文档库 最新最全的文档下载
当前位置:文档库 › Chapter 4 Slag Removal System_Rev B

Chapter 4 Slag Removal System_Rev B

Chapter 4 Slag Removal System_Rev B
Chapter 4 Slag Removal System_Rev B

4 U-1400 SLAG SYSTEMS

4.1 Control Loops

The main control objectives for the Slag removal unit are to: 1. Maintain the level of the slagbath V-1401.

2. Remove the heat added by the slag into the slagbath.

3. Transfer the slag between systems at different pressures in a batch wise process.

4.1.1 Unit Control Strategy

Objective 1 is achieved by adding a water stream to replace the amount of water continuously bled (to limit impurity build-up) to the stripping section (U-1700), and the amount of water vaporized because of the heat added by the hot slag entering from the gasifier.

Objective 2 is achieved by controlling the temperature of the recycle water via the coolers E-1401 A/B using cooling water to exchange the heat.

Objective 3 is met via pressurization/de-pressurization sequence programs.

4.1.2 Overview of Unit Control Functions

4.1.2.1 Slagbath V-1401

The slagbath level is maintained within safe limits by controller

14LIRC0001. The level controller is used as a master for the HP make-up water controller (14FIC0004). To prevent a continuous large variation in make-up water flow, the gain of the level controller should be higher when the error is high and lower when the process value is near the setpoint. This is called gap control.

The temperature of the continuously circulating water is regulated by controller 14TIC0006 at a pre-defined temperature (typically 40 – 50 oC) by varying the cooling water flow to the slag bath cooler E-1401 A/B.

4.1.2.2 Slag Sluice Vessel V-1403

During the pressurization of V-1403, 14PDIC0013 regulates the pressure

of the slag sluice vessel versus that of the gasifier via a split-range

controller before the sluice vessel is reconnected to the accumulator. De-

pressurisation occurs via the flare header and the atmospheric vent

(14PV-0013A). Pressurisation is via HP nitrogen (14PV-0013B). This

operation is handled by the slag sluice sequence 14KS0001 and is active

for a limited time only.

4.1.2.3 Dewatering tank T-1401

The level in the dewatering tank is kept at 40%-60% by 14LIC0006

regulating the in-flow of water from the sluice water recycle pump (P-

3306A/B) at the time the level reaches its minimum value. The controller is

activated when the switch 14LSLL0006 is not triggered. The controller is

put in MANUAL and the control valve 14LV0006 is closed if the switch

14LSH0006 is activated. No setpoint tracking needed when the controller

is in MANUAL. If 14LT0006 fails, the controller is put into MANUAL with

the output maintained at value of point of failure.

4.1.2.4 Sluice Vessel Fill Water Tank V-1404

The LLP N2 from distribution is introduced in V-1404 to assist the flushing

and filling of V-1403 via 14PIC0021.This operation is handled by slag

sluice sequence 14KS0001 and is active for a limited time only.

4.1.2.5 Other Control Functions

14US-0001 (Slag-bath Bleed Control)

The control block 14US-0001 regulates the bleed flow from the slag-bath

circulation system (14XV-0023/24/25) based on the density (%wt of

solids).

The opening of the bleed-line valves is automated, however the closing of

valves requires operator action. This is done to avoid frequent changes of

flow to the Sour Slurry Stripper, as each change requires special attention

to ensure pH control. Refer to section 4.1.3 for detailed control description.

4.1.3 Detailed Control Narrative

4.1.3.1 SLAGBATH WATER LEVEL (14LIC0001/14FIC0004)

4.1.3.1.1 Functional Description

This control loop maintains the water level in the slagbath within safe

limits. The normal holding position is a water-filled, pressurized sluice

vessel connected to the accumulator with water level make-up through V-

1403 from HP make-up water. The setpoint of the flow controller

14FIC0004 is determined by the output of the level controller 14LIC0001.

The level controller acts as the master controller in this case maintaining

the level in the slagbath within safe limits by regulating the make-up water

flow into the slag accumulator or the sluice vessel. The two controllers are

always in cascade.

The point of addition of make-up water is switched depending on the

mode of operation of the sluice vessel. During slag collection in the sluice

vessel, make-up water (equivalent to that lost in the hydro cyclone bleed

and evaporation in the gasifier) is added through 14XV0014 to V-1403.

Pumps P-1402A/B circulate water from the sluice vessel to the slagbath.

During slag removal from the sluice vessel, make-up water is switched to

the accumulator vessel via 14XV0013 since V-1403 is isolated during this

time. An interlock ensures that either 14XV0013 or 14XV0014 is always

open to add water to the slagbath system.

To prevent a continuous large variation in make-up water flow, the gain of

the level controller should be higher when the error is high and lower when

the process value is near the setpoint. This can be done by implementing

gap control i.e. PID controller with two gains – a higher gain when the

error is high and lower gain when the error is low. It is recommended to

clamp the setpoint at one definite value.

4.1.3.1.2 Operational

Aspects

4.1.3.1.2.1 Operational Modes

Start-up

At start-up, all the controllers are in manual with the control valves closed.

After ensuring that the block valve 14XV0014 is open and 14XV0013 is

closed, the flow controller 14FIC0004 is put into LOCAL/AUTO mode.

Normal Operation

Under normal operating conditions i.e. slag accumulates in the slagbath

system, 14XV0014 remains open while 14XV 0013 remains closed. The

flow controller is put in CASCADE with the level controller generating the

setpoint for the flow controller. The addition of make-up water is switched

to 14XV0013 during slag sluicing operation. This is done by the sequence

14KS0001.

Crippled Mode

Crippled Mode Automatic Action Operator Action

Failure of transmitter 14FT0004 PV of controller frozen to

last good value. Controller

put into MANUAL mode and

output maintained at value

at point of failure.

If required, adjust

controller output based

on process conditions.

Failure of moo3 transmitters

14LT-0001A, 14LT-0001B, 14LT-0001C Failure of single transmitter:

automatic switchover from

moo3 to LOW of the two

remaining signals.

Failure of two or more

transmitters:

Automatic switchover of

moo3 module to the

remaining good

transmitter.14LIC0001 put

into MANUAL. Gasifier trip

via 14UZ0001.

Failure of moo3 module: PV

of 14LIC0001 frozen to last

good value. 14LIC0001 put

into MANUAL. 14FIC0004

put into AUTO mode.

Adjust 14FIC0004

setpoint based on

individual transmitter

values.

Shutdown/Abnormal Conditions

Loss of water in the slag removal system is due to continuous bleed from the hydrocyclones and evaporation of water in the gasifier. Normally, the entire slag system is kept in operation (with minimum bleed) unless

extended shutdown is planned (to avoid slowly filling of slagbath by

instrument purges, etc.).

In case the level in the slagbath falls below the LL limit, the pumps P-1401 A/B will trip and the circulation of water in the slagbath system will stop.

In case the level of the water in the slagbath rises above the HH limit, the safeguarding system will stop the recycle of water both in the slag sluice vessel and in the slagbath system by closing the block valves 14XV0014 and 14XV0013 respectively. Also, the controller 14FIC0004 will switch to MANUAL and the control valve 14FV0004 will close to ensure that the slagbath is isolated from the make-up water system.

The details of the interaction with the safeguarding system are explained

in detail in the sequence and safeguarding narratives.

4.1.3.1.2.2 Operator Interface

The operator should be able to view the controller’s output and its setpoint

as well on the main slagbath unit schematic.

with other control functions

4.1.3.1.2.3 Interaction

No interaction with any other control loops.

4.1.3.1.2.4 Interaction with safeguarding

The slag sluicing sequence 14KS0001 initiates the cascade mode of the

flow and the level controller during the sluicing operations. 14US0004

closes the control valve 14FV0004 and puts the flow controller 14FIC0004

into MANUAL if the level in the slagbath has reached HH level. If both the

valves 14XV0013 and 14XV0014 are closed, the controller is tripped to

MANUAL and the output is forced to 0%.

4.1.3.1.3 Design and Implementation Aspects

4.1.3.1.3.1 Initialisation

The cascade control should be configured in such a way that the master

controller should be able to track the setpoint of the slave controller even

when they are not in cascade. This will ensure a bumpless transfer in case

the cascade control scheme comes into action. Also, it should be ensured

that the output range of the level controller should be equal to the setpoint

range of the flow controller. When the flow controller is in MANUAL, its

setpoint should track the process value to ensure a bumpless transfer in

control when it is switched to AUTO. No need of setpoint tracking for level

controller when it is in MANUAL.

