文档库 最新最全的文档下载
当前位置:文档库 › 航空发动机强度与振动课程设计报告

航空发动机强度与振动课程设计报告

航空发动机强度与振动课程设计报告
航空发动机强度与振动课程设计报告

航空发动机强度与振

课程设计报告

姓名:111

学号: 111

专业:飞行器动力工程

班级:111

指导教师:111

二0一一年十一月

题目及要求

题目 基于ANSYS 的叶片强度与振动分析

1.叶片模型

把叶片简化为根部固装的等截面悬臂梁。

叶片模型如右图所示,相关参数如下:

叶片长度:0.04m 叶片宽度:0.008m

叶片厚度:0.002m

叶根截面距旋转轴的距离为0.16m

材料密度:3

m /kg 7900

弹性模量:

a 11P 10.12 泊松比 : 0.3

2.叶片的静力分析

(1)叶片在转速为5000rad/s 下的静力分析。

要求:得到von Mises 等效应力分布图,并对叶片应力分布进行分析说明。

3.叶片振动的有限元分析

(1)叶片静频计算与分析

要求:给出1到10阶的叶片振型图,并说明其对应振动类型。 (2)叶片动频计算与分析

要求:计算出叶片在转速为1000rad/s ,

2000rad/s,4000rad/s,8000rad/s,10000rad/s 下的动频值,用表格形式表示。

(3)共振分析

要求:根据前面的计算结果,做出叶片共振图(或称Campbell 图),找出

叶片的共振点及共振转速。

4. 按要求撰写课程设计报告

说明:网格划分必须保证结果具有一定精度。各输出结果图形必须用ANSYS 的图片输出功能,不允许截图。

课程设计报告

---------基于ANSYS的叶片强度与振动分析

一. ANSYS有限元分析的一般步骤

(1)建立模型:定义材料基本属性(实体,密度,弹性模量,泊松比等),建立实体模型,确定与旋转轴之间的关系,将实体网格化。

(2)加载并求解:选择加载面,添加转速,静态求解。修改分析类型.

(3)查看分析结果:按要求(如von Mises)查看应力分布图和计算结果.

二.叶片的静力分析

由图可知,离心拉伸应力从叶根沿叶高逐渐减小,因为截面的离心拉伸应力是该截面以上质量所产生离心力,越接近叶根,其上部质量越大,故所产生的离心拉伸应力越大。

三.叶片振动的有限元分析

(1)叶片静频计算与分析

一阶振型一弯

二阶振型一弯

三阶振型二弯

四阶振型一扭

五阶振型三弯

六阶振型二弯

七阶振型二扭

八阶振型伸缩

九阶振型四弯

十阶振型三扭

(2)叶片动频计算与分析

转速

一阶振型

二阶振型

三阶振型

四阶振型

五阶振型

1000 1147.3 4126.1 6805.8 9383.8 19488 2000 1372.8 4193.9 7031.1 9415 19717 4000 2034 4454.4 7865.3 9538.6 20605 8000 3598.6 5367.6 10014 10534 23780 10000 4410.3 5957.9 10353 12135 24645 转速

六阶振型

七阶振型

八阶振型

九阶振型

十阶振型

1000 22546 28824 32535 39943 50382 2000 22613 28891 32545 40179 50485 4000 22878 29154 32582 41109 50894 8000 23906 30169 32730 44603 52481 10000

25870

30897

32841

47025

53624

(3)共振分析

自振频率线与倍频线的交点就是共振点,该交点对应的转速就是共振转速。

010000

20000

30000

40000

50000

60000

70000

80000

2000

4000

60008000

10000

12000

转速

频率

一阶振型二阶振型三阶振型四阶振型五阶振型六阶振型七阶振型八阶振型九阶振型十阶振型K=1K=2K=3K=4K=5K=6K=7

振动力学课程设计报告

振动力学课程设计报告-(2) 振动力学课程设计报告 课设题目:电磁振动给料机的振动分析与隔振设计 单位: 专业/班级: 姓名:

指导教师: 1、课题目的或意义 通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中 的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。 2、课题背景: 1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。料槽衬板采用20mm厚钢板。料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。 2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下, 应尽可能减轻振动槽体的质量。从而使其在实际工程应用中会有非常广泛的前景。 二、振动(力学)模型建立

1、结构(系统)模型简介

k4、C4分别为尼龙连接板得等效刚度和阻尼。 g为偏心块质量,m为给料槽体质量,m2激振器的振动质量。 m R —输送槽体(包括激振器)的质量,1500kg ;即g m 叫 m G —槽内物料的结合质量。 在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。 2、系统模型参数 (包括系统所必需的几何、质量、等效刚、激励等)

