文档库 最新最全的文档下载
当前位置:文档库 › 基因工程复习材料

基因工程复习材料

基因工程复习材料
基因工程复习材料

名词解释

α-互补:是指β-半乳糖苷酶基因(LacZ)上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的LacZ基因的突变体之间实现互补,从而产生具有β-半乳糖苷酶学活性蛋白的现象。

基因芯片技术:就是将大量探针分子固定于支持物上,根据碱基互补配对原理,与标记的样品分子进行杂交,通过检测杂交信号的强度及分布进而获取样品中靶分子的数量和序列信息。

限制性核酸内切酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸水解酶。

电穿孔法:是指在一个较大的电脉冲短暂破坏细胞膜的脂质双层,允许DNA等分子通过细胞膜进入细胞,而后细胞膜快速复原,保持细胞的完整。这种方法称为电穿孔法。穿梭载体:能够在两类不同宿主细胞中复制、增殖和选择的质载体,装有针对两种不同受体的复制子和遗传标记基因,便于基因克隆。

反向PCR:是用反向的互补引物来扩增两引物以外的DNA片段,即对某个已知DNA片段两侧的未知序列进行扩增。

人工染色体载体:利用染色体的复制元件来驱动外源DNA片段复制的载体。

芯片实验室:是将纳米技术引入生物芯片,在微小的硅材料表面,制造出能够对微量样品进行变性、分离、纯化、电泳、PCR扩增、加样及检测等微小结构,使过去一个实验的各个实验步骤微缩于一个芯片上,这种技术称为芯片实验室。

核酸分子杂交:核酸分子杂交是指核酸分子(DNA或RNA)在变性以后,在复性的过程中两个不同来源的且同源的核酸分子形成杂合双链的过程。

同尾酶:有一些来源不同的限制性核酸内切酶识别的靶序列也各不相同,但都产生相同的粘性末端,这类酶称为同尾酶。

融合蛋白:是指通过将两个或多个基因的开放阅读框按一定顺序连接在一起并通过表达而形成的杂合蛋白。

基因芯片:就是将大量探针分子固定于支持物上,根据碱基互补配对原理,与标记的样品分子进行杂交,通过检测杂交信号的强度及分布进而获取样品中靶分子的数量和序列信息。

同裂酶:不同来源的限制性核酸内切酶识别与切割相同的核苷酸靶序列,这类酶称为同裂酶。

基因表达: 从DNA分子有序地将其所承载的遗传信息,通过密码子和反密码子系统,转变由特定氨基酸顺序构成的多肽或蛋白质分子过程,从而决定生物有机体遗传表型。

实时荧光定量PCR:实时定量PCR在检测过程中通过检测标记的荧光信号的累积来实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析,故称为实时荧光定量PCR。

开放阅读框架(ORF):起始于AUG、止于UAA、UGA、UAG的连续的密码子区域,是潜在的编码区。

质粒的不亲和性:在没有压力下,两种亲缘关系密切的不同质粒,不能够在同一个寄主细胞系中稳定地共存的现象。

转化:指将质粒DNA或以它为载体构建的重组质粒导入细菌中的过程。

融合基因:是指应用DNA体外重组技术构建的一类具有来自两个或两个以上的不同基因核苷酸序列的新型基因。

目的基因:指那些已被或者准备要被分离、改造、扩增或表达的特定基因或DNA片段。限制性核酸内切酶的星活性:限制性核酸内切酶在非标准反应条件下,能切割一些与其特异识别顺序类似的序列,降低酶切反应特异性的现象。

基因组是指某种特定生物全部染色体的遗传物质的总和,其大小通常以其全部的DNA

碱基对总数来表示。

基因载体:是指运载目的基因进入宿主细胞,使之能得到复制和进行表达的工具, 化学本质是DNA分子。

人工接头:是人工合成的具有一个或数个特定限制性内切酶识别和切割序列的双股平端DNA短序列。

受体细胞:是指能摄取外源DNA并使其稳定维持的细胞。

共转化:基因工程中将两个以上的基因同时导入感受态真核细胞的方法,又称共转染。复合PCR:在一个反应体系加入多对不同的PCR引物同时扩增,获得多个PCR产物,这种PCR称为复合PCR。

c DNA文库:是指将某种生物体某一发育时期所转录的全部mRNA经反转录形成的cDNA 片段与某种载体连接而形成的克隆的集合。

基因打靶技术:基因工程中利用活细胞染色体DNA可与外源DNA的同源性DNA序列发生重组的性质,来进行定点修饰改造染色体上某一目的基因的技术。

基因枪法:用高压气体加速把粘有DNA的细微金粉(或钨粉颗粒)打向细胞,穿过细胞壁、细胞膜、细胞质等层层构造到达细胞核,完成基因转移的方法。

DNA的物理图谱:是指某些限制酶的特异识别序列在DNA链上的出现频率和它们之间的相对位臵,表现出一些部位的线性序列,它是DNA分子结构特性的反映。

基因亚克隆:是指将较大的克隆片段经酶切后,再将所有的小DNA片段与另一个载体连接转化的过程。

报告基因:基因载体上引入的一些可证明载体已经进入宿主细胞并可将含有目的基因的宿主细胞从其他细胞中识别区分甚至挑选出来的具有特殊标志意义的基因。

RT-PCR:是指以mRNA在反转录酶作用下合成cDNA第一链为模板进行的PCR。

表达载体:在克隆载体基础上,为使插入的外源DNA片段有效转录翻译成多肽,装有强化外源基因表达的强启动子以及利于表达产物分泌、分离和纯化的元件,这种载体称为表达载体。