4.1.3.2 SLUICE VESSEL PRESSURE CONTROL (14PDIC0013) 4.1.3.2.1 Functional Description

This pressure controller is activated during the pressurisation and

depressurization of the slag sluice vessel. It is a split range controller

regulating the control valves 14PV 0013A and 14PV0013B. The control

valve 14PV0013A controls the amount of nitrogen being flared or vented

during depressurization and control valve 14PV0013B regulates the

amount of HP nitrogen added to the vessel during pressurization of the

vessel.

The holding position of the slag sluice vessel is the vessel full of

water/slag and connected to V-1402. Before slag is dumped out of the

slag sluice vessel, the vessel is isolated and de-pressurized to

atmospheric pressure. The slag sluice sequence 14KS0001 opens the

control valve 14PV0013A to the flare/vent. The flare valve 14XV0021 and

then vent valve 14XV0019 are operated on the basis of the line pressures

14PI 0011 and 14PI0012. The interlocks 14US0009 and 14US0010

handle the logics for the block valves.

The block valve 14XV0007 is opened during dumping of the slag to add

nitrogen to the vessel to replace the slag volume as it dumps.

The differential pressure controller 14PDIC0013 is activated once the slag

has been dumped and the sluice vessel rinsed and refilled with water.

Once activated, it closes 14PV0013A and opens 14PV0013B to add

nitrogen to re-pressurize the vessel up to the gasifier pressure.

14PV0013B operates on 50 ~0 % range of the controller output while

14PV0013A operates on 50~100 % range of the controller output. The

controller is a split range controller to ensure tighter control over the

pressure of the sluice vessel. Once SP- and PV-value are within 10 % of

each other the controller is switched to Manual with an output at 50% and

both control valves are closed. The controller is de-activated once the

vessel has been pressurized.

4.1.3.2.2 Operational

Aspects

4.1.3.2.2.1 Operational Modes

Start-up

At start-up, all the controllers are in manual with the control valves closed.

Normal Operation

The controller and the control valves are activated by the slag sluice

sequence 14KS0001 during the pressurization of the sluice vessel. A split

range control scheme is implemented to ensure a tighter control on the

process variable i.e. differential pressure between the gasifier and the

sluice vessel.

Crippled Mode

Crippled Mode Automatic Action Operator Action

Failure of transmitter 14PdT0013 PV of controller switched to 14PdT0014.

Crippled Mode Automatic Action Operator Action

If both the transmitters fail, PV of the controller is frozen to last good value. Controller put into MANUAL mode. 14KS0001 in HOLD in the pressure equalization step. If required, adjust controller output based on process conditions. Plant to be shutdown if not restarted within 2 hours.

Shutdown/Abnormal Conditions

In case of gasifier shutdown, there is no direct effect on the controller

actions.

4.1.3.2.2.2 Operator Interface

The operator should be able to view the controller’s output and its setpoint

as well on the main slag removal unit schematic.

4.1.3.2.2.3 Interaction

with other control functions

No interaction with any other control loops.

4.1.3.2.2.4 Interaction

with

safeguarding/interlocks

The controller is activated by 14KS0001 during the pressurization step.

Once the SP and PV of the controller are within 10% of each other,

14KS0001 puts the controller into MANUAL and its output is forced to

50%, which causes both the valves to close. 14US0007 closes

14PV0013A in case any of the block valves 14XV0009/10/11/12/14 is not

yet closed. This prevents syngas leakage to the vent.

4.1.3.2.3 Design and Implementation Aspects

4.1.3.2.3.1 Calculations

The split range control scheme is normally implemented as follows

14PV0013B --- 50~0 %

14PV0013A --- 50~100 %

The exact split ranges may be tuned during start-up of the unit.

4.1.3.2.3.2 Initialisation

The output of the 14PDIC0013 is initialized based on the first active control

valve. When the second control valve is also active, the difference between

the output of the controller and the valve opening is biased and the bias is

slowly reduced to zero via a ramp function with adjustable ramp rate. When

the controller is in MANUAL, its setpoint should track the measured value to

ensure a bumpless transfer when it is switched to AUTO.

Also, the controller’s output should be clamped over the range of the valves in operation to prevent wind-up.

4.1.3.3 SLAG BATH BLEED CONTROL (14US-0001)

4.1.3.3.1 Functional Description

The control block 14US-0001 controls the bleed flow from the slag-bath

circulation system (14XV-0023/24/25) in order to regulate the solid

concentration in the recycle water line to less than 1.5%. During normal

operating conditions this bleed flow can be handled by one letdown system.

While using a single letdown system (14XV0023), if the circulation density

starts to exceed the 1.5 %wt solids in water concentration (based on density

measurement 14DISA-0001) the second bleed line will automatically be

opened (14XV0024). If the density does not drop below this level within 30

minutes (the estimated time in order to prevent the opening /closing valves

too often) the third line (14XV0025) will be opened as well. This is to prevent

accumulation of solids in the recirculation water to the slag bath.

Shutdown of a bleed line is based on a similar principle, but requires a

confirmation by the operator prior to the shutdown. When two bleed valves

are open and the density is below the high limit for 30 minutes (estimated

time) then 14XV0024 is closed after operator confirmation.

In case three bleed valves are open and the density is below the high-high

limit for 30 minutes and below the high limit for 15 minutes as the estimated

time, then 14XV0025 is closed after operator confirmation.

If the commanded valve does not open within preset time limit, the logic block

should have the feature to open the next available valve. If, 14XV-0023 does

not open within 30 seconds of starting the logic block, then open 14XV-0024.

Also, if logic is started, and when commanded to open, 14XV-0023 and

14XV-0024 are not open within 40 seconds and 20 seconds respectively due

to valve opening time, then send open command to 14XV-0025.

Shutdown of all bleed lines is not automated but has always to be initiated by

the operator. This approach has been taken to avoid frequent changes of flow

to the Sour Slurry Stripper, as each change requires special attention to

ensure pH control.

In case the level in the feed vessel V-1701 is too high, 17LSHH-0005 will

trigger 17US-0001, which will automatically stop the sequence and close the

three valves 14XV-0023/24/25 in order to prevent the overfilling in V-1701. 4.1.3.3.2 Operational Aspects

Start-up

At start-up, all the bleed valves are closed. The operator ‘starts’ the 14US-0001 logic block, which opens 14XV0023.

Normal Operation

The logic block 14US-0001 gives the open command to valves 14XV-0024/25 based on the density. The closing action is based on operator confirmation. However, at least one bleed valve (14XV0023) is always open to prevent the flooding of slag-bath.

Crippled Mode

Crippled Mode Automatic Action Operator Action Failure of transmitter 14DISA-0001

Hold last good value of density transmitter

Open close bleed

valves manually based on process conditions.

4.1.3.3.2.1 Operator Interface

The operator should be able to start/stop the logic action. Also, he should be able to confirm the closing action of valve based on density.

4.1.3.3.2.2 Interaction with safeguarding/interlocks

The logic block 14US-0004 (which has a higher priority) also controls the bleed valves based on the level in slag bath (V-1401).

The logic block 17US-0001 automatically stop the sequence and close all the valves when activated.

4.1.3.3.3 Design and Implementation Aspects

4.1.3.3.3.1 Calculations

The density value from transmitter is compensated for temperature of the slag-bath. The compensated density value is used in the control actions.

()

()22002200)()(×??=

Temp Water Temp Water Raw Comp Density Density Density Density

Comp Density Temperature Compensated Density (%wt solids)

Raw Density Value from 14DI-0001 (kg/m 3)

)(Temp Water Density = 2*0027097.0*13437.01.10005T T ??

where T is 14TI0003A

4.1.3.3.3.2 Initialisation

None

Figure 4.2: Slagbath Bleed control (14US-0001)

4.2 Sequence Programs

Except during sluicing, slag generated in the gasifier flows through the Slag

Accumulator V-1402 to the Slag Sluice Vessel V-1403. When the sluicing

sequence is active, V-1402 accumulates the slag while V-1403 is depressurized,

emptied, rinsed, filled, and re-pressurized. The slag is sluiced batch-wise from V-

1403 to the Slag Dewatering Tank T-1401 where the solids and water are

separated. A mechanical crusher X-1401 is installed between the slagbath and

slag accumulator to reduce the size of large slag lumps that may form during upset

conditions.

The slag removal system is controlled automatically by sequence programs. Batch

cycle times are based on the design slag production rate.

