文档库 最新最全的文档下载
当前位置:文档库 › 广义胡克定律

广义胡克定律

广义胡克定律
广义胡克定律

广义胡克定律

§10.4 空间应力状态及广义胡克定律 一、空间应力状态简介 当单元体上三个主应力均不为零时的应力状态称为空间应力状态,也称为三向应力状态。本节只讨论在已知主应力σ1、σ2、σ3的条件下,单元体的最大正应力和最大剪应力。先研究一个与σ1平行的斜截面上的应力情况,如图10-16(a)所示。该斜面上的应力σ、τ与σ1无关,只由主应力σ2、σ3决定。于是,可由σ2、σ3确定的应力圆周上的点来表示平行于σ1某个斜面上的正应力和剪应力。同理,在平行于σ2或σ3的斜面上的应力σ、τ,也可分别由(σ1、σ3)或(σ1、σ2)确定的应力圆来表示。这样作出的3个应力圆称作三向应力圆,如图10-16(d)所示。当与三个主应力均不平行的任意斜面上的正应力和剪应力必然处在三个应力圆所围成的阴影范围之内的某一点D。D点的纵横坐标值即为该斜面上的正应力和剪应力。由于D 点的确定比较复杂且不常用,在此不作进一步介绍。 图10-16 空间应力状态及其应力圆 二、最大、最小正应力和最大剪应力 从图10-16(d)看出,在三个应力圆中,由σ1、σ3所确定的应力圆是三个应力圆中最大的应力圆,又称极限应力圆。画阴影线的部分内,横坐标的极大值为Al点,而极小值为B1点,因此,单元体正应力的极值为: σmax=σ1,σmin=σ3 单元体中任意斜面上的应力一定在σ1和σ3之间。

而最大剪应力则等于最大应力圆上Gl 点的纵坐标,即等于该应力圆半径: 13 max 2σστ-= Gl 点在由σ1和σ3所确定的圆周上,此圆周上各点的纵横坐标就是与σ2轴平行的一组斜截面上的应力,所以单元体的最大剪应力所在的平面与σ2轴平行,且与σ1和σ3主平面交450 。 三、广义胡克定律 在研究单向拉伸与压缩时,已经知道了在线弹性范围内,应力与应变成线性关系,满足胡克定律 E σε= (a ) 此外,轴向变形还将引起横向尺寸的变化,横向线应变根据材料的泊松比可得出: 'E σ εμεμ=-=- (b ) 在纯剪切的情况下,根据实验结果,在剪应力不超过剪切比例极限时,剪应力和剪应变之间的关系服从剪切胡克定律,即 G τγ= 或 G τγ= (c ) 对于复杂受力情况,描述物体一点的应力状态,通常需要9个应力分量,如图10.1所示。根据剪应力互等定律,τxy =-τyx ,τxz =-τzx ,τyz =-τzy ,因而,在这9个应力分量中只有6个是独立的。这种情况可以看成是三组单向应力(图10-17)和三组纯剪切的组合。对于各向同性材料,在线弹性范围内,处于小变形时,线应变只与正应力有关,与剪应力无关;而剪应变只与剪应力有关,与正应力无关,并且剪应力只能引起与其相对应的剪应变分量的改变,而不会影响其它方向上的剪应变。因此,求线应变时,可不考虑剪应力的影响,求剪应变时不考虑正应力的影响。于是只要利用(a )、(b )、(c )三式求出与各个应力分量对应的应变分量,然后进行叠加即可。

广义胡克定律

广义胡克定律 The Standardization Office was revised on the afternoon of December 13, 2020