基因是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。反义技术:是指根据碱基互补原理,用人工合成(或生物体合成)的特定互补RNA或DNA片段(或其化学修饰产物)抑制或封闭基因表达的技术。

转基因动物:是指在其基因组内稳定地整合有外源基因,并能遗传给后代的动物。

简答题

1、简述PCR引物的设计一般原则。

答:①引物长度一般以18~30bp为宜,过短则降低特异性,过长则会引起引物间的退火而影响有效扩增,同时也增加引物合成的成本。

②避免引物内部出现二级结构,避免序列内有较长的回文结构,使引物自身不能形成发夹结构。

③G/C和A/T碱基均匀分布,G+C含量在40~60%之间,引物碱基序列尽可能选择碱基随机分布,避免出现嘌呤或嘧啶连续排列。

④要避免两个引物间特别是3`末端碱基序列互补以及同一引物自身3`末端碱基序列互补的,使它们不能形成引物二聚体或发卡结构。

⑤引物3`末端碱基一般应与模板DNA严格配对,并且3`末端为G、C或T时引发效率较高。

⑥引物5`末端碱基可不与模板DNA匹配,可添加与模板无关的序列(如限制性核酸内切酶的识别序列、ATG起始密码子或启动子序列等),便于克隆和表达,但其保护碱基有一定的要求。

⑦引物的碱基顺序不能与非扩增区有同源性。

2、试述原核生物细胞表达的特点以及外源基因在原核细胞中表达具备条件。

答:原核生物细胞表达的特点:

(1)只有一种RNA聚合酶识别原核细胞的启动子,催化所有RNA的合成。

(2)原核生物的表达是以操纵子为单位的。操纵子是数个相关的结构基因及其调控区的结合,是一个基因表达的协同单位。

(3)原核生物的转录与翻译是偶联和连续进行的。

(4)原核细胞中缺乏真核细胞的转录后加工系统。

(5)其基因的控制主要在转录水平,这种控制要比对基因产物直接控制要慢。

(6)在大肠杆菌mRNA的核糖体结合位点上,含有一个翻译起始密码子及同16S RNA 3’末端碱基互补的序列,即SD序列。

条件:(1)通过表达载体将外源基因导入宿主菌,并指导宿主菌的酶系统合成外源蛋白。

(2)外源基因不能带有间隔顺序(内含子),因而必须用cDNA或全化学合成基因,而不能用基因组DNA。

(3)必须利用原核细胞的强启动子和SD序列等调控元件控制外源基因表达。

(4)外源基因与表达载体连接后,必须形成正确的开放阅读框架(ORF)。

(5)利用宿主菌的调控系统,调节外源基因的表达,防止外源基因的表达产物对宿主菌的毒害。

3、简述琼脂糖凝胶电泳的基本原理。

答:DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。

在琼脂糖凝胶电泳中,DNA分子的迁移速度与相对分子质量的对数值成反比关系。质粒DNA样品用单一切点的酶切后与已知相对分子质量大小的标准DNA片段进行电泳对照,观察其迁移距离,就可获知该样品的相对分子质量大小。凝胶电泳不仅可以分离不同相对分子质量的DNA,也可以鉴别相对分子质量相同但构型不同的DNA分子。

另外在制备琼脂糖凝胶时加入溴化乙锭指示剂,溴化乙锭在紫外光照射下能发射荧光。当DNA样品在琼脂糖凝胶中电泳时,琼脂糖凝胶中的EB就插入DNA分子中形成荧光络合物,使DNA发射的荧光增强几十倍。荧光的强度正比于DNA的含量,如将已知浓度的标准样品作琼脂糖凝胶电泳对照,就可比较出待测样品的浓度。若用薄层分析扫描仪检测,只需要5~lOng DNA,就可以从照片上比较鉴别。如用肉眼观察,可检测到0.01~0.1μg的DNA。4、简述基因文库的概念及构建基因文库的基本程序。

答:基因文库是指某个生物的基因组DNA或cDNA片段与适当的载体在体外重组后,转化宿主细胞,并通过一定的选择机制筛选后得到大量的阳性菌落(或噬菌体),所有菌落或噬菌体的集合即为该生物的基因文库。

基本程序:1)提取研究对象基因组DNA,制备合适大小的DNA片段,或提取组织或器官的mRNA并反转录成cDNA;2) DNA片段或cDNA片段与经特殊处理的载体连接形成重组DNA;3)重组DNA转化宿主细胞或体外包装后侵染受体菌;4)阳性重组菌落或噬菌斑的选择。

另cDNA:cDNA文库是指将某种生物体基因组转录的全部mRNA经反转录产生的cDNA 片段分别与克隆载体重组,储存于某种受体菌中,该群体就称该生物基因组的cDNA文库。操作步骤:细胞总RNA的提取和mRNA的分离;第一条cDNA合成;第二条cDNA 合成;双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖。

另与基因组文库相比,cDNA文库(cDNA克隆)的主要优点与缺点有哪些?