4.2.1 Operational Modes

The sequence control is executed in automatic mode only In automatic mode, the

sequence timer is operational. If no abnormal conditions are detected, the steps

are progressed without operator intervention. Each subsequent step can only be

activated when all conditions of the previous one have been fulfilled. If specific

process checks are not satisfied within the prescribed time limit (e.g valve position

feedback), the operator will be alerted through appropriate alarm messages. The

sequence continues only when all permissives for the next step are satisfied. Where applicable, the sequence may be overridden by the operator if the permissives for

next step are not satisfied. The recording of the problems can be used for

diagnostic purposes.

Manual control of sequence execution is disabled.

4.2.2 First Time Operation / After Maintenance Shutdown

If starting the slag removal system after a shutdown / maintenance, then the

operator manually starts the associated equipment (like Crusher, slag-bath

circulation pump etc.). The valve positions are brought to the ‘Holding’ position of

sequence 14KS-0001.

4.2.3 Normal Operation

Normal operation for slag removal includes two separate sequences:

?Slag Sluice Program (14KS-0001)

?Slag Disposal Program (14KS-0002)

The slag sluice program controls the removal (sluice) of slag from V-1403 (under

high pressure) to T-1401 at atmospheric pressure. The main steps in this program

are described below:

Initialization / Hold

The “Hold” step is when V-1403 is not sluicing so that slag continuously flows

downward from V-1401 past X-1401, through V-1402 into V-1403. Water is

circulated from V-1403 to V-1402 continuously via the Sluice support pumps P-

1402A/B. This is also the waiting position of the system until the preset filling timer

elapses.

Isolate

The bottom outlet valves of V-1402 are closed, and the sluice support pumps P-

1402A/B are put in recycle mode.

Depressurize Sluice Vessel

After V-1403 is isolated, it is de-pressurized in a phased manner. The initial high

flow is directed to the flare system. When the flow has reduced, it is directed to the

atmospheric vent.

Sluice & Flush

After depressurization, the slag is gravity transferred from V-1403 to T-1401 by

opening the bottom valves of V-1403. Nitrogen is provided for the displacement of

the slag in V-1403. V-1403 is then flushed with LP make-up water via V-1404 to

avoid air ingress.

Fill Sluice Vessel

After the flushing timer is complete, the bottom valves of V-1403 are closed and it is filled with LP water via V-1404 until the high level switch is activated.

Pressurize

The pressure in sluice vessel V-1403 is increased using HP nitrogen until its

pressure is equal to that in V-1402.

Reconnect

After the pressures are equalized, the bottom valves of V-1402 are opened.

The line-up of the Sluice Support Pumps P-1402A/B is restored to V-1402. If the

operator does not stop the sequence, it returns to the Initialization/Hold position.

The detailed actions for the slag sluicing sequence are described in section 4.2.8.

Solids Separation

The slag and water transferred from V-1403 is collected in the slag-dewatering tank T-1401. The de-watered slag is then transferred to intermediate slag storage using

a slag-belt and drag chain system. The slag belt is controlled by sequence program

14KS-0002, which is described in detail in section 4.2.8.1.3.

4.2.4 Crippled Mode Operation

Any operation other than normal running or that described under shutdown /

abnormal condition is listed below. The specific action and states that may occur

are:

Crippled State Automatic Action Operator Action

Circulation Pump Failure Trips gasifier if standby

pump not started within 30

minutes The operator has to start the standby pump. And isolate the stopped pump.

Slag Crusher Failure -- If due to crusher blockage, could

be resolved ‘online’, else

shutdown gasifier.

Failure of slag sluice support pump OR Failure of slag dewatering pump

OR

Failure of drag chain

OR

Failure of slag transfer belt -- Could be resolved online, else

shutdown gasifier.

4.2.5 Shutdown and Abnormal Action

Abnormal Conditions

There are several ways in which an abnormal condition can arise from the

sequence operation, some of which are detailed in the previous section. The

specific transition conditions have been detailed in the sequence flow chart / matrix.

The operator is alerted to abnormal events by alarms, which are as follows: ?Valve Position alarm

?Step Timeout alarm

Shutdown Conditions

None

Shutdown Condition Condition Enabled During

Action

None -- --

4.2.6 Operator Interfaces

Faceplate

The sequence is started (and stopped) from the faceplate of its “program module”

(2nd layer screen). Also, overrides (applied for problem solving/system testing) are

activated from the faceplate. The faceplate also shows the current step number and the time elapsed in the current step.

Messages

During the execution of sequence, step messages are generated to alert and guide the operator to take the corrective action. Theses are detailed in the various

sequence steps mentioned in section 4.2.8. These messages shall be shown in the display graphics.

Timers

Apart from the step timers, several timers are running as per process requirements.

The elapsed times for active timers shall be shown on the process display. The

various timers required are mentioned within the sequence descriptions.

4.2.7 Interactions

4.2.7.1 Interactions with other Control Functions

The sequence interacts with the following control loops:

Sluice Vessel Pressure Control (14PdIC0013)

Slag Bath Level Control (14LIC0001 / 14FIC0004)

Dewatering tank level control (14LIC0006)

Sluice Vessel Fill Water Tank Pressure Control (14PIC0021)

4.2.7.2 Interaction with Safeguarding

None

4.2.8 FUNCTIONAL DESCRIPTION

The slag removal system (U-1400) consists of three vessels, which operate batch-

wise to ensure the removal of the continuously produced slag. This functionality is

achieved by means of the following sequences:

? 14KS-0001 (Slag sluicing)

?14KS-0002 (Slag de-watering)

Programs

4.2.8.1 Sequence

(Running)

4.2.8.1.1 14KS-0001

Slag sluicing operation is carried out via a batch-wise operated lock-hopper system consisting of two pressure vessels and a pump (to assist transport of slag from

accumulation vessel to sluice vessel). This is controlled by switching sequence

14KS-0001. During normal operation the entire slag sluicing system is operated

without operator intervention using a ‘slag sluice vessel filling timer’ (setting based

on expected maximum amount of slag being produced).

The total cycle time for 100% sizing case is assumed as 61 minutes.

Pre-Conditions

The initial or “holding” position is a pressurized and water-filled slag sluice vessel which is open to the slag accumulation vessel above it. This initial position is identical to the shutdown position in case the gasifier is switched off (except for the case it is switched off due to a trip condition in the slag bath system caused by a too high or too low water level in the slag bath)

The operator can start the sequence when the following pre-conditions are satisfied. These conditions are checked by the DCS apart from the process readiness check done by the operator:

?14XV-0001, 14XV-0009, 14XV-0010 are open and slag crusher and K-1401 are running.

?14XV-0006, 14XV-0007, 14XV-0008, 14XV-0015, 14XV-0016, 14XV-0017, 14XV-0018, 14XV-0019, 14XV-0021, 14PV-0026 and 14XV-

0029 are closed.

?At least one valve or pump from each of the following pairs is open or running:

P-3301A/B,P-3302A/B,P-3305A/B,P-3306A/B, P-1401A/B, P-1402A/B

and P-1403A/B.

After the pre-conditions are satisfied and the operator has started the sequence, the following actions are executed. Refer Figure 4.3 for flow-chart of sequence 14KS-0001.

Initialization

“Holding position”, in which all “Pre-conditions” are checked. This step has fixed time limit that is based on the design slag production rate. The slag sluicing sequence executes the following actions when the operator starts the sequence.

0 Open valves 14XV-0011, 14XV-0012 and 14XV-0014; and set 14LIC-0001 and

14FIC-0004 to AUTO mode. With respect to 14LIC-0001/14FIC-0004, the lever controller is used as master for the HP make-up water controller. The range of level control has a dead band to avoid that level variations lead to a continuous large variation

Close 14XV-0013 after 14XV-0014 is confirmed open.

Close 14XV-0002 after 14XV-0011 and 14XV-0012 are confirmed open.

Start the Fill timer (30-60 min) after 14XV-0011, 14XV-0012, 14XV0014 are

confirmed open and 14XV-0013, 14XV-0002 are closed.

(Note: The operator can adjust the ‘Fill’ timer limit in Step 27, based on the slag production rate.)

When 14LIC-0001 and 14FIC-0004 are in AUTO mode, and ‘Fill’ Timer has

elapsed or the operator has overridden the timer, move to step 1.