§空间应力状态及广义胡克定律 一、空间应力状态简介 当单元体上三个主应力均不为零时的应力状态称为空间应力状态,也称为三向应力状态。本节只讨论在已知主应力σ1、σ2、σ3的条件下,单元体的最大正应力和最大剪应力。先研究一个与σ1平行的斜截面上的应力情况,如图10-16(a)所示。该斜面上的应力σ、τ与σ1无关,只由主应力σ2、σ3决定。于是,可由σ2、σ3确定的应力圆周上的点来表示平行于σ1某个斜面上的正应力和剪应力。同理,在平行于σ2或σ3的斜面上的应力σ、τ,也可分别由(σ1、σ3)或(σ1、σ2)确定的应力圆来表示。这样作出的3个应力圆称作三向应力圆,如图10-16(d)所示。当与三个主应力均不平行的任意斜面上的正应力和剪应力必然处在三个应力圆所围成的阴影范围之内的某一点D。D点的纵横坐标值即为该斜面上的正应力和剪应力。由于D点的确定比较复杂且不常用,在此不作进一步介绍。 图10-16 空间应力状态及其应力圆 二、最大、最小正应力和最大剪应力

从图10-16(d)看出,在三个应力圆中,由σ1、σ3所确定的应力圆是三个应力圆中最大的应力圆,又称极限应力圆。画阴影线的部分内,横坐标的极大值为Al 点,而极小值为B1点,因此,单元体正应力的极值为: σmax =σ1,σmin =σ3 单元体中任意斜面上的应力一定在σ1和σ3之间。 而最大剪应力则等于最大应力圆上Gl 点的纵坐标,即等于该应力圆半径: 13 max 2σστ-= Gl 点在由σ1和σ3所确定的圆周上,此圆周上各点的纵横坐标就是与σ2轴平行的一组斜截面上的应力,所以单元体的最大剪应力所在的平面与σ2轴平行,且与σ1和σ3主平面交450。 三、广义胡克定律 在研究单向拉伸与压缩时,已经知道了在线弹性范围内,应力与应变成线性关系,满足胡克定律 E σε= (a ) 此外,轴向变形还将引起横向尺寸的变化,横向线应变根据材料的泊松比可得出: 'E σ εμεμ=-=- (b ) 在纯剪切的情况下,根据实验结果,在剪应力不超过剪切比例极限时,剪应力和剪应变之间的关系服从剪切胡克定律,即 G τγ= 或 G τγ= (c )

(完整版)广义胡克定律

广义胡克定律 强度理论 [知识回顾] 1、 轴向拉(压)变形 在轴向拉(压)杆件内围绕某点截取单元体,单向应力状态(我们分析过) 横向变形 2)纯剪切 [导入新课] 胡克定律反映的是应力与应变间的关系,对复杂应力状态,其应力与应变间的关系由广义胡克定律确定。 [新课教学] x x E εσ=E x x y σ μμεε-=-=γ τG =

广义胡克定律 强度理论 一、广义胡克定律(Generalized Hooke Law ) 1、主应力单元体-叠加法 只在1σ作用下:1方向 只在2σ作用下:1方向 1方向由1σ、2σ、3σ共同作用引起的应变 只在3σ作用下:1方向 即 同理: 2、非主应力单元体 可以证明:对于各向同性材料,在小变形及线弹性范围内, 线应变只与正应力有关,而与剪应力无关; 剪应变只与剪应力有关,而与正应力无关, 满足应用叠加原理的条件。 E 1 1σε= 'E 21σ με-=''E 31 σ με-='''111εεεε'''+''+'=()[] 32111 σσμσε+-=E ()[]1322 1 σσμσε+-=E ()[]21331σσμσε+-=E [] [] [] ??? ? ?????+-=+-=+-=)(1)(1)(1y x z z x z y y z y x x E E E σσμσεσσμσεσσμσε??????? ??===zx zx yz yz xy xy G G G τγτγτγ111小变形,线弹性范围内,符合叠加原理