压电陶瓷振动的干涉测量实验报告

一、实验目 压电陶瓷振动的干涉测量实验报告 的与实验仪 器 1.实验目的 (1)了解压电陶瓷的性能参数;? (2)了解电容测微仪的工作原理,掌握电容测微仪的标定方法; ? (3)、掌握压电陶瓷微位移测量方法。 2.实验仪器 压电陶瓷材料(一端装有激光反射镜,可在迈克尔逊干涉仪中充当反射镜)、光学防震平台、半导体激光器、双踪示波器、分束镜、反射镜、二维可调扩束镜、白屏、驱动电源、光电探头、信号线等。 二、实验原理 1. 压电效应 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。 1) 正压电效应:压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。对于各向异性晶体,对晶体施加应力时,晶体将在 X,Y,Z 三个方向出现与应力成正比的极化强度,即: E = g·T(g为压电应力常数), 2) 逆压电效应:当给压电晶体施加一电场 E 时,不仅产生了极化,同时还产生形变,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效

应。这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。存在如下关系: S = d·U(d为压电应变常数) 对于正和逆压电效应来讲, g和d 在数值上是相同的。 2. 迈克耳逊干涉仪的应用 迈克耳逊干涉仪可以测量微小长度。上图是迈克耳逊干涉仪的原理图。分光镜的第二表面上涂有半透射膜,能将入射光分成两束,一束透射,一束反射。分光镜与光束中心线成 45°倾斜角。M1和 M2为互相垂直并与分束镜都成 45°角的平面反射镜,其中反射镜 M1后附有压电陶瓷材料。 由激光器发出的光经分光镜后,光束被分成两路,反射光射向反射镜 M1(附压电陶瓷),透射光射向测量镜 M2(固定),两路光分别经 M1、M2反射后,分别经分光镜反射和透射后又会合,经扩束镜到达白屏,产生干涉条纹。M1和 M2与分光镜中心的距离差决定两束光的光程差。因而通过给压电陶瓷加电压使 M1随之振动,干涉条纹就发生变化。由于干涉条纹变化一级,相当于测量镜 M1移动了λ/2,所以通过测出条纹的变化数就可计算出压电陶瓷的伸缩量。 三、实验步骤 1)将驱动电源分别与光探头,压电陶瓷附件和示波器相连,其中压电陶瓷 附件接驱动电压插口,光电探头接光探头插口,驱动电压波形和光探头波形插口分别接入示波器 CH1 和 CH2; 2)在光学实验平台上搭制迈克尔逊干涉光路,使入射激光和分光镜成 45 度,反射镜 M1 和 M2与光垂直,M1 和 M2 与分光镜距离基本相等;

弹簧振子实验报告

弹簧振子实验报告 一、引言 ?实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ?实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F =_ kx⑴ 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷?这就是胡克定律?式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x 为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: + Arx = O x = Asin +(/>) (3) 式表明?弹簧振子在外力扰动后,将做振幅为A,角频率为宀0的简谐振 动,式中的(叫/ +。)称为相位,0称为初相位?角频率为叫的振子其振动周期 (4) (4) 式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的 最基本的特性?弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础. 弹簧的质量对振动周期也有影响?可以证明,对于质量为“0的圆柱形弹簧, 振子周期为 (5) m o/ m o/ 式中 ?称为弹簧的等效质量,即弹簧相当于以 ?的质量参加了振子的 振动?非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3. d 2x 上式可化为一个典型的二阶常系数微分方程乔 =0 其解为 (3) 可得 x =

课程设计:航空发动机结构与强度课程设计思考

航空发动机结构与强度课程设计思考 一、航空发动机构造与强度课程设计的作用 对于飞行器动力工程的学生,航空发动机构造与强度的课程设计显得尤为重要。课程设计的重要性主要体现在航空发动机构造和强度课程的特点。实践性是航空发动机构造与强度课程最显著的特点。本课程研究的是实际发动机的结构及其强度,从表面上看,内容简单、易懂,理论性、系统性不强。但是要学生自己分析,则往往无从下手,特别是碰到实际的结构分析、结构设计更是束手无策。因此,通过课程设计这个教学环节,完成航空发动机某一结构的设计,起到加深对课堂教学内容的理解,实现理论向实践的转化,巩固理论知识的重要作用。航空发动机构造与强度课程的第二个重要特点是多学科综合的特点。实际的航空发动机结构是一个容纳多学科的、相互渗透的、具体的统一体,一个发动机具体结构的诞生是多学科综合的结果。即使一个简单的叶片结构设计都涉及到气体动力学、传热学、弹性力学、疲劳与断裂力学、有限元分析方法等等。因此本课程的教材涉及的内容多,知识面广,几乎包括了所学过的所有课程。总体上看显得内容繁杂,没有系统性和规律性。这给学生的学习带来了困难。而在完成课程设计的过程中,学生需要综合运用《航空发动机构造》、《航空发动机强度计算》等专业课程以及《弹性力学》、《有限元分析方法》、《机械制图》等专业基础课程的知识,需要查阅国家标准、材料手册等相关资料。因此,航空发动机构造与强度课程设计作为航空发动机构造与强度课程的后续教学环节,起到了提高学生综合运用相关专业课程的能力、加深对航空发动机构造的与强度认识和理解的重