Isolate

In order to sluice the slag from high to atmospheric pressure, V-1403 must be isolated from the gasifier system. The lines to be isolated include the line from V-1402, HP water make-up, and the sluice support pumps. To isolate V-1403 from V-1402, the bottom outlet valves of V-1402 are closed. The gasifier water level make-up is made by addition of HP water to V-1403. Since V-1403 is isolated from the

gasifier system during sluicing, an alternate water make-up point is used into V-1402 and the make-up into V-1403 is closed. The sluice support pump P-1402A/B is isolated from V-1402 by switching the pump to recycle operation.

1 Open valve 14XV-000

2 to switch the sluice support pumps (P-1402A/B)

discharge to recycle operation. If valve open position is confirmed go to step 2.

2 Close valve 14XV-0012 to switch the sluice support pumps (P-1402A/B)

suction to recycle operation. The pump is now totally isolated from the rest of the system. If valve closed position is confirmed go to step 3.

3 Close valve 14XV-0011. If valve closed position is confirmed go to step 4.

4 Open 14XV-0013 to supply HP makeup water to the slag accumulator vessel

for loss of water due to the hydro-cyclone bleed. If valve open position is

confirmed go to step 5.

5 Reset the ‘Fill’ timer, close valve 14XV-0014 to stop supply of HP makeup

water to the sluice vessel and close valve 14XV-0009 to isolate sluice vessel

from accumulator vessel. Move to step 6 after valve positions are confirmed.

6 Close valve 14XV-0010 to complete isolation of sluice vessel and accumulator.

If valve closed position is confirmed go to step 7.

De-pressurize

This step allows reduction of the slag sluice vessel pressure to atmospheric via

split-range controller 14PdCS-0013. Initial de-pressurization occurs via the flare header (14XV-0021) followed by final depressurization to the atmospheric vent (14XV-0019). (For more details, refer to the control narrative for unit U-1400) Because traces of syngas components are absorbed in the water, the gas phase in V-1403 may also contain syngas components. The sluice sequence has been set up such that discharging of this contaminated gas is minimized. Nevertheless, it cannot be fully excluded. For this reason, the vent gas from the de-pressurization is initially sent to the flare.

7 Open valves 14XV-0006 and XV-0008 and confirm valve positions.

8 Set output of 14PdCS-0013 to 0% (to open 14PV-0013A). If 14-PI-0011 is >

2bar, open valve 14XV-0021 after a delay of 5 seconds to send gas to flare.

Move to step 9 if the pressure in sluice vessel is less than 4 bar (14PSL-0012) and 14PSL-0011 measures < 2 bar. An alarm will be given if the move to step

9 is not achieved within 5 minutes.

9 Set output of 14PdCS-0013 to 50% (to close 14PV-0013A). With a 5 seconds

time delay close 14XV-0021. If valve position is confirmed go to step 10.

10 Open valve 14XV-0019 (to vent system) when 14PSH-0011 is <3 bar (not

activated). After a delay of 15 seconds, set output of 14PDCS-0013 to 0% (to open 14PV-0013A). If valve position is confirmed and 14PSLL-0012 is

activated, go to step 11.

Dump

After the depressurization, V-1403’s bottom valves are opened allowing the slag to gravity flow to the slag dewatering tank T-1401. In this tank, the slag is removed from the water by use of drag chain X-1402 and transported to the slag intermediate storage area via the slag transport and weight belt X-1403

The slag dumping time from sluice vessel into de-watering tank is calculated based on maximum design slag flow through 12 inch valve with a minimum dumping time of 2 minutes.

11 Start the slag de-watering sequence program (14KS-0002) and close slide

valve XV-0020. If the slag de-watering program (14KS-0002) is running, i.e. the drag-chain and slag transportation belt is running, and the level in slag de-

watering tank is not high; then proceed to step 12 after pump-start timer (1

min). An alarm will be given if the move to step 12 is not achieved within 1

minute However if any of the transition conditions are not satisfied, the operator has the option to override it.

12 Open valve 14XV-0016. Proceed to step 13 if valve position is confirmed.

13 Open valves 14XV-0015 and 14 XV-0007 to initiate a slag dump and to keep

sluice filled with nitrogen and start dump timer (4.55 minutes). If the valve

positions are confirmed and level low switch is activated before dump timer

elapses and also after the high level switch of V-1404 is activated (14LSH-

0011), then proceed to step 14.

If the level is not low, and the dump timer has elapsed, then raise alarm. The

operator has the option to override the low level indication.

Flush

In order to clean the sluice vessel and make sure that all the slag has been dumped into de-watering tank, it is necessary to flush the sluice vessel before filling it.

14 Reset the dump timer, open valves 14XV-0029 and 14XV-0018 to flush sluice

vessel with treated water from storage tank. Set 14PIC-0021 to AUTO mode to introduce LLP N2 into the system through 14PV-0021A to assist the water flow from V-1404 to V-1403 after 14XV-0027 is confirmed closed. Start wash timer

(0.5 min). Move to step 15 when valve positions are confirmed and wash timer

has elapsed.

Fill Sluice Vessel

The emptied sluice vessel is filled with LP recycle water. The sluice vessel filling time can be calculated from balance.

15 Reset the wash timer, close valve 14XV-0015 and 14XV-0007 to isolate sluice

vessel. Open valve 14XV-0017 to start filling in the sluice vessel. If valve

positions are confirmed go to step 16.

16 Close 14XV0016. If valve positions are confirmed and level high is activated

(LSH-0007), then proceed to step 17.

An alarm will be given if the move to step 17 is not achieved within 5 minutes.

17 Close valves 14XV-0018, 14XV-0017 and 14XV-0029 to isolate the sluice fill

water system and after a delay open the slide valve 14XV-0020 in T-1402. Set 14PIC-0021 to MANUAL mode and set output to 0% to close 14PV-0021A.

Reset fill timer and move to step 18 after valve positions are confirmed.

动火作业管理规范测答案

检维修、动火、进入受限容器 特殊作业管理规范测试 姓名:成绩: 一、填空(每题5分共100分) 1、动火作业前,应辨识(),进行(),采取(),必要时编写()。 2、凡是没有办理(),没有落实()或安全工作方案,未设现场()以及安全工作方案有变动且未经批准,禁止动火。 3、动火作业许可证是动火作业现场操作依据,只限同类介质、同一设备、指定的措施和时间范围内使用,不得()、()。 4、在带有可燃、有毒介质的容器、设备和管线上不允许动火。确属生产需要应动火时,应制定可靠的()及()后方可动火。 5、企业应结合实际情况,对动火作业实行() 6、申请动火作业前,作业单位应针对()、()、( )等方面进行风险评估。 7、动火作业过程中应严格按照()或()的要求进行作业。 8、动火作业过程中,()硬件收作业现场。动火监护人发生变化需经批准。 9、遇有五级以上风不应进行室外(),遇六级以上风应停止室外() 10、动火作业申请人是动火(),负责提出动火作业申请,( )作业许可证,()作业安全措施,()动火作业,并对作业安全措施的有效性和可靠性负责。 11、动火前气体检测时间距动火时间不应超过()分钟。 12、动火作业前,应核对作业区与活动火点()浓度进行检测。

13、高处动火应采取防止火花溅落措施,并应在火花可能溅落的部位安排() 14、在埋地管线操作坑内进行动火作业的人员应系阻燃或不阻燃材料的()。 15、带压不置换动火作业是()动火作业,应严格控制。 16、严禁在()以及设备管道等腐蚀情况下进行带压不置换动火。 17、严禁在()气管道等可能存在中毒危险环境下进行带压不置换动火。 18、如动火作业中断超过()分钟,继续动火前,()、()应重新确认安全条件。 19、动火作业结束后,应清理(),解除相关隔离设施,东或监护人留守现场确认无任何火源和隐患后,申请人与批准人关闭动火作业证。 20、在动火过程中,发现()动火安全时()有权终止动火。 二、判断题 1、受限空间作业管理由总经理负责总体协调。() 2、受限空间的有害环境中空气的氧含量可以低于18%或超过 25%。() 3、作业前,必须将作业的受限空间与其他空间、管道等进行可靠隔离。并视空间情况进行清理、清洗、置换、通风等,可能存在有机物的受限空间,必须检测硫化氢、甲烷、一氧化碳、二氧化碳气体浓 度。() 4、受限空间作业时可根据受限空间作业情况,安排作业人员定时轮换,无需在受限空间外部设监护人。() 5、进入受限空间作业人员必须佩戴好规定的劳动防护用品,如安全