答:优点: ①cDNA克隆以mRNA为材料,特别适用于某些RNA病毒等的基因组结构研究及有关基因的克隆分离。②cDNA基因文库的筛选比较简单易行。③每一个cDNA克

隆都含有一种mRNA序列,这样在目的基因的选择中出现假阳性的概率就会比较低,由此选择出来的阳性克隆将会含有目的基因。④cDNA克隆可用于在细菌中能进行表达的基因克隆,直接应用于基因工程操作。⑤cDNA克隆还可用于真核细胞mRNA的结构和功能研究。

缺点:①cDNA文库所包含的遗传信息要远远少于基因组DNA文库,并且受细胞来源或发育时期的影响。②cDNA基因文库不能直接获得基因的内含子序列和基因编码区外大量的调控序列的结构与功能方面的信息。③在cDNA基因文库中,对于低丰度mRNA 的cDNA克隆所占的比例则比较低,且分离也就比较困难。

5、简述Sanger双脱氧链终止法测定DNA序列的基本原理。

答:在模板指导下,DNA聚合酶不断将dNTP加到引物的3’-OH末端’使引物延长’合成出新的互补的DNA链。如果加入双脱氧三磷酸核苷(ddNTP),由于双脱氧核糖的3’位臵上缺少一个羟基,故不能同后续的dNTP形成磷酸二酯键,即形成一种全部具有相同5’-引物端和以ddNMP残基为3’端结尾的一系列长短不一片段的混合物。由于双脱氧核苷酸在每个DNA分子中掺入的位臵不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸单链DNA,从而读取DNA核苷酸序列。

6、简述实时荧光定量PCR的概念及其工作原理。

答:实时荧光定量PCR:通过特定设计的PCR仪器来实时检测PCR扩增过程每一轮循环产物的累积数量,可以很好的推算模板的起始浓度,这种工作方式称为实时定量PCR。实时定量PCR在检测过程中通过检测标记的荧光信号的累积来实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析,故称为实时荧光定量PCR。

工作原理:利用Taq酶的5’→3’外切酶活性。在PCR反应系统中加入一个荧光标记探针,该探针可与引物包含序列内的DNA模板发生特异性杂交,探针的5’端标以荧光发射基因FAM(荧光发射峰值在518nm处),靠近3’端标以荧光淬灭基团TAMRA(荧光发射峰值在582nm处),探针的3’端被磷酸化以防止探针在PCR扩增过程中被延伸。当探针保持完整时,淬灭基团抑制发射基团的荧光发射。发射基团一旦与淬灭基团发生分离,抑制作用被解除,518nm处的光密度增加而被荧光探测系统检测到。复性期探针与模板DNA发生杂交,延伸期Taq酶随引物延伸沿DNA模板移动,当Taq酶移动到探针切断,淬灭作用被解除,荧光信号释放出来.模板每复制一次,就有一个探针被切断,伴随一个荧光信号的释放。由于被释放的荧光基团数目和PCR产物数量是一对一的关系,因此用该技术可对模板进行准确定量。

基本原理简述:类似于DNA的体内复制。首先待扩增DNA?模板加热变性解链,随之将反应混合物冷却至某一温度,这一温度可使引物与它的靶序列发生退火,再将温度升高使退火引物在DNA聚合酶作用下得以延伸。?这种热变性-复性-延伸的过程就是一个PCR循环,PCR就是在合适条件下的这种循环的不断重复。

7、氯化钙转化法的基本原理。

答:细菌处于0℃和低渗氯化钙溶液中,细菌细胞壁和膜通透性增加,菌体膨胀成球形,此时转化混合物中DNA形成抗DNA酶的羟基-磷酸钙复合物粘附于细胞表面,经短暂热休克(42℃)后,细胞膜形成许多间隙,DNA进入细胞内。

8、在大肠杆菌中高效表达外源基因必须考虑哪些基本原则?