要作用。综上所述可知,课程设计作为大学实践教学环节的组成部分,是实现理论与实践相结合的重要环节。而航空发动机构造与强度课程设计,由于航空发动机构造与强度课程的实践性和多学科性的特点,其课程设计对于提高学生的综合运用学科的能力以及加深对课程的认识和理解尤为重要。 二、工科相关课程设计的研究进展 美国麻省理工学院提出了高等工科教育要“回归工程实践”的教育理念。在《中共中央国务院关于深化教育改革全面推进素质教育的决定》中,明确提出以培养学生的创新精神和实践能力为实施素质教育的重点。清华大学老教授容文盛指出课程设计作为大学某一课程的综合性教学实践环节,它不仅仅是理论教学的辅助环节,而是全面培养学生必不可少的组成部分。因此,如何更好地开展课程设计实现培养高素质人才的目标成为各大高校教师积极探索和思考的问题。西南交通大学的鲁汉清教授提出要发挥课程设计的优势提高学生的综合素质和能力,在课程设计中要注意处理好以下几个关系: (1)人文素质和工程素质的关系。工程素质是工科学生课程设计培养的主要目标,鲁教授提出工程素质是与人文素质不可分割的,借助课程设计,树立起学生老实做人、严谨治学的思想,为工程素质的培养打下良好的基础。 (2)知识、能力与素质教育的关系。鲁教授提出在课程设计的过程中可以通过以下两个途径促进学生的知识、能力与素质教育的协调发展:第一,设计题目的设置向产品设计的方向靠拢,让学生接受真实产品设计的完整过程的训练和熏陶。第二,计算机模拟和实物讲解相结合,计算机模拟的最大优点是可以进行设计结果的快速仿真分析,实物讲解可以直观地提供设计结果。课程设计可以充分

振动力学课程设计报告

振动力学课程设计报告 课设题目: 单位: 专业/班级: 姓名: 指导教师: 2011年12月22日

一、前言 1、课题目的或意义 振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。增强了认识问题,分析问题,解决问题的能力。带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。为认识社会,了解社会,步入社会打下了良好的基础。 通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。 2、课题背景: 随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。 GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。特别适用于自动配料、定量包装、给料精度要求高的场合。例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。 GZ电磁振动给料机的工作原理: GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。 GZ系列电磁振动给料机主要用途:

实验报告

用波耳共振仪研究受迫振动 振动是物体运动的一种普遍现象。比较生动与直观的机械振动在科研与生活中随处可见。而广义地说物质或物理量在某一数值附近作周期性的变化,都叫做振动。所以活塞的往复机械运动是振动,电磁学领域中空间电场的电场强度随时间作周期性的变化是振动,微观领域中微观物质的原子运动也是振动.研究振动与受迫振动所导致的共振现象是重要的工程物理现象。在机械制造和建筑工程等科技领域中振动与共振现象既有破坏作用,也有许多实用价值。众多电声器件,是运用共振原理设计制作的。利用核磁共振和顺磁共振研究物质结构是在微观科学领域研究振动的重要手段。而大桥由于共振遭至倒塌是世人尽知的。所以,研究振动与受迫振动是一个很有意义的物理实验项目。 表征受迫振动性质的是受迫振动的振幅-频率特性和相位-频率特性(简称幅频和相频特性)。本实验中,采用波耳共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态的物理量——相位差。数据处理与误差分析方面内容也较丰富。 [实验目的] 1、 研究波尔共振仪中摆轮受迫振动的幅频特性和相频特性。 2、 研究不同阻尼力矩对受迫振动的影响,观察共振现象。 3、 学习用频闪法测定运动物体的某些量。 [实验原理] 物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,其振动频率与外力频率相同。此时,振幅保持恒定,振幅的大小与强迫力的频率,原振动系统无阻尼时的固有振动频率,以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。(当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。) 采用波耳共振仪研究与测量自由振动、阻尼振动、受迫振动等的基本物理特性,是十分直观与全面的。 A B H C E F D G 机械振动仪 电器控制仪 I 图1 波耳共振仪