中断管理函数

中断管理函数 CM3内核支持256个中断,其中包含了16个内核中断和240个外部中断,并且具有256级的可编程中断设置。但STM32并没有使用CM3内核的全部东西,而是只用了它的一部分。STM32有76个中断,包括16个内核中断和60个可屏蔽中断,具有16级可编程的中断优先级。而我们常用的就是这60个可屏蔽中断,所以我们就只针对这60个可屏蔽中断进行介绍。 在MDK内,与NVIC相关的寄存器,MDK为其定义了如下的结构体: typedef struct { vu32 ISER[2]; u32 RESERVED0[30]; vu32 ICER[2]; u32 RSERVED1[30]; vu32 ISPR[2]; u32 RESERVED2[30]; vu32 ICPR[2]; u32 RESERVED3[30]; vu32 IABR[2]; u32 RESERVED4[62]; vu32 IPR[15]; } NVIC_TypeDef; STM32的中断在这些寄存器的控制下有序的执行的。了解这些中断寄存器,你才能方便的使用STM32的中断。下面重点介绍这几个寄存器: ISER[2]:ISER全称是:Interrupt Set-Enable Registers,这是一个中断使能寄存器组。上面说了STM32的可屏蔽中断只有60个,这里用了2个32位的寄存器,总共可以表示64个中断。而STM32只用了其中的前60位。ISER[0]的

bit0~bit31分别对应中断0~31。ISER[1]的bit0~27对应中断32~59;这样总共60个中断就分别对应上了。你要使能某个中断,必须设置相应的ISER位为1,使该中断被使能(这里仅仅是使能,还要配合中断分组、屏蔽、IO口映射等设置才算是一个完整的中断设置)。具体每一位对应哪个中断,请参考 stm32f10x_nvic..h里面的第36行处。 ICER[2]:全称是:Interrupt Clear-Enable Registers,是一个中断除能寄存器组。该寄存器组与ISER的作用恰好相反,是用来清除某个中断的使能的。其对应位的功能,也和ICER一样。这里要专门设置一个ICER来清除中断位,而不是向ISER写0来清除,是因为NVIC的这些寄存器都是写1有效的,写0是无效的。具体为什么这么设计,请看《CM3权威指南》第125页,NVIC概览一章。 ISPR[2]:全称是:Interrupt Set-Pending Registers,是一个中断挂起控制寄存器组。每个位对应的中断和ISER是一样的。通过置1,可以将正在进行的中断挂起,而执行同级或更高级别的中断。写0是无效的。 ICPR[2]:全称是:Interrupt Clear-Pending Registers,是一个中断解挂控制寄存器组。其作用与ISPR相反,对应位也和ISER是一样的。通过设置1,可以将挂起的中断接挂。写0无效。 IABR[2]:全称是:Active Bit Registers,是一个中断激活标志位寄存器组。对应位所代表的中断和ISER一样,如果为1,则表示该位所对应的中断正在被执行。这是一个只读寄存器,通过它可以知道当前在执行的中断是哪一个。在中断执行完了由硬件自动清零。 IPR[15]:全称是:Interrupt Priority Registers,是一个中断优先级控制的寄存器组。这个寄存器组相当重要!STM32的中断分组与这个寄存器组密切相关。IPR寄存器组由15个32bit的寄存器组成,每个可屏蔽中断占用8bit,这样总共可以表示15*4=60个可屏蔽中断。刚好和STM32的可屏蔽中断数相等。IPR[0]的[31~24],[23~16],[15~8],[7~0]分别对应中中断3~0,依次类推,总共对应60个外部中断。而每个可屏蔽中断占用的8bit并没有全部使用,而是只用了高4位。这4位,又分为抢占优先级和子优先级。抢占优先级在前,子优先级在后。而这两个优先级各占几个位又要根据SCB->AIRCR中中断分组的设置来决定。 这里简单介绍一下STM32的中断分组:STM32将中断分为5个组,组0~4。该分组的设置是由SCB->AIRCR寄存器的bit10~8来定义的。具体的分配关系如下表所示:

2014科学知识与能力训练六年级(下册)练习册参考答案

第一单元微小世界 1 放大镜 探究起跑线 1、说说哪些工作需要用到放大镜?放大镜的作用是什么? 探究接力棒 一、填一填 1.放大镜是我们在科学学习中经常用到的观察工具,也叫__凸透镜__ ,它的特点是中间_厚__,边缘__薄__。 2.人类很早就发现某些___透明的宝石__ 可放大物体的影像,在13世纪,英国一位主教__格罗斯泰斯特,最早提出放大装置的应用,他的学生培根设计并制造了能增进视力的眼镜。 3.放大镜不仅能将物体图像____放大__,而且能让我们观察到_肉眼_观察不到的细节。 二. 选一选 1.在下列器材中加上水,哪些器材可以用来制作放大镜。(B)

A、不透明的杯子 B、透明塑料袋 C、方形的玻璃器具 2.放大镜的放大倍数和镜片的(A)有关。 A凸度 B材料 C面积 3、放大镜的放大倍数越大,所能观察到的视野就(C)。 A、越大 B、不变 C、越小 2放大镜下的昆虫世界 探究接力棒 一.填一填 1.在放大镜下我们可以看到蟋蟀的“耳朵”在足的侧。 2.触角是昆虫主要的感觉器官,有识别气味功能,也有平衡、帮助呼吸、识别异性等作用。不同昆虫触角的形状不同,科学研究表明昆虫触角就是的它“鼻子”。 3.草蛉是蚜虫的天敌。蚜虫在植物嫩枝上吸食汁液,每个蚜虫只有针眼般大小,我们用肉眼只能看见它们是密密麻麻的一片,但在10倍放大镜下我们可以看清它们的肢体。4.在放大镜下我们观察到蝴蝶的翅膀表面上布满了彩色小鳞片,这些鳞片其实是扁平的细毛。 3. 放大镜下的晶体 探究接力棒 一、填一填 1.将溶液风干或加热使其水分蒸发可使物质重新结晶析出,得到的是这种溶液的晶体。2.像食盐、白糖、碱面、味精的颗粒都是有规则几何外形,称为晶体。常见的晶体有立方体、金字塔形、针形等形状。 二、选一选

英美概况美国部分整理

America The Founding of Colonies殖民地的建立 First Inhabitants:American Indians Discovery of the New World: 1492 Christopher Columbus →the discoverer of America (Italian)Spanish Queen’ s support 1501-2 Amerigo Vespucci →the new land was name after him as America. reached the mouth of Amazon River America—the New World Europe—the Old World 13 colonies: New England Colonies: Mid Atlantic Colonies: Southern Colonies: Massachusetts →(2nd colony,1620)New York Maryland New Hampshire Pennsylvania Virginia →(1st colony,1607)Rhode Island Delaware North Carolina Connecticut South Carolina Georgia →(the last colony,1733)New England Region(6个): Massachusetts, Rhode Island, Connecticut, New Hampshire, Maine and Vermont 建立原因: Virginia, 1607 Virginia Company For foreign expansion as a way of easing religious dispute and economic distress in England 105 men (no women) Jamestown in honor of the king Massachusetts In 1620 102 Puritans (“Pilgrim Fathers”), in Mayflower, from Plymouth in England to America First in Plymouth (today’s Massachusetts); and then Boston Seek religious freedom Mayflower Compact <五月花号公约>:self-government Hardships when arrived the help of the Indians Thanksgiving Day to thank the Indians and the God for protection The next three colonies Rhode Island, Connecticut, New Hampshire Reasons: 1. religious disputes and struggles in Massachusetts intensified 2. more immigrants