答:①优化表达载体的设计。②提高稀有密码子tRNA的表达作用。

③提高外源基因mRNA的稳定性。④提高外源基因表达产物的稳定性。

⑤优化发酵过程。

10、简述克隆载体DNA分子具备的条件。

答:①载体都能携带外源DNA片段(基因)进入受体细胞,或停留在细胞质中自我复制,或整合到染色体DNA上,随着染色体DNA的复制而同步复制。

②载体都具有合适的筛选遗传标记。

③载体都具有供外源基因插入的限制性核酸内切酶位点,即多克隆位点。

④载体都必须是安全的,不应含有对受体细胞有害的基因,并且不会任意转入除受体细胞以外的其他生物细胞,尤其是人的细胞。

⑤载体本身的分子量都比较小,可容纳较大的外源基因片段。

⑥载体在细胞内的拷贝数要高,方便外源基因在细胞内大量扩增。

⑦载体在细胞内稳定性要高,保证重组体稳定传代而不易丢失。

⑧载体的特征都是充分掌握的,包括它的全部核苷酸序列。

11、碱变性抽提法提取质粒DNA的基本原理是什么?

答:碱变性抽提法是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在pH高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性,质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。当以pH4.8的NaAc高盐缓冲液调节其pH至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构。通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。

12、简述Ⅱ型限制性内切核酸酶的特点及影响其活性的因素。

答:特点:⑴识别位点的DNA序列具有回文结构特点。⑵切割DNA 均产生5′-磷酸和3′-羟基的末端。⑶错位切割产生具有5′-或3′-突出的粘端,而沿对称轴切割双链DNA产生平端。⑷少数不同的限制酶可识别和切割相同的位点,在一定条件下可选择用这些同尾酶。

影响因素:①DNA的纯度②DNA的甲基化程度③酶切消化反应的温度④DNA 的分子结构⑤溶液中离子浓度、种类⑥缓冲液的pH

13、T4 DNA连接酶的作用机制。

答:①ATP+DNA ligase(E)→E-AMP+Ppi

②E-AMP上的AMP转移到DNA的5′磷酸根上,使其活化,释放出酶。

③活化的5′磷酸根与相邻的3′羟基形成3′,5′-磷酸二酯键,并释放出AMP。

14、简述基因载体致死效应的概念及克服基因载体致死效应的对策。

答:基因载体致死效应:利用基因载体进行基因克隆时,有时大量的克隆基因及其基因表达产物对宿主细胞是有害的,不利于宿主细胞的生长繁殖,甚至可使宿主细胞中毒死亡的现象。

克服基因载体致死效应的对策:

①使用严密型质粒来分离、纯化多拷贝的松弛型质粒上大量表达时可呈现致死效应

的功能性基因,即用松弛型质粒与严密型质粒杂交改良。

②使用温度敏感型载体。在较低温度下,目的基因不表达,宿主菌可自由生长;当宿

主菌增殖达到一定数量后,提高培养温度,使目的基因大量表达。

15、简述定向克隆的优点。

答:①外源DNA只能以一个方向定向插入到重组质粒,以便目的基因的正确转录和表达。

②质粒载体与外源DNA结合处的限制性内切酶位点仍然保留,可随时从重组载体中通过相应的限制性内切酶切割后分离和获得目的基因。

③由于不会发生自身环化,转化率高,转化后细菌克隆大多数携带有目的基因重组质粒。

16、简术Southern杂交的操作步骤。

答:①酶切DNA, 凝胶电泳分离各酶切片段,然后使DNA原位变性。

②将DNA片段转移到固体支持物(硝酸纤维素滤膜或尼龙膜)上。

③预杂交滤膜,掩盖滤膜上非特异性位点。

④让探针与同源DNA片段杂交,然后漂洗除去非特异性结合的探针。

⑤通过显影检查目的DNA所在的位臵。

17、简述pUC质粒的结构组成。

答:⑴含有pBR322质粒的复制起点(ori)。

⑵含有氨苄青霉素抗性基因(ampr)基因。

⑶含有大肠杆菌β-半乳糖酶基因(lacZ)启动子及其编码α-肽链DNA序列(即lacZ′基因)。

⑷位于lacZ′基因中靠近5’端引入了一段有多克隆位点(MCS)区段,但它不会引起编码肽链功能的改变。

18、简述DNA体外重组的特点。

答:⑴DNA体外连接减少了DNA分子进入宿主细胞后遭受降解的危险,增加了转化效率。

⑵由于限制性内切酶产生的粘性末端在体外连接,使原来酶的识别序列在整个DNA 维持完整性,有利于在重组子转化扩增以后再对外源基因的分离。

⑶连接时可以控制连接反应条件,有利于形成环状分子或者几个DNA片段头尾相连接的直线多联体。

19、用λ噬菌体载体构建基因组文库的步骤。

答:⑴准备载体DNA(如臵换型λ噬菌体载体),用适当的限制性内切核酸酶消化并分离得到载体的左右两臂;⑵纯化真核细胞高分子质量DNA,并用适当的限制性内切核酸酶部分消化;⑶分离适当大小的基因组DNA片段(20-24kb);⑷连接载体与外源DNA;⑸连接产物体外包装及感染;⑹基因组文库的扩增。