振动实验报告剖析

振动与控制系列实验 姓名:李方立 学号:201520000111 电子科技大学机械电子工程学院

实验1 简支梁强迫振动幅频特性和阻尼的测量 一、实验目的 1、学会测量单自由度系统强迫振动的幅频特性曲线。 2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼比。 二、实验装置框图 图3.1表示实验装置的框图 图3-1 实验装置框图 K C X 图3-2 单自由度系统力学模型 三、实验原理 单自由度系统的力学模型如图3-2所示。在正弦激振力的作用下系统作简谐强迫振动, 设激振力F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分方程式为: 扫频信号源 动态分析仪 计算机系统及分析软件 打印机或 绘图仪 简支梁 振动传感器 激振器 力传感器 质量块 M

或 M F x dt dx dt x d M F x dt dx n dt x d F Kx dt dx C dt x d M /2/222 22 2 222=++=++=++ωξωω (3-1) 式中:ω—系统固有圆频率 ω =K/M n ---衰减系数 2n=C/M ξ---相对阻尼系数 ξ=n/ω F ——激振力 )2sin(sin 0ft B t B F πω== 方程①的特解,即强迫振动为: ) 2sin()sin(0?π?ω-=-=f A A x (3-2) 式中:A ——强迫振动振幅 ? --初相位 2 0222024)(/ωωωn M B A +-= (3-3) 式(3-3)叫做系统的幅频特性。将式(3-3)所表示的振动幅值与激振频率的关系用图形表示,称为幅频特性曲线(如图3-3所示): 3-2 单自由度系统力学模型 3-3 单自由度系统振动的幅频特性曲线 图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。 振幅为Amax 时的频率叫共振频率f 0。在有阻尼的情况下,共振频率为: 2 21ξ-=f f a (3-4) 当阻尼较小时,0f f a =故以固有频率0f 作为共振频率a f 。在小阻尼情况下可得 01 22f f f -= ξ (3-5) 1f 、2f 的确定如图3-3所示: M X C K

航空发动机强度复习题(参考答案)

航空发动机构造及强度复习题(参考答案) 一、 基本概念 1. 转子叶片的弯矩补偿 适当地设计叶片各截面重心的连线,即改变离心力弯矩,使其与气体力弯矩方向相反,互相抵消,使合成弯矩适当减小,甚至为零,称为弯矩补偿。 2. 罩量 通常将叶片各截面的重心相对于z 轴作适当的偏移,以达到弯矩补偿的目的,这个偏移量称为罩量。 3. 轮盘的局部安全系数与总安全系数 局部安全系数是在轮盘工作温度与工作时数下材料的持久强度极限t T σ,与计算轮盘应力中最大周向应力或径向应力之比值。0.2~5.1/max ≥=σσt T K 总安全系数是由轮盘在工作条件下达到破裂或变形达到不允许的程度时的转速c n ,与工作的最大转速m ax n 之比值。max /n n K c d = 4. 轮盘的破裂转速 随着转速的提高,轮盘负荷不断增加,在高应力区首先产生塑性变形并逐渐扩大, 使应力趋于均匀,直至整个轮盘都产生塑性变形,并导致轮盘破裂,此时对应的转速称为破裂转速。 5. 转子叶片的静频与动频 静止着的叶片的自振频率称为静频; 旋转着的叶片的自振频率称为动频;由于离心力的作用,叶片弯曲刚度增加,自振频率较静频高。 6. 尾流激振 气流通过发动机内流道时,在内部障碍物后(如燃烧室后)造成气流周向不均匀,从而对后面转子叶片形成激振。 7. 转子的自位作用 转子在超临界状态下工作时,其挠度与偏心距是反向的,即轮盘质心位于轴挠曲线的内侧,不平衡离心力相应减小,使轴挠度急剧减小,并逐渐趋于偏心距e ,称为“自位”作用。

