 JNB P1.0, RS1 ; S1按下,程序去执行RS1 JNB P1.1, RS2 ; S2按下,程序去执行RS2

JNB P1.2, RS3 ; S3按下,程序去执行RS3 JNB P1.3, RS4 ; S4按下,程序去执行RS4 JNB P1.4, RS5 ; S5按下,程序去执行RS5 JNB P1.5, RS6 ; S6按下,程序去执行RS6 JNB P1.6, RS7 ; S7按下,程序去执行RS7 JNB P1.7, RS8 ; S8按下,程序去执行RS8 AJMP START ; 继续扫描按键 …………. RS1: AJMP PK1 ; RS2: AJMP PK2 ; RS3: AJMP PK3 ; RS4: AJMP PK4 ; RS5: AJMP PK5 ; RS6: AJMP PK6 ; RS7: AJMP PK7 ; RS8: AJMP PK8 ; AJMP START ; 无键按下,继续扫描………………… PK1: ……….. ;按键S1功能处理程序 AJMP START ;处理S1按键后, 继续扫描PK2: ……….. ;按键S2功能处理程序

单片机独立按键控制秒表

单片机实训报告 项目名称: 专业:班级: 企业指导老师:校内指导老师: 学号:姓名: 地点:时间: 二〇一九年月日

附件3-1: 进度检查及成绩评定表

目录 摘要 (4) 1实验内容要求及目的 (5) 1.1、实训内容 (5) 1.2、实训要求 (5) 1.3、实验目的 (5) 1.4、设计方案 (5) 2设计程序 (6) 2.1、1s定时程序框图 (6) 2.2、按键编程流程图 (6) 3绘制、调试仿真图 (7) 3.1 仿真软件简介 (7) 3.2 仿真图 (7) 3.3 仿真图调试 (7) 3.4调试步骤 (8) 4、绘制原理图、PCB图 (9) 5硬件电路制作 (10) 5.1、51单片机 (10) 5.2、78M05 (10) 5.3、电路板焊接 (10) 5.3.1焊接目的 (10) 5.3.2焊接步骤 (10) 5.3.3焊接的注意事项 (10) 5.4、电路板成果 (11) 5.5、调试 (11)

摘要 这是一篇关于用51单片机定时器做秒表的实验报告。该秒表可显示00.00~59.59秒的时间,进行相应的单片机硬件电路的设计并进行软件编程利用单片机定时器/计数器中断设计秒表,从而实现秒、分的计时。综合运用所学的《单片机原理与应用》理论知识,通过实践加强对所学知识的理解,具备设计单片机应用系统的能力。通过本次系统设计加深对单片机掌握定时器、外部中断的设置和编程原理的全面认识复习和掌握。本系统利用单片机的定时器/计数器定时和记数的原理,通过采用proteus仿真软件来模拟实现。模拟利用AT89C51单片机、LED数码管以及控件来控制秒表的计数以及计位!其中有四位数码管用来显示数据,显示时间分、秒。

51单片机中断控制LED

单片机作业 题目要求: 设计这样一个系统:在一个51单片机最小系统板上,P1口低四位接四个四角按键,高四位接四个LED灯。按键中断作为总中断,当接中断的按键按下后,所有灯均可按照对应的按键进行点亮。当没有中断按下时,无论怎么按接在P1口低四位的按键,均不能是按键点亮。 实现步骤: 第一:电路搭建: 电路搭建说明: 1.采用AT89C52单片机,DIP40封装。 2.选用12M,并使晶振尽可能接近单片机,采用22pf的电容接在晶振两边并接地,使晶振更容易起振。 3.标号为D18的LED是中断触发指示灯,一旦中断触发,D18会一直亮着。没有中断触发时会一直灭着。 4.key1,key2,key3,key4分别控制D1,D2,D3,D4,D 5. 5.D5为复位指示灯,当复位按键按下时,D5亮。反之灭。 第二:程序实现: 本程序十分简单,秉着杜绝抄袭,自助设计的理念,本程序完全有本人设计完成。没有采用老师讲解的例程。程序的注释已经将程序称述的很明白,现做简要说明: 本人将按键查询部分都放在中断处理函数中处理。当中断触发按键按下时,D18亮,程序进入中断函数,开始不断查询按键值,并点亮相应led.。这样的程序 对CPU的占有率较高,但由于这样写代码更加简单明了,有由于题目对cpu占有率的并没有明确要求,本着开发周期尽可能短的原则,本程序选择了简单方案。