综合分析题

1、如何以大肠杆菌质粒DNA为载体克隆一个编码动物激素的基因,并使之在大肠杆菌中进行表达? 简要说明实验中可能遇到的问题及可能的解决办法。

答:要使动物中编码激素的基因在大肠杆菌中表达,通常遇到的问题有:(1)细菌的RNA 聚合酶不能识别真核生物的启动子。(2)大多数真核基因有内含子,这些内含子在转录后从前体mRNA中被切除而形成熟mRNA。细菌细胞没有这样的机制来去除内含子。(3)有些真核生物的蛋白质是通过前体分子加工而来的,例如胰岛素就是通过加工去除前体分子内部的33个氨基酸残基而来,剩下的两段肽链分别形成胰岛素的α、β链。(4)产生的真核生物的蛋白质产物可以被细菌的蛋白酶所识别和降解。

措施:①应将激素的编码序列臵于含有核糖体结合位点和起始密码子ATG的细菌强启动子的附近(含有这种序列的载体称表达载体)。②可以以激素的mRNA为模板用反转录酶合成激素的基因。这种DNA不含内含子可插入到载体中进行克隆。此外,如果蛋白质序列短则可通过化学合成得到该基因。合成的基因应含起始密码ATG、通过该激素蛋白的氨基酸序列推测而来的编码序列,以及1~2个终止密码:ATG———————编码序列——————TGA TAG。现在,这个合成基因可被插入载体中。③有时加工过程可以在离体条件下进行。如果加工有困难,可以用合成基因,从而免除加工过程。④选用合适的突变型宿主从而防止蛋白酶水解。如果用酵母作为宿主上述许多问题都可以较容易地解决,尤其是现在有既能在大肠杆菌中又能在酵母中复制的穿梭质粒载体。

说明:1)ATG,TAG和TGA是对应mRNA中的转录起始信号AUG和终止信号UAG,UGA的DNA序列。2)克隆生长素释放抑制因子基因时采用化学合成基因的方法。生长素释放抑制因子是一种由下丘脑分泌的激素,长14个氨基酸残基,因此人工合成的基因,包括在宿主菌中表达所需的转录的起始和终止信号,仅51bp长。

2、试述表达载体pET-28a主要构成元件和pET表达载体的工作原理。

答:载体pET-28a主要构成元件:T7噬菌体启动子、乳糖操纵子、核糖体结合位点、His6标签序列、凝血酶切割位点、多克隆位点、T7噬菌体终止子及乳糖阻遏子序列(lacI)、pBR322复制子、f1噬菌体复制子、卡那霉素筛选标记序列等。

pET-28a主要构成元件的功能:①乳糖操纵子和乳糖阻遏子序列(lacI)的功能:当目

的蛋白对大肠杆菌有毒性时,可能通过添加阻遏物,控制目的蛋白以较低水平表达。②His6标签序列和凝血酶切割位点的功能:方便利用针对His6的螯合层析分离纯化蛋白,然后利用凝血酶切割去除标签蛋白。③多克隆位点处的限制性核酸内切酶在该载体上只有单一切点,方便目的基因的插入位点。

pET系列表达载体的工作原理:T7噬菌体启动子只能由T7噬菌体的RNA聚合酶识别并启动转录,因此宿主细胞必须能表达T7噬菌体的RNA聚合酶的。大肠杆菌BL21(DE3)菌株染色体BL21区整合一个λ噬菌体DNA,在λ噬菌体的DE3有一个T7 RNA聚合酶基因(T7基因1),该基因受lacUV5启动子控制。当pET载体进入BL21(DE3)细胞后,由于宿主细胞的lacI基因表达产生阻制物,从而抑制T7 RNA聚合酶基因的表达,在载体上的目的基因也无法启动。当存在IPTG诱导物后,使阻制物失去阻制作用,T7 RNA聚合酶基因得以表达,产生T7 RNA聚合酶,从而启动T7启动子控制的外源基因的表达。在没有诱导物存在的情况下,lac启动子控制的外源基因仍会有渗漏表达。如果外源基因对宿主细胞有害作用,就可能导致表达系统崩溃。

现有2套系统可控制外源基因的严紧表达:一套是通过宿主控制T7 RNA聚合酶的量来实现,即在宿主细胞中引入一个带有T7噬菌体的溶菌酶编码基因的质粒,如plysS或plysE,它们分别低量和高量表达T7噬菌体的溶菌酶。该溶菌酶可抑制T7 RNA聚合酶的活性,从而减少在未诱导情况下外源基因的表达。(5分)另一套是使启动子的控制效应更严紧。在pET载体上装载lacI基因,提高阻制物的浓度,同时也可利用T7-lac启动子(在T7启动子序列下游装入一个由25bp组成的lacO操纵子序列),当阻制物结合在lacO位点时,即使存在T7 RNA聚合酶,外源基因也无法表达。只有当诱导物IPTG存在时,才能解开T7 RNA聚合酶基因和外源基因表达的双重阻遇。

3、在基因工程操作过程中,使用的克隆载体需要具备哪些条件?选择受体细胞时需要具备哪些基本原则?