8. 静不平衡与静不平衡度 由不平衡力引起的不平衡称为静不平衡;静不平衡度是指静不平衡的程度,用质量与偏心矩的乘积me 表示,常用单位为cm g ?。 9. 动不平衡与动不平衡度 由不平衡力矩引起的不平衡称为动不平衡;动不平衡度是指动不平衡的程度,用me 表示,常用单位是cm g ?。 10. 动平衡 动平衡就是把转子放在动平衡机床上进行旋转,通过在指定位置上添加配重,以消除不平衡力矩。 11. 挠性转子与刚性转子 轴的刚性相对于支承的刚度很小的转子系统称为挠性转子;转子的刚性相对于支承的刚性很大的转子称为刚性转子。 12. 转子的临界转速 转子在转速增加到某些特定转速时,转子的挠度会明显增大,当转速超过该转速时,挠度又明显减小,这种特定的转速称为转子的临界转速,是转子的固有特性。 13. 涡动 转轴既要绕其本身轴线旋转,同时,该轴又带动着轮盘绕两轴承中心的连线旋转,这种复合运动的总称为涡动。 14. 自转与公转(进动) 轮盘绕轴旋转称为自转;挠曲的轴线绕轴承连线旋转称为公转或进动。 15. 转子的同步正涡动与同步反涡动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动; 16. 转子的协调正进动与协调反进动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动,对应的进动称为协调正进动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动,对应的进动称为协调反进动。 17. 持久条件疲劳极限 规定一个足够的循环次数L N ,以确定L N 下的“持久疲劳极限”,称为“持久条件疲劳极限”。

西工大结构试验技术 实验说明YE6251说明书

SINOCERA? YE6251振动力学实验系统 说 明 书 江苏联能电子技术有限公司

YE6251振动力学实验系统 一、系统概述 振动力学实验系统主要由YE6251振动力学实验仪、YE15000振动力学实验台、激振和传感器、数据采集卡及其采集和分析软件等组成。 1、振动力学实验仪:YE6251Y2扫频信号发生器、YE6251Y1功率放大器、YE6251Y3 阻尼调节器、YE6251Y4位移测量仪、YE6251Y5力测量仪、两通道YE6251Y6加速度测量仪、机箱及电源。 2、振动力学实验台:简支梁、固支梁、悬臂梁、薄板、复合阻尼梁、电磁阻尼器、 单自由度质量—弹簧—阻尼系统、两自由度质量—弹簧—阻尼系统、动力吸振器。 3、激振和传感器:YE15400电动式激振器、LC-01A冲击力锤(含CL-YD-303A力 传感器)、CL-YD-331A阻抗头、CWY-DO-502电涡流式位移传感器、CA-YD-107压电式加速度传感器。 4、数据采集卡及其采集和分析软件:A/D(D/A)采集卡、系统应用软件由数据采 集、数据预处理,时域处理,频域处理、模态分析,报告生成、在线帮助等模块组成。 二、YE6251振动力学实验仪主要技术指标 YE6251Y2扫频信号发生器 1、输出波形:正弦波 2、频率范围:对数模式下10Hz~1000Hz在一个连续量程之内 3、具有手动、自动两种频率控制方式 4、手动控制频率时,有粗调和微调两种方式 5、自动频率控制时,扫频范围:10Hz~1000Hz,扫频上、下限分档任意调节,扫频 比:100:1,扫频时间在0.1S~20S内任意调节 6、频率显示:采用4位7段LED数显 频率〈200Hz时:分辨率0.1Hz 频率≥200Hz时:分辨率 1Hz 7、频率显示精度:±1%±1 8、幅值线性度:10Hz~1000Hz频率范围内±0.2dB 9、失真度:≤0.5% 10、具有BNC信号输出端子; YE6251Y1功率放大器 1、恒流输出 2、功率输出:输出电流0~1A连续可调,最大输出电流大于1.2A

振动力学课程设计题目

振动力学课程设计题目 采用MATLAB 对所选的问题进行数值计算和作图,采用高于MATLAB7.4(2007)版本所编写的程序需转换为文本(.txt )文件, 早于MATLAB7.4(2007)版本所编写的程序可直接采用M 文件传送至QQ :296637844。题目如下,其中1,2,3题为必做题,4-38选二题(第一轮:一班01号为第4题, 一班02号为第5题…一班28号为第25题, 二班01号为第26题,…二班17号为第38题, 二班18号为第4题,…二班27号为第13题;第二轮:一班01号为第14题…)。文件名采用自己的姓名。考核时间暂定于12月30日。 题目: 1. 编写MA TLAB 程序,根据书本公式(3.1-10)、(3.1-10)作出单自由度系统强迫振动的幅频特性曲线、相频特性曲线。0.1,0.2,0.3,0.5,0.7,1.0,1.2?=。 2. 根据书本图4.5-3,分析有阻尼动力减振器的特性。包括在不同的质量比,频率比,阻尼比条件下结构的响应。 3. 对于图2所示体系,用矩阵迭代法计算其固有频率及振型。 1231,2m m m ===,1230 c c c ===,1231,5,8k k k ===,1230,0,0F F F ===, 1231,1,1ωωω===。 4. 采用中心差分法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 5. 采用Houbolt 法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 6. 采用Wilson-θ法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 7. 采用Newmark-β法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 8. 采用中心差分法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 9. 采用Houbolt 法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 10. 采用Wilson-θ法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 11. 采用Newmark-β法计算10105s in (/2)2s in ()s in (2 x c x x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 12. 采用卷积积分法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别 在()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前10s 内的时间位移曲线。 13. 采用中心差分法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别在()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前10s 内的时间位移曲线。 14. 采用Houbolt 法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别在 ()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前 10s 内的时间位移曲线。 15. 采用Wilson-θ法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别