现将代码复制如下: 将KEIL与PROTEUS联调,调试结果如下: 1.启动程序: ,可以看到图中三角符号变绿。此时:

此时,图中所有led灭,无现象。 1.此时按下任意按键,比如key1,key2两个(为了方便截图,直接将开关用导线短路): 现象如下: 可以看到,并没有认可指示灯亮。 2.按复位按键观察是否正常(为了方便截图,直接将开关用导线短路):

单片机按键程序与电路设计

单片机键盘接口全接触 作者:杜洋 2005-10-25 一般的具有人机对话的单片机系统少不了会有键盘。键盘接口的原理与应用许多的教材都有介绍,但通常各有各的方法,各有各的优劣。下面就我现有的对单片机键盘接口的了解和应用将众家的单片机直接驱动键盘的接口原理及应用作一个总结,并附加相应键盘的汇编子程序和C语言子函数。希望大家可以从中受益。 本文我们以键盘的数目来选择键盘最适合的接法和最佳的编程方法,对各键盘接口的方法的优缺点加以说明。本文旨在让大家掌握一种方法,而不要读死书,举一反三创造更新更好的接口方式才是学习的极致。我最喜欢爱因斯坦的一句话:“想象力比知识更重要,想象力可以创造知识,而知识却只是别人的想象”。 1~4按键的单片机键盘接口: 当键盘的数目最多为4个时,我们最佳的接口方案当然是独立式接法了,即每一个I/O口上只接一个按键,按键的另一端接电源或接地(一般接地)。占用的I/O口数最大为4条。(注意:1~4按键的键盘的接法许多,如果接成扫描式可以占用更少的I/O口,但从程序复杂性和系统稳定性的综合考虑的话,独立式键盘接法应该是首选) 独立式键盘的实现方法是利用单片机I/O口读取口的电平高低来判断是否有键按下。例如,我们将常开按键的一端接地,另一端接一个I/O口,程序开始时将此I/O口置于高电平,平时无键按下时I/O口保护高电平。当有键按下时,此I/O口与地短路迫使I/O口为低电平。按键释放后,单片机内部的上拉电阻使I/O 口仍然保持高电平。我们所要做的就是在程序中查寻此I/O口的电平状态就可以了解我们是否有按键动作了。 值得注意的事,我们在用单片机对键盘处理的时候涉及到了一个重要的过程,那就是键盘的去抖动。这里说的抖动是机械的抖动,是当键盘在未按到按下的临界区产生的电平不稳定正常现象,并不是我们在按键时通过注意可以避免的。这种抖动一般在10~200毫秒之间,这种不稳定电平的抖动时间对于人来说太快了,而对于时钟是微秒级的单片机而言则是慢长的。为了提高系统的稳定,我们必须去除或避开它。目前的技术有硬件去抖动和软件去抖动,硬件去抖动就是用部分电路对抖动部分加之处理,但是实现的难度较大又会提高了成本。软件去抖动不是去掉抖动,而是避开抖动部分的时间,等键盘稳定了再对其处理。这里我们只研究软件去抖动,实现方法是先查寻按键当有低电平出现时立即延时10~200毫秒以避开抖动(经典值为20毫秒),延时结束后再读一次I/O口的值,这一次的值如果为1表示低电平的时间不到10~200毫秒,视为干

相关文档
相关文档 最新文档