答:克隆载体需要具备条件:

①载体都能携带外源DNA片段(基因)进入受体细胞,或停留在细胞质中自我复制,或整合到染色体DNA上,随着染色体DNA的复制而同步复制。

②载体都具有合适的筛选遗传标记。

③载体都具有供外源基因插入的限制性核酸内切酶位点,即多克隆位点。

④载体都必须是安全的,不应含有对受体细胞有害的基因,并且不会任意转入除受体细胞以外的其他生物细胞,尤其是人的细胞。

⑤载体本身的分子量都比较小,可容纳较大的外源基因片段。

⑥载体在细胞内的拷贝数要高,方便外源基因在细胞内大量扩增。

⑦载体在细胞内稳定性要高,保证重组体稳定传代而不易丢失。

⑧载体的特征都是充分掌握的,包括它的全部核苷酸序列。

受体细胞的选择应具备的基本原则:

①便于重组DNA分子的导入。

②便于重组体的筛选。根据所用的表达载体所含的选择性标记与受体细胞基因是否相匹配,从而易于对重组体进行筛选。

③遗传稳定性高,易于进行扩大培养或易于进行高密度发酵而不影响外源基因的表达效率。对动物细胞而言,所选用的受体细胞具有对培养的适应性强,可以进行贴壁或悬浮培养,可以在无血清培养基中进行培养。

④受体细胞内内源蛋白水解酶基因缺失或蛋白酶含量低,利于外源蛋白表达产物在细胞内积累,可促进外源基因高效分泌表达。

⑤安全性高,无致病性,不会对外界环境造成生物污染。一般选用致病缺陷型的细胞或营养缺陷型细胞作为受体细胞。

⑥能使重组DNA分子稳定存在于细胞中。从受体细胞的角度出发,通常的做法是

是对其作适当的修饰改造,如选用某些限制性核酸内切酶缺陷型的受体细胞就可以避免其对重组DNA分子的降解破坏作用。

⑦受体细胞在遗传密码子的应用上无明显偏倚性。

⑧具有较好的转译后加工机制等,便于真核目的基因的高效表达。

⑨在理论研究和生产实践上有较高的应用价值。

鉴定一个携带目的基因的克隆方法:

带有某一细菌基因的克隆通常可以直接看出来,因为基因表达引起了宿主胞表型的可见变化。然而,真核生物的基因不都表达,则需用相应的方法来找出带有所需基因特定克隆。一个常用方法是杂交(southern杂交或菌落原位杂交):

一、核酸杂交法

利用标记的核酸做探针与转化细胞的dna进行分子杂交,可以直接筛选和鉴定目的序列克隆。常用的方法是将转化后生长的菌落复印到硝酸纤维膜上,用碱裂菌,菌落释放的dna就吸附在膜上,再与标记的核酸探针温育杂交,核酸探针就结合在含有目的序列的菌落dna上而不被洗脱。核酸探针可以用放射性核素标记,结合了放射性核酸探针的菌落集团可用放射性自显影(auroradiography)法指示出来,核酸探针也可以用非放射性物质标记,通常是经颜色呈现指示位臵,这样就可以将含有目的序列的菌落挑选出来。

或pcr法:pcr技术的出现给克隆的筛选增加了一个新手段。如果已知目的序列的长度和两端的序列,则可以设计合成一对引物,以转化细胞所得的dna为模板进行扩增,若能得到预期长度的pcr产物,则该转化细胞就可能含有目的的序列。

或dna限制性内切酶图谱分析:这是在上述筛选后的进一步分析。目的序列插入载体会使载体dna限制性酶图谱(restriction map)发生变化,提取转化细菌的质粒dna作酶切后做电泳观察其酶切图谱,就能分析得结果;如插入的目的序列中有其它限制性内切酶位点,也能在酶切电泳图谱上观察到。这就可以进一步鉴定重组体是不是所要的目的克隆。

二、核苷酸序列测定

所得到的目的序列或基因的克隆,都要用其核酸序列测定来最后鉴定。已知序列的核酸克隆要经序列测定确证所获得的克隆准确无误;未知序列的核酸克隆要测定序列才能确知其结构、推测其功能,用进一步的研究。因此核酸序列测定是分子克隆中必不可少的鉴定步骤。核酸序列测定的原理和方法在实验教材中有详细的叙述。

4、试述提高克隆基因在大肠杆菌中表达效率途径有哪些?