单自由度振动系统固有频率及阻尼的测定-实验报告

单自由度振动系统固有频率及阻尼的测定 一、实验目的 1、掌握测定单自由度系统固有频率、阻尼比的几种常用方法 2、掌握常用振动仪器的正确使用方法 二、实验内容 1、根据单自由度系统固有频率公式,估算水平振动台面的等效质量 2、记录水平振动台的自由衰减振动波形 3、测定水平振动台在简谐激励下的幅频特性 4、 测定水平振动台在简谐激励下的相频特性 5、 根据上面测得的数据,计算出水平振动台的固有频率、阻尼比 三、实验原理 单自由度振动系统是一种简单且常见的振动系统模型。本实验中的振动系统由台面、支撑弹簧片及电磁阻尼器组成的水平振动台(见图四),可视为单自由度系统,它在瞬时或持续的干扰力作用下,台面可沿水平方向振动。 与之前常见的质量弹簧系统不同,本实验中单自由度振动系统的等效质量、刚度均属于未知量。且通过观察不难发现,银白色的水平振动台面无法单独取出以测量质量。这一系统反应了大多数实际振动系统的特性——即难以分别得到其准确的等效质量、刚度的数值,再通过理论计算得到固有频率。因此通过实验的方式直接测量系统整体的固有频率成为一种非常重要而可靠的研究手段,同时系统的等效质量和刚度,也可以由测量结果推导得出。 假设实验使用的单自由度振动系统中,水平振动台面的等效质量为eq m ,系统的等效刚度为eq k ,在无阻尼或阻尼很小时,系统自由振动频率可以写作eq eq m k f π21 =。这一频 率容易通过实验的方式测得,我们将其记作f ';此时在水平振动台面上加一个已知质量0m ,测得新系统的自由振动频率为f ''。则水平振动台面的等效质量为eq m 可以通过以下关系得到:2 eq 0 eq f f m m m ???? ??'''=+。 当单自由度振动系统具有粘滞阻尼时,自由振动微分方程的标准形式为022=++q p q n q ,式中q 为广义坐标,n 为阻尼系数,eq eq m C n /2=,eq C 为广义阻力系数,eq m 为等效质量;p 为固有的圆频率,eq eq m K p /2 =,eq K 为等效刚度。在阻尼比

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒 定的位相差,当它们在媒质内沿一条直线相向传播时,

将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。同时波在C点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为: (3-13-1) (3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。 两波叠加后的合成波为驻波,其方程为: (3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作 简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质

航空发动机强度与振动

航空发动机强度与振动课程设计报告 题目及要求 题目基于 ANSYS 的叶片强度与振动分析 1.叶片模型 研究对象为压气机叶片,叶片所用材料为 TC4 钛合 金,相关参数如下: 材料密度:4400kg/m3弹性模量:1.09*1011Pa 泊松比: 0.34 屈服应力:820Mpa 叶片模型如图 1 所示。把叶片简化为根部固装的等截

面悬臂梁。叶型由叶背和叶盆两条曲线组成,可由每条曲 线上 4 个点通过 spline(样条曲线)功能生成,各点位置 如图 2 所示,其坐标如表 1 所示。 注:叶片尾缘过薄,可以对尾缘进行修改,设置一定的圆角 2.叶片的静力分析 (1)叶片在转速为 1500rad/s 下的静力分析。 要求:得到 von Mises 等效应力分布图,对叶片应力分布进行分析说明。并计算叶片的安全系数,进行强度校核。 3.叶片的振动分析 (1)叶片静频计算与分析 要求:给出 1 到 6 阶的叶片振型图,并说明其对应振动类型。