作业中断再展开规定

1 目的 本文件规定了作业中断的界定,在重新展开生产前的首件产品进行鉴定的控制要求,工作程序和质量职责,确保每个操作工对产品加工要求进一步明确,提高批次产品的合格率。 2 适用范围 本文件适用于本厂对作业中断重新再展开的控制要求。 3 职责 3.1 质量管理部负责对作业中断再展开后首件产品实施鉴定。 3.2 生产技术部参与首件产品的鉴定。 4 工作程序 4.1 作业中断的界定: 1)生产调整,产品品种更换; 2)更换工装; 3)发生设备维修后; 4)当班正式开展生产前; 5)作业中断4小时以上时等。 为确保产品满足客户要求和符合标准,必须对作业中断再展开的首件产品按规定程序进行鉴定,不经首件鉴定的产品,不准成批生产。 4.2 对每种产品,均由生产技术部根据合同要求、有关标准编制相应的作业指导书和检验标准的具体要求,并发放到相关人员。 4.3 在批量生产前,先制作一件产品(首件)交质检员确认,生产过程中严格要求按照工艺文件的要求进行生产,经过各道工序加工和工序检验后,按出厂要求完成首件产品的生产。 4.4 由质量管理部负责会同生产技术部部门人员按最终检验指导书、检验标准、客户确认样等对首件产品进行鉴定,鉴定结束填写《首件产品检验记录》,鉴定记录由质量管理部保存。 4.5首件鉴定内容: A、工艺文件是否完整、正确,并能指导生产。 B、产品造型结构是否合理、适合批量生产。 C、生产工艺安排是否合理可行。 D、首件产品是否符合合同、客户确认样及安全标准要求。 4.6 经鉴定合格的首件样品,由质检员标示“S”,由各车间保存至当班生产结束后移工,作为各工序检验员检验产品的依据。 4.7在首件产品鉴定时,发现产品不能满足技术、质量、客户的要求时,则作为不合格品处理,并依据不合格品控制程序执行。 4.8鉴定时发现不合格应分析原因,找出解决的办法并实施纠正或纠正措施,当需对工艺文件等技术文件实施更改时,应执行《文件控制程序》的规定要求。 4.8 本文件涉及到的记录由质量管理部执行《记录控制程序》的规定要求。。 5 相关记录 5.1《首件检验记录》

中断异常处理流程

计算机体系结构中,异常或者中断是处理系统中突发事件的一种机制,几乎所有的处理器都提供这种机制。异常主要是从处理器被动接受的角度出发的一种描述,指意外操作引起的异常。而中断则带有向处理器主动申请的意味。但这两种情况具有一定的共性,都是请求处理器打断正常的程序执行流程,进入特定程序的一种机制。若无特别说明,对“异常”和“中断”都不作严格的区分。本文结合经过实际验证的代码对ARM9中断处理流程进行分析,并设计出基于S3C2410芯片的外部中断处理程序。 1.异常中断响应和返回 系统运行时,异常可能会随时发生。当一个异常出现以后,ARM微处理器会执行以下几步操作: 1) 将下一条指令的地址存入相应连接寄存器LR,以便程序在处理异常返回时能从正确的位置重新开始执行。 2)将CPSR复制到相应的SPSR中。 3)根据异常类型,强制设置CPSR的运行模式位。 4) 强制PC从相关的异常向量地址取下一条指令执行,从而跳转到相应的异常处理程序处。 这些工作是由ARM内核完成的,不需要用户程序参与。异常处理完毕之后,ARM微处理器会执行以下几步操作从异常返回: 1)将连接寄存器LR的值减去相应的偏移量后送到PC中。 2)将SPSR复制回CPSR中。 3) 若在进入异常处理时设置了中断禁止位,要在此清除。 这些工作必须由用户在中断处理函数中实现。为保证在ARM处理器发生异常时不至于处于未知状态,在应用程序的设计中,首先要进行异常处理。采用的方式是在异常向量表中的特定位置放置一条跳转指令,跳转到异常处理程序。当ARM处理器发生异常时,程序计数器PC会被强制设置为对应的异常向量,从而跳转到异常处理程序。当异常处理完成以后,返回到主程序继续执行。可以认为应用程序总是从复位异常处理程序开始执行的,因此复位异常处理程序不需要返回。 2.异常处理程序设计 2.1 异常响应流程

2014科学知识与能力训练六年级下册练习册参考标准答案

第一单元微小世界 1放大镜 探究起跑线 1、说说哪些工作需要用到放大镜?放大镜的作用是什么? 探究接力棒 一、填一填 1.放大镜是我们在科学学习中经常用到的观察工具,也叫__凸透镜__ ,它的特点是中间_厚__,边缘__薄__。 2.人类很早就发现某些___透明的宝石__可放大物体的影像,在13世纪,英国一位主教__格罗斯泰斯特,最早提出放大装置的应用,他的学生培根设计并制造了能增进视力的眼镜。 3.放大镜不仅能将物体图像____放大__,而且能让我们观察到_肉眼_观察不到的细节。二.选一选 1.在下列器材中加上水,哪些器材可以用来制作放大镜。( B) A、不透明的杯子 B、透明塑料袋 C、方形的玻璃器具 2.放大镜的放大倍数和镜片的(A)有关。 A凸度B材料C面积 3、放大镜的放大倍数越大,所能观察到的视野就( C)。 A、越大 B、不变 C、越小 2 放大镜下的昆虫世界 探究接力棒

一.填一填 1.在放大镜下我们可以看到蟋蟀的“耳朵”在足的内侧。 2.触角是昆虫主要的感觉器官,有识别气味功能,也有平衡、帮助呼吸、识别异性等作用。不同昆虫触角的形状不同,科学研究表明昆虫触角就是的它“鼻子”。 3.草蛉是蚜虫的天敌。蚜虫在植物嫩枝上吸食汁液,每个蚜虫只有针眼般大小,我们用肉眼只能看见它们是密密麻麻的一片,但在10倍放大镜下我们可以看清它们的肢体。 4.在放大镜下我们观察到蝴蝶的翅膀表面上布满了彩色小鳞片,这些鳞片其实是扁平的细毛。 3. 放大镜下的晶体 探究接力棒 一、填一填 1.将溶液风干或加热使其水分蒸发可使物质重新结晶析出,得到的是这种溶液的晶体。2.像食盐、白糖、碱面、味精的颗粒都是有规则几何外形,称为晶体。常见的晶体有立方体、金字塔形、针形等形状。 二、选一选 1.选出相应的晶体形状:水晶(A)雪花( B )维生素C( C)。 A、立方体 B、六角形C、针形 2.下面全是晶体的一组是( A)。 A、糖、碱、维生素C B、水晶、雪花、玻璃 C、盐、味精、珍珠 三、判一判 1.自然界中所有的固体都是晶体。(×) 2.碱面的晶体像花瓣,而食盐的晶体像树枝。 (×) 3.许多岩石是由矿物晶体集合而成的。(√) 4.晶体的形状多种多样,没有规则。( ×) 4.怎样放得更大 探究接力棒 一、填一填 1.两个不同放大倍数的凸透镜组合起来,调整它们之间的距离来观察物体,这样物体的图像被放得更大。 2.显微镜的发明,是人类认识世界的一大飞跃,把人类带入一个崭新的微观世界。

英美概况 美国篇

一、概况 1.50 States Its forty-eight contiguous states and Washington, D.C., the capital district, lie between the Pacific and Atlantic Oceans, bordered by Canada to the north and Mexico to the south. The state of Alaska is in the northwest of the continent, with Canada to the east and Russia to the west across the Bering Strait. The state of Hawaii is an archipelago in the mid-Pacific. The country also possesses several territories in the Caribbean and Pacific. 2.Races and Population 在东部时间2006年10月17日早晨7点46分,美国人口总数突破三亿大关,这是美国人口史上具有里程碑意义的一刻。3.06188亿(2009年,世界国家和地区第3名,次于中国、印度) 3.The Composition of American Population 1)The Majority:the descendants of immigrants from European countries, such as France, Germany, Italy, Ireland, and Spain;“Pilgrim Fathers”;Potato famine 2)The Minorities:The African Americans: black slaves from Africa;Indians: the number of native Americans has been falling, no more than a million;The Hispanics: immigrants or descendents of immigrants from Latin America, such as Cuba and Mexico (Mexicans are the most numerous among them);Asian-Americans, from China, Japan and Korea;More than a million Chinese-Americans, most of whom live in Hawaii, on the West Coast and in some big cities;5 million Jews in America, many of whom went there during the Second World War and achieved great success in America. 3)“The Melting Pot”:It means immigrants from different nations all over the world have mixed to make up the American nation.“old immigrants”: came to America before 1860;“new immigrants”, after 1860.The Immigration Quota Law was passed by the American government in 1924. 二、Early History 1.Columbus:1492 Christopher Columbus arrived at Salvador Island, thus discovered the “New World”.(Amerigo V espucci: named “America”) 2.The first English permanent settlement:1607 The first group of English colonies came to America and built their settlement of Charleston which later was expanded into the first English colony known as Virginia. 3.Pilgrim Fathers:1620 Some English immigrants (Puritans) sailed into Plymouth on a ship called the “Mayflower”.102 Puritans, 60 days.Mayflower Compact, “one man one vote”, “one-man rule” 4.The values of Puritans:hard work; commercial success; the importance of education 5.Thanksgiving:1621 Thanksgiving Day was first celebrated by the pilgrims of the Plymouth Colony. 三、American Revolutionary