答:1、优化表达载体的设计:(1)提高启动子的转录效率,选择强的可调控启动子及相关的调控序列。(2)保证核糖体结合位点的有效性,一般SD序列至少含AGGAGG序列中4个碱基。(3)提供有效的转录终止区,可防止外源基因干扰载体系统的稳定性。

2、增加表达质粒的拷贝数和稳定性:高拷贝数和稳定性高的质粒组建的表达载体,可获得较高水平的表达。

3、提高翻译水平的效率:(1)SD序列与起始密码子之间距离以9±3碱基为适宜。(2)尽量避免使用罕用密码子,使用高频率的密码子。(3)增加mRNA的稳定性。在外源基因的下游插入具有反转重复顺序的DNA片段可起到稳定mRNA,提高表达水平作用。

4、减轻细胞的代谢负荷:(1)诱导表达,使细菌的生长与外源基因的表达分开成2个阶段。(2)表达载体的诱导复制,将宿主菌的生长和表达质粒的复制分开。

5、提高表达蛋白的稳定性,防止其降解:(1)构建融合表达系统,产生融合蛋白避免目标基因产物被快速降解,稳定表达产物的产率。(2)选用蛋白水解酶基因缺陷型受体系统,可以保证基因表达产物在受体细胞内的相对稳定。(3)构建分泌表达系统,产生分泌蛋白,避免细胞内的水解酶对表达蛋白的降解。(4)构建包涵体表达系统,外源蛋白可以在宿主细胞中以包涵体形式表达,可以抵抗宿主细胞中蛋白水解酶的降解,也便于纯

化。(5)采用位点特异性突变的方法,改变真核蛋白二硫键的位臵,从而增加蛋白质的稳定性。

6、优化发酵过程:(1)工艺方面的因素:如选择合适的发酵系统或生物反应器,如罐式搅拌反应器、鼓泡反应器和气升式反应器等。(2)生物学方面的因素:一是与细菌生长密切相关条件或因素,如发酵中的溶氧、pH值、温度和培养基成分等。二是对外源基因表达条件的优化。在发酵罐内工程菌生长到一定的阶段后,开始诱导外源基因的表达,诱导的方式包括添加特异性诱导物和改变培养温度等。三是提高外源基因表达产物的总量。外源基因表达产物的总量取决于外源基因表达水平和菌体浓度。

5、试述选择受体细胞的基本原则。

答:①便于重组DNA分子的导入。

②便于重组体的筛选。根据所用的表达载体所含的选择性标记与受体细胞基因是否相匹配,从而易于对重组体进行筛选。

③遗传稳定性高,易于进行扩大培养或易于进行高密度发酵而不影响外源基因的表达效率。对动物细胞而言,所选用的受体细胞具有对培养的适应性强,可以进行贴壁或悬浮培养,可以在无血清培养基中进行培养。

④受体细胞内内源蛋白水解酶基因缺失或蛋白酶含量低,利于外源蛋白表达产物在细胞内积累,可促进外源基因高效分泌表达。

⑤安全性高,无致病性,不会对外界环境造成生物污染。一般选用致病缺陷型的细胞或营养缺陷型细胞作为受体细胞。

⑥能使重组DNA分子稳定存在于细胞中。从受体细胞角度出发,通常做法是对其作适当的修饰改造,如选用某些限制性核酸内切酶缺陷型的受体细胞就可以避免其对重组DNA分子的降解破坏作用。

⑦受体细胞在遗传密码子的应用上无明显偏倚性。

⑧具有较好的转译后加工机制等,便于真核目的基因的高效表达。

⑨在理论研究和生产实践上有较高的应用价值。

6、试述基因载体具备的特性。

答:⑴载体能在宿主细胞内进行独立和稳定的DNA自我复制;或整合到染色体DNA上,随着染色体DNA的复制而同步复制;在载体中插入外源基因后,仍然保持稳定的复制状态和遗传特性。

⑵载体易于从宿主细胞中分离,并进行纯化。

⑶载体都具有供外源基因插入的限制性内切核酸酶位点,即多克隆位点。

⑷载体具有观察的表型特征(遗传标记基因),插入外源基因后可作为重组DNA选择标志。

⑸载体本身分子量比较小,可容纳较大外源基因片段。

⑹载体在细胞内的拷贝数高,方便外源基因在细胞内大量扩增。

⑺载体在细胞内稳定性高,保证重组体稳定传代而不易丢失。

⑻载体是安全的,不含对受体细胞有害基因,且不会转入除受体细胞以外的其他生物细胞。

扬州大学基因工程期末试题复习要点整理

基因工程期末试题复习要点整理 基因工程是70年代出现的一门科学,是生物学最具生命力和最引人注目的前沿科学之一,是现代生物技术的代表,是生命科学类专业中的一门重要的专业课。本课程主要介绍基因工程概述、重组DNA基本技术及原理、基因克隆、基因的分离及鉴定、基因工程的表达系统、基因工程的应用等。通过本课程的学习,使学生掌握基因工程技术的基本原理和了解该技术在动物、植物和微生物等方面的应用,为今后从事生物学教学、生物技术研究和产品开发,或进一步的研究生学习科研打下坚实的理论及专业基础。扬州大学试题纸 一、名词解释:共10题,每题2分,共20分。 1. 基因: 是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。 2. 定位克隆: 获取基因在染色体上的位置信息,然后采用各种方法对该基因进行定位和克隆 3. 融合基因: 是指应用DNA体外重组技术构建的一类具有来自两个或两个以上的不同基因核苷酸序列的新型基因。 4. 转化子: 导入外源DNA后获得了新遗传标志的细菌细胞或其他受体细胞,又称重组体。 5. 人工接头:是人工合成的具有一个或数个特定限制性内切酶识别和切割序列的双股平端DNA短序列。 6. RT-PCR: 是指以mRNA在反转录酶作用下合成cDNA第一链为模板进行的PCR。 7. ORF : 起始于AUG、止于UAA、UGA、UAG的连续的密码子区域,是潜在的编码区。 8. MCS: 指载体上人工合成的含有紧密排列的多种限制核酸内切酶的酶切位点的DNA片段。 9. gene targeting : 基因工程中利用活细胞染色体DNA可与外源DNA的同源性DNA序列发生重组的性质,来进行定点修饰改造染色体上某一目的基因的技术 10. 5’RACE: 是一种通过PCR进行cDNA末端快速克隆的技术,是以mRNA为模板反转录成cDNA第一链后用PCR技术扩增出某个特异位点到5’端之间未知序列的方法。 四、简答题:共4题,共20分。 1.简述获得目的基因常用的几种方法。(5分)

基因工程考试试题.doc

基因工程 一名词解释 DNA,1、限制与修饰系统:限制酶的生物学功能一般被认为是用来保护宿主细胞不受外源DNA的感染,可讲解外 来 从而阻止其复制和整合到细胞中。一般来说,与限制酶相伴而生的修饰酶是甲基转移酶,或者说是甲基化酶,能保护 自身的 DNA不被讲解。限制酶和甲基转移酶组成限制与修饰系统。 2、各种限制与修饰系统的比较 Ⅱ型Ⅰ型Ⅲ型 识别位点4~6bp,大多为回文序列二分非对称5~7bp 非对称 切割位点在识别位点中或靠近识别位点无特异性,至少在识别位点外100bp 识别位点下游 24~26bp 简答 1. 何谓 Star activity?简述Star activity的影响因素及克服方法? 答:在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特征称为星星活性。 pH 引起星星活性的的因素:①高甘油浓度(>5%);②酶过量( >100U/μl );③低离子强度( <25mmol/L);④高(> ;⑤有机溶剂如DMSO (二甲基亚砜)、乙醇、乙二醇、二甲基乙酰胺、二甲基甲酰胺等;⑥用其它二价阳离子 星星活性的抑制措施:①减少酶的用量,避免过量酶切,减少甘油浓度;②保证反应体系中无有机溶剂或乙醇;③提高离子强度到100 ~ 150mM(在不抑制酶活性的前提下);④降低反应pH至;⑤使用Mg2+作为二价阳离子。 2. 试回答影响限制性内切核酸酶切割效率的因素?(影响酶活性的因素?) 答:外因:反应条件、底物纯度(是否有杂质、是否有盐离子和苯酚的污染)、何时加酶、操作是否恰当,反应体系的选择、反应时间的长短 内因:星星活性、底物甲基化、底物的构象 3、 DNA末端长度对酶切割的影响 答:限制酶切割 DNA 时,对识别序列两端的非识别序列有长度要求,也就是说在识别序列两端必须要有一定数量的 核苷酸,否则限制酶将难以发挥切割活性。在设计PCR引物时,如果要在末端引入一个酶切位点,为保证能够顺利切 割扩增的 PCR产物,应在设计的引物末端加上能够满足要求的碱基数目。一般需加 3 ~4 个碱基对。 4、何为载体?一个理想的载体应具备那些特点? 答:将外源 DNA 或目的基因携带入宿主细胞的工具称为载体。载体应具备:①在宿主细胞内必须能够自主复制(具 备复制原点);②必须具备合适的酶切位点,供外源DNA 片段插入,同时不影响其复制;③有一定的选择标记,用于 筛选;④其它:有一定的拷贝数,便于制备。 5 抗性基因( Resistant gene)是目前使用的最广泛的选择标记,常用的抗生素抗性有哪几种?并举两例说明其原理? 答:氨苄青霉素抗性基因( ampr)、四环素抗性基因(tetr )、氯霉素抗性基因( Cmr)、卡那霉素和新霉素抗性基因( kanr , neor )以及琥珀突变抑制基因supF 。 ⑴青霉素抑制细胞壁肽聚糖的合成,与有关的酶结合,抑制转肽反应并抑制其活性。氨苄青霉素抗性Ampr 编码一个酶,可分泌进入细胞的周质区,并催化β - 内酰胺环水解,从而解除氨苄青霉素的毒性。 ⑵四环素与核糖体 30S 亚基的一种蛋白质结合,从而抑制核糖体的转位。 Tetr 编码一个由 399 个氨基酸组成的膜 结合蛋白,可阻止四环素进入细胞。 6. 何为α