(2)叶片动频计算与分析 要求:列表给出叶片在转速为 500rad/s,1000rad/s,1500rad/s, 2000rad/s 下的动频值。 (3)共振分析 要求:根据前面的计算结果,做出叶片共振图(或称 Campbell 图),找出叶片的共振点及共振转速。因为叶片一弯、二弯、一扭振动比较危险,故只对这些情况进行共振分析。 3. 按要求撰写课程设计报告 说明:网格划分必须保证结果具有一定精度。各输出结果图形必须用ANSYS 的图片输出功能,不允许截图,即图片背景不能为黑色。 课程设计报告 基于 ANSYS 的叶片强度与振动分析1. ANSYS 有限元分析的一般步骤 (1)前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形

振动样品磁强计(VSM)实验

振动样品磁强计(VSM)实验 一、实验目的 掌握用振动样品磁强计测量材料的磁性质的原理与方法。 二、实验原理 本实验采用Lake Shore振动样品磁强计(Vibrating sample magnetometer 7407),磁场线圈由扫描电源激磁,产生Hmax=±21000Оe的磁化场,其扫描速度和幅度均可自由调节。检测线圈采用全封闭型四线圈无净差式,具有较强的抑制噪音能力和大的有效输出信号,保证了整机的高分辨性能。 振动样品磁强计是一种常用的磁性测量装置。利用它可以直接测量磁性材料的磁化强度随温度变化曲线、磁化曲线和磁滞回线,能给出磁性的相关参数诸如矫顽力H c,饱和磁化强度M s,和剩磁M r等。还可以得到磁性多层膜有关层间耦合的信息。图1是VSM的结构简图。它由直流线绕磁铁,振动系统和检测系 其测量原理如下: 装在振动杆上的样品位于磁极中央感应线圈中心连线处,位于外加均匀磁场中的小样品在外磁场中被均匀磁化,小样品可等效为一个磁偶极子。其磁化方向平行于原磁场方向,并将在周围空间产生磁场。在驱动线圈的作用下,小样品围绕其平衡位置作频率为ω的简谐振动而形成一个振动偶极子。振动的偶极子产生的交变磁场导致了穿过探测线圈中产生交变的磁通量,从而产生感生电动势ε,其大小正比于样品的总磁矩μ:

ε = K μ 其中K 为与线圈结构, 振动频率, 振幅和相对位置有关的比例系数。当它们固定后, K 为常数,可用标准样品标定。因此由感生电动势的大小可得出样品的总磁矩,再除以样品的体积即可得到磁化强度。因此,记录下磁场和总磁矩的关系后,即可得到被测样品的磁化曲线和磁滞回线。 在感应线圈的范围内,小样品垂直磁场方向振动。根据法拉第电磁感应定律,通过线圈的总磁通为: t BM AH ωsin +=Φ 此处A 和B 是感应线圈相关的几何因子,M 是样品的磁化强度,ω是振动频率,H 是电磁铁产生的直流磁场。线圈中产生的感应电动势为: ()t KM dt d t E ωcos =Φ= 式中K 为常数,一般用已知磁化强度的标准样品(如Ni )定出。 但是只有在可以忽略样品的“退磁场”情况下,利用VSM 测得的回线,方能代表材料的真实特征,否则,必须对磁场进行修正后所得到的回线形状,才能表示材料的真实特征。所谓“退磁场”,可作如下的理解:当样品被磁化后,其M 将在样品两端产生“磁荷”,此“磁荷对”将产生与磁化场相反方向的磁场,从而减弱了外加磁化场H 的磁化作用,故称为退磁场。可将退磁场H d 表示为H d =-NM ,称N 为“退磁因子”,取决样品的形状,一般来说非常复杂,甚至其为张量形式,只有旋转椭球体,方能计算出三个方向的具体数值;磁性测量中,通常样品均制成旋转椭球体的几种退化形:圆球形、细线形、薄膜形,此时,这些样品的特定方向的N是定值,如细线形时,沿细线的轴线N=0,薄膜形时,沿膜面N=0,而球形时 。 三、实验仪器的组成 除了上面提到的VSM 系统所需要的电磁铁、振动系统、检测系统之外,实际的振动样品磁强计通常还包括锁相放大器、特斯拉计,分别用于小信号的检测以及磁场的检测,同时还包括计算机系统。 1.电磁铁

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示:= ρ 1 ------------------------------------------------------- ①

另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ-------------------------------------------------------- ② 将②代入①中得γ =λ1 -------------------------------------------------------③ρ1 又有L=n*λ/2 或λ=2*L/n代入③得γ n=2L ------------------------------------------------------ ④ρ1 四实验内容和步骤 1.研究γ和n的关系 ①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