中断问题(详解)

概念:引起CPU中断的根源,称为中断源。中断源向CPU提出的中断请求。CPU暂时中断原来的事务A,转去处理事件B。对事件B处理完毕后,再回到原来被中断的地方(即断点),称为中断返回。实现上述中断功能的部件称为中断系统(中断机构)。 80C51的中断系统有5个中断源,2个优先级,可实现二级中断嵌套(就是可以在嵌套过程中再次响应嵌套)。 中断源 1、INT0(P3.2),外部中断1。可由IT0(TCON.0)选择其为低电平有效还是下降沿有效。当CPU检测到P3.2引脚上出现有效的中断信号时,中断标志IE0(TCON.1)置1,向CPU 申请中断。 2、INT1(P3.3),外部中断2。可由IT1(TCON.2)选择其为低电平有效还是下降沿有效。当CPU检测到P3.3引脚上出现有效的中断信号时,中断标志IE1(TCON.3)置1,向CPU 申请中断。 3、TF0(TCON.5),片内定时/计数器T0溢出中断请求标志。当定时/计数器T0发生溢出时,置位TF0,并向CPU申请中断。 4、TF1(TCON.7),片内定时/计数器T1溢出中断请求标志。当定时/计数器T1发生溢出时,置位TF1,并向CPU申请中断。 5、RI(SCON.0)或TI(SCON.1),串行口中断请求标志。当串行口接收完一帧串行数据时置位RI或当串行口发送完一帧串行数据时置位TI,向CPU申请中断。 中断请求标志 1、TCON的中断标志 IT0(TCON.0):外部中断0触发方式控制位。 ●当IT0=0时:为电平触发方式。 ●当IT0=1时:为边沿触发方式(下降沿有效)。 IE0(TCON.1):外部中断0中断请求标志位。 IT1(TCON.2):外部中断1触发方式控制位。 IE1(TCON.3):外部中断1中断请求标志位。

英美概况美国部分复习.docx

Melting Pot: Immigrants from different regions and cultures came to live in the United States, their old ways of life melt away and they became part of the American culture? WASPs: WASPS are the mainstream Americans, referring to the white Anglo-Saxon Protestants The Hispanics: The Hispanics are Spanish-speaking people from Latin America, which was once dominated by the Spanish Empire?American Indians: The Indian peoples are known as the first Americans. When Columbus landed in the New World in 1492, he thought he had reached India and called the natives Indians? Separation of powers: Under the federalist system, the federal and the state governments have separate and distinct powers laid down in the Constitutio n. ^Winner-take-air5principle: The party that wins most votes (simple majority) in a state wins all the electoral votes for the state and the defeated party gets none? Federalism: Federalism in the United States is the evolving relationship between U.S. state governments and the federal government of the United States? Since the founding of the country, and particularly with the end of the American Civil War, power shifted away from the states and towards the national government. Thanksgiving Day: It's on the fourth Thursday of Novembe匚It is a typical

作业风险分析及控制措施

动火作业风险分析及控制措施 序号风险分析安全措施 ①将动火设备、管道内的物料清洗、置换,经分析合格。 ②储罐动火,清除易燃物,罐内盛满清水或惰性气体保护。 1 易燃易爆有害物质 ③设备内通(氮气、水蒸气)保护。 ④塔内动火,将石棉布浸湿,铺在相邻两层塔盘上进行隔离。 ⑤进入受限空间动火,必须办理《受限空间作业证》 火星窜入其它设备或易燃切断与动火设备相连通的设备管道并加盲板___块隔断,挂牌,并办理《抽 2 物侵入动火设备堵盲板作业证》。 ①清除动火点周围易燃物,动火附近的下水井、地漏、地沟、电缆沟等清除 3 动火点周围有易燃物 易燃后予封闭。②电缆沟动火,清除沟内易燃气体、液体,必要时将沟两端 隔绝。 4 泄漏电流(感应电)危害电焊回路线应搭接在焊件上,不得与其它设备搭接,禁止穿越下水道(井)。 5 火星飞溅①高处动火办理《高处作业证》,并采取措施,防止火花飞溅。 ②注意火星飞溅方向,用水冲淋火星落点。 6 气瓶间距不足或放置不当①氧气瓶、溶解乙炔气瓶间距不小于5m,二者与动火地点之间均不小于10m。 ②气瓶不准在烈日下曝晒,溶解乙炔气瓶禁止卧放。 7 电、气焊工具有缺陷动火作业前,应检查电、气焊工具,保证安全可靠,不准带病使用。 8 作业过程中,易燃物外泄动火过程中,遇有跑料、串料和易燃气体,应立即停止动火。 ①室内动火,应将门窗打开,周围设备应遮盖,密封下水漏斗,清除油污, 9 通风不良 附近不得有用溶剂等易燃物质的清洗作业。②采用局部强制通风; ①取样与动火间隔不得超过30min,如超过此间隔或动火作业中断时间超过 3 0min,必须重新取样分析。 10 未定时监测 ②做采样点应有代表性,特殊动火的分析样品应保留至动火结束。 ③动火过程中,中断动火时,现场不得留有余火,重新动火前应认真检查现 场条件是否有变化,如有变化,不得动火。 ①监火人应熟悉现场环境和检查确认安全措施落实到位,具备相关安全知识 11 和应急技能,与岗位保持联系,随时掌握工况变化,并坚守现场。②监火人监护不当 随时扑灭飞溅的火花,发现异常立即通知动火人停止作业,联系有关人员采 取措施。 12 应急设施不足或措施不当 ①动火现场备有灭火工具(如蒸汽管、水管、灭火器、砂子、铁铣等)。 ②固定泡沫灭火系统进行预启动状态。 13 涉及危险作业组合,未落 实相应安全措施 若涉及高处、抽堵盲板、管道设备检修作业等危险作业时,应同时办理相关 作业许可证。 14 作业条件发生重大变化若作业条件发生重大变化,应重新办理《*级动火作业证》。作业人员签字: 监护人员签字:

14小学科学知识与能力训练五年级下册练习册参考答案

2014小学科学知识与能力训练五年级下册练习册参考答案 第一单元沉和浮1物体在水中是沉还是浮探究接力棒一、1.泡沫块充了气的游泳圈塑料玩具石块砖头鸡蛋2.体积轻重二、× √ × 2沉浮与什么因素有关探究接力棒一、√ √ √ 二、BA3橡皮泥在水中的沉浮探究接力棒CBCBB4造一艘小船探究接力棒1.浸入水中的体积增大,更容易浮起来;增加轮船浸入水的体积2.体积大、质量轻、容易上浮5浮力探究接力棒一、浮力乙二、√ √ √ 6下沉的物体会受到水的浮力吗探究接力棒一、√ × √ √ × 二、BC7马铃薯在液体中的沉浮探究接力棒√ √ × √ 8探索马铃薯沉浮的原

因探究接力棒一、√ × 二、AC单元练习一、1.浮力2.轻重体积密度3.物体排开的水量二、√ × 三、选择题BBAB四、往水里放盐改变橡皮泥的形状,增大排开水量第二单元热1热起来了探究接力棒一、热热热二、太阳辐射矿物燃烧物体摩擦2给冷水加热探究接力棒一、不变变大不变变小二、不能。冷水受热时体积会变大,太满容易溢出来浇天火焰发生危险3液体的热胀冷缩探究接力棒一、上升增大下降变小热胀冷缩二、1.铺木地板要留伸缩缝;野外的电线夏天时会粘一起;煮饺子时,饺子鼓起来2.防止热胀损坏包装4空气的热胀冷缩探究接力棒一、1.变大变小2.大二、丘丘球放入热水后变球壁变软,同时内部空气受热膨胀就把凹下去的地方鼓起来了。

5金属热胀冷缩吗探究接力棒1.热胀冷缩2.防止铁轨因热胀冷缩而发生弯曲或断裂3.缩短伸长6热是怎样传递的探究接力棒1.高低2.高低7传热比赛探究接力棒一、铁、铝、铜、金、银玻璃、塑料、棉布、纸、土、空气、陶瓷、木头、水二、言诚理可8设计制作一个保温杯探究接力棒1.独自完成,说明原理即可2.是的。因为保温和冷藏的原理相同,只是目的相反。单元练习一1.热热热2.不良导体散失3.鼓起来凹下去4.不高小不变大5.热胀冷缩6.大7.高低8.高低9.热的良导体热的不良导体10.铁、铝、铜、金、银玻璃、塑料、棉布、纸、土、空气、陶瓷、木头、水11。不锈钢好好二、1.因热胀冷缩,钢制桥梁温度升高时变长,温度下降时变短,放磙子上可防止气温