3、体积应变 单元体,边长分别为dx 、dy 和dz 。在三个互相垂直的面上有主应力1σ、2σ和3σ。 变形前单元体的体积为 变形后,三个棱边的长度变为 由于是单元体,变形后三个棱边仍互相垂直,所以,变形后的体积为 dxdydz V )1)(1)(1(3211εεε+++= 将上式展开,略去含二阶以上微量的各项,得 dxdydz V )1(3211εεε+++= 于是,单元体单位体积的改变为 3211εεεθ++=-= V V V θ称为体积应变(或体应变) 。它描述了构件内一点的体积变化程度。 5、体积应变与应力的关系 将广义虎克定律(8-22)代入上式,得到以应力表示的体积应变 式中 K 称为体积弹性模量,m σ是三个主应力的平均值。体积应变θ只与平均应力m σ有 关,或者说只与三个主应力之和有关,而与三个主应力之间的比值无关。 体积应变θ与平均应力m σ成正比,称为体积虎克定律。 dxdydz V =dz dz dz dy dy dy dx dx dx )1()1()1(332211εεεεεε+=++=++=+)21(3μ-= E K )(31321σσσσ++=m K E m σσσσμθ= ++?-==3)21(3321)(21321321σσσμ εεεθ++-=++=E

广义胡克定律

广义胡克定律

————————————————————————————————作者:————————————————————————————————日期:

§10.4 空间应力状态及广义胡克定律 一、空间应力状态简介 当单元体上三个主应力均不为零时的应力状态称为空间应力状态,也称为三向应力状态。本节只讨论在已知主应力σ1、σ2、σ3的条件下,单元体的最大正应力和最大剪应力。先研究一个与σ1平行的斜截面上的应力情况,如图10-16(a)所示。该斜面上的应力σ、τ与σ1无关,只由主应力σ2、σ3决定。于是,可由σ2、σ3确定的应力圆周上的点来表示平行于σ1某个斜面上的正应力和剪应力。同理,在平行于σ2或σ3的斜面上的应力σ、τ,也可分别由(σ1、σ3)或(σ1、σ2)确定的应力圆来表示。这样作出的3个应力圆称作三向应力圆,如图10-16(d)所示。当与三个主应力均不平行的任意斜面上的正应力和剪应力必然处在三个应力圆所围成的阴影范围之内的某一点D。D点的纵横坐标值即为该斜面上的正应力和剪应力。由于D 点的确定比较复杂且不常用,在此不作进一步介绍。 图10-16 空间应力 二、最大、最小正应力和最大剪应力 从图10-16(d)看出,在三个应力圆中,由σ1、σ3所确定的应力圆是三个应力圆中最大的应力圆,又称极限应力圆。画阴影线的部分内,横坐标的极大值为Al点,而极小值为B1点,因此,单元体正应力的极值为: σmax=σ1,σmin=σ3 单元体中任意斜面上的应力一定在σ1和σ3之间。

而最大剪应力则等于最大应力圆上Gl 点的纵坐标,即等于该应力圆半径: 13 max 2 σστ-= Gl 点在由σ1和σ3所确定的圆周上,此圆周上各点的纵横坐标就是与σ2轴平行的一组斜截面上的应力,所以单元体的最大剪应力所在的平面与σ2轴平行,且与σ1和σ3主平面交450 。 三、广义胡克定律 在研究单向拉伸与压缩时,已经知道了在线弹性范围内,应力与应变成线性关系,满足胡克定律 E σε = (a ) 此外,轴向变形还将引起横向尺寸的变化,横向线应变根据材料的泊松比可得出: 'E σ εμεμ =-=- (b ) 在纯剪切的情况下,根据实验结果,在剪应力不超过剪切比例极限时,剪应力和剪应变之间的关系服从剪切胡克定律,即 G τγ = 或 G τ γ= (c ) 对于复杂受力情况,描述物体一点的应力状态,通常需要9个应力分量,如图10.1所示。根据剪应力互等定律,τxy =-τyx ,τxz =-τzx ,τyz =-τzy ,因而,在这9个应力分量中只有6个是独立的。这种情况可以看成是三组单向应力(图10-17)和三组纯剪切的组合。对于各向同性材料,在线弹性范围内,处于小变形时,线应变只与正应力有关,与剪应力无关;而剪应变只与剪应力有关,与正应力无关,并且剪应力只能引起与其相对应的剪应变分量的改变,而不会影响其它方向上的剪应变。因此,求线应变时,可不考虑剪应力的影响,求剪应变时不考虑正应力的影响。于是只要利用(a )、(b )、(c )三式求出与各个应力分量对应的应变分量,然后进行叠加即可。

相关文档
相关文档 最新文档