航空发动机结构强度设计 大作业

航空发动机结构强度设计 大作业 王延荣主编 北京航空航天大学能源与动力工程学院 2013.3

2 1 某级涡轮转子的转速为4700r/min ,共有68片转子叶片,叶片材料GH33的密度ρ为8.2 ×103 kg/m 3,气流参数沿叶高均布,平均半径处叶栅进、出口的气流参数,叶片各截面的重心位置(X , Y , Z ),截面面积A ,主惯性矩I ξ,I η以及ξ轴与x 轴的夹角α,弯曲应力最大的A , B , C 三点的坐标ξA , ηA , ξB , ηB , ξC , ηc 列于下表,试求叶片各截面上的离心拉伸应力、气动力弯矩、离心力弯矩、合成弯矩及A ,B ,C 三点的弯曲应力和总应力。 截 面 0 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ X , cm 0.53 0.41 0.41 0.40 0.24 0.12 Y , cm -0.41 -0.38 -0.30 -0.19 -0.11 -0.02 Z , cm 62.8 59.1 56.0 53.0 49.4 45.8 A , cm 2 1.80 2.32 3.12 4.10 5.48 7.05 I ξ, cm 4 0.242 0.304 0.484 0.939 1.802 I η, cm 4 6.694 9.332 12.52 17.57 23.74 ξA , cm -2.685 -2.847 -2.938 -2.889 -2.894 ηA , cm 0.797 0.951 1.094 1.232 1.319 ξB , cm -0.084 -0.205 -0.303 -0.219 -0.302 ηB , cm -0.481 -0.521 -0.655 -0.749 -1.015 ξC , cm 3.728 3.909 4.060 4.366 4.597 ηC , cm 0.773 0.824 0.840 1.130 1.305 α 31o 40’ 27o 49’ 25o 19’ 22o 5’30’’ 16o 57’ 12o 43’ c 1am c 1um ρ1m p 1m c 2am c 2um ρ2m p 2m 297m/s -410m/s 0.894kg/m 3 0.222MPa 313m/s 38m/s 0.75 kg/m 3 0.178MPa 2 某一涡轮盘转速12500r/min,盘材料密度8.0×103kg/m 3 , 泊松比0.3,轮缘径向应力140MPa,盘厚度h 、弹性模量E、线涨系数α及温度t 沿半径的分布列于下表,试用等厚圆环法计算其应力分布。 截面, n 半径r , cm 盘厚h , cm E, GPa t , ℃ α,10-6/℃平均半径 平均厚度 0 0.0 4.86 162 165 16.5 1 5.0 3.90 16 2 165 16.5 2.5 4.38 2 10.0 2.97 157 250 17.1 7.5 3.435 3 14.0 2.2 4 148 360 18.2 12.0 2.60 5 4 15.0 1.8 6 140 400 19.0 14.5 2.05 5 15.8 1.60 13 7 430 19.4 15.4 1.73 6 16.6 1.80 134 460 19.7 16.2 1.70 7 17.4 2.30 130 500 20.3 17.0 2.05 3 某转子叶片根部固定,其材料密度2850kg/m 3,弹性模量71.54GPa ,叶片长0.1m ,各截面 位置、面积、惯性矩列于下表,试求其前3阶固有静频。 截面号i 0 1 2 3 4 5 6 7 8 9 10 x , m 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 A , 10-4m 2 1.70 1.46 1.26 1.09 0.96 0.86 0.77 0.73 0.70 0.68 0.68 I , 10-8m 4 0.02790.0212 0.0157 0.01080.00840.00610.00450.00370.0032 0.0030 0.0030

振动力学课程设计报告材料(2)

振动力学课程设计报告 课设题目:电磁振动给料机的振动分析与隔振设计单位: 专业/班级: 姓名: 指导教师:

一、前言 1、课题目的或意义 通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。 2、课题背景: 1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。料槽衬板采用20mm厚钢板。料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。 2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下,应尽可能减轻振动槽体的质量。从而使其在实际工程应用中会有非常广泛的前景。 二、振动(力学)模型建立 1、结构(系统)模型简介

O 1 O 0 O 2 123123k k k c c c 、为隔振弹簧,为主振弹簧,、、分别为隔振和主振弹簧的阻尼 4k 、4c 分别为尼龙连接板得等效刚度和阻尼。 0m 为偏心块质量,1m 为给料槽体质量,2m 激振器的振动质量。 R m —输送槽体(包括激振器)的质量,1500kg ;即012R m m m m ++= G m —槽内物料的结合质量。 在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。 2、系统模型参数 (包括系统所必需的几何、质量、等效刚、激励等)

相关文档