英美概况 美国篇1地理位置

英美概况(美国篇1:地理位置) 1.Alaska and Hawaii are the two newest states in American.Alaska northwestern Canada,and Hawaii lies in the central Pacific. 阿拉斯加和夏威夷是最近加入美国的两个新州。阿拉斯加在加拿大的西北部,夏威夷位邻中太平洋。(本细节还有考"一句话简答"的可能) 2.The U.S has a land area of 9.3 million square kilometres.It is the fourth largest country in the world in size after Russia,Canada and China. 就面积而言,美国是世界第四大国,就人口而言,美国是世界是第三大国。 3.Of all states of American,Alaska is the lagest in area and Rhode Island the smallest.But on the mainland Texas is the largest sate of the country. 所有州中,阿拉斯加是面积最大的州,罗得岛最小,在美国大陆,最大的州是得克萨斯州。 4.The Rockies,the backbone of the North American Continent,is also known as the Continental Divide. 落基山脉是北美大陆的脊梁,也被成为大陆分水岭。 5.The two main mountain ranges in American are the Appalachian mountains and the Rocky mountains. The Appalachians run slightly from the northeast to southwest and the Rocky mountains run slightly from the northwest to southeast. 阿巴拉契亚山脉和落基山脉是美国的两座大山脉。(本细节有考"一句话简答题"的可能) 6.The Mississippi River is the largest river in American,over 6000 kilometers.The Mississippi has been called "father of waters"or "old man river" 密西西比河是美国最长河流,有被称作"众水之父"或"老人河"。 7.The Ohio river has been called the American Ruhr,As in Germany, the area along the river is rich in valuable deposits of high-grade coking coal and is well known for its steel industry.The river provides cheap water transportation for raw materials. 俄亥俄河被称作美国的鲁尔河,就像德国一样,沿河有丰富的高品千周的焦煤,并且因其钢铁而著名。另外,该河还为原材料提供了廉价的水路运输。 8.On the Pacific side there are two great rivers:the Colorado in the south and the Columbia ,which rises in Canada. 太平洋沿岸有两大河:科罗拉多河及哥伦比亚河。 9。The Rio Grande River forms a natural boundary between Mexico and the United States. 格兰德河是美国和墨西哥之间的开然界河(本细节考选择和简答可能性大)10.the most important lakes in the United States are the Great Lakes. They are Lake Superior,which is the largest fresh water lake in the world, Lake Michigan ,the only entirely in the U.S.,Lake Huron,Lake Eire and Lake Ontario.They are located between Canada and the United States except Lake Michigan.

单片机_C语言函数_中断函数(中断服务程序)

单片机_C语言函数_中断函数(中断服务程序) 在开始写中断函数之前,我们来一起回顾一下,单片机的中断系统。 中断的意思(学习过微机原理与接口技术的同学,没学过单片机,也应该知道),我们在这里就不讲了,首先来回忆下中断系统涉及到哪些问题。 (1)中断源:中断请求信号的来源。(8051有3个内部中断源T0,T1,串行口,2个外部中断源INT0,INT1(这两个低电平有效,上面的那个横杠不知道怎么加上去))(2)中断响应与返回:CPU采集到中断请求信号,怎样转向特定的中断服务子程序,并在执行完之后返回被中断程序继续执行。期间涉及到CPU响应中断的条件,现场保护,现场恢复。 (3)优先级控制:中断优先级的控制就形成了中断嵌套(8051允许有两级的中断嵌套,优先权顺序为INT0,T0,INT1,T1,串行口),同一个优先级的中断,还存在优先权的高低。优先级是可以编程的,而优先权是固定的。 80C51的原则是①同优先级,先响应高优先权②低优先级能被高优先级中断③正在进行的中断不能被同一级的中断请求或低优先级的中断请求中断。 80C51的中断系统涉及到的中断控制有中断请求,中断允许,中断优先级控制 (1)3个内部中断源T0,T1,串行口,2个外部中断源INT0,INT1 (2)中断控制寄存器:定时和外中断控制寄存器TCON(包括T0、T1,INT0、INT1),串行控制寄存器SCON,中断允许寄存器IE,中断优先级寄存器IP 具体的是什么,包括哪些标志位,在这里不讲了,所有书上面都会讲。 在这里我们讲下注意的事项 (1)CPU响应中断后,TF0(T0中断标志位)和TF1由硬件自动清0。 (2)CPU响应中断后,在边沿触发方式下,IE0(外部中断INT0请求标志位)和IE1由硬件自动清零;在电平触发方式下,不能自动清楚IE0和IE1。所以在中断返回前必须撤出INT0和INT1引脚的低电平,否则就会出现一次中断被CPU多次响应。 (3)串口中断中,CPU响应中断后,TI(串行口发送中断请求标志位)和RI(接收中断请求标志位)必须由软件清零。 (4)单片机复位后,TCON,SCON给位清零。 C51语言允许用户自己写中断服务子程序(中断函数) 首先来了解程序的格式: void 函数名() interrupt m [using n] {} 关键字 interrupt m [using n] 表示这是一个中断函数 m为中断源的编号,有五个中断源,取值为0,1,2,3,4,中断编号会告诉编译器中断程序的入口地址,执行该程序时,这个地址会传个程序计数器PC,于是CPU开始从这里一条一条的执行程序指令。 n为单片机工作寄存器组(又称通用寄存器组)编号,共四组,取值为0,1,2,3 中断号中断源 0 外部中断0 1 定时器0 2 外部中断1 3 定时器1中断 4 串行口中断 (在上一篇文章中讲到的ROM前43个存储单元就是他们,这5个中断源的中断入口地址为: 这40个地址用来存放中断处理程序的地址单元,每一个类中断的存储单元只有8B,显然不

小学六年级上册第一单元科学知识与能力训练答案

常用的工具 1、 我的研究计划(参考) 2、用开瓶器口子靠近把手的部分卡住玻璃瓶盖的一端,用力往上翘,就能轻松将瓶盖打开。 打开盖子的工具 一、1、杠杆;支点;力点;重点。 2、杠杆、轮轴、斜面。 3、杠杆;支点;重点;力点。 二、1、√2、× 三、1、 杠杆可以帮我们 翘起物体,有些 杠杆省力,有些 杠杆不省力但是 省距离。

2、当支点不断向筷子尖端移动时,越来越容易夹起菜;当支点不断向筷子顶端移动时,越来越难夹起菜。 杠杆的研究 一、1、省力;费力;既不省力又不费力 2、省力 3、省力;费力 二、1、B 2、AC;B;D 三、1、×2、×、 四、不是所有杠杆的三个点都在一条直线上,例如起钉锤。 螺丝刀里的科学 一、1、轮轴 2、螺丝刀、门把手、汽车方向盘、水龙头。 3、省力;省力 二、1、√2、√3、√4、× 三、我会选择轮轴B提起重物。将重物 挂在轴上,在轮上用力,因为轮轴的轮 越大越省力。 动滑轮和定滑轮 一、定滑轮,改变力的方向;动滑轮,省力。 二、1、(1)电梯(2)吊车

(3)自行车刹车装置(4)晒衣架 2、 起重机 一、1、滑轮组,省力,改变力的方向 2、A是定滑轮,作用是改变力的方向。B是动滑轮,作用是省力。C是滑轮组,作用是既能省力,又能改变力的方向。D是滑轮组,作用是既能省力,又能改变力的方向。 二、B;C 在斜坡上 一、1、斜面,斧头、剪刀、螺丝钉、指甲钳

2、省力,越小越省力 3、省力 二、B 三、1、√2、√ 四、简答题 可以省距离:手移动较少的距离,可以是物体移动很远。比如筷子,手指移动较小,而筷子的底部可以张开很大。 我的自行车 一、轮轴、杠杆;齿轮,快 二、 三、简答题 我们生活中的自行车,电梯,起重机,缝纫机,洗衣机,单轮车,抽水机等事物与机械密切有关。 单元测试 一、1、×2、√3、×4、×5、√6、√7、× 二、1、B 2、C 3、C 4、A 5、A、D 三、1、不省力的简单机械有:镊子,钓鱼杆,筷子,火钳等。 可以增加作用距离,也就是省距离。 2、螺丝刀

相关文档
相关文档 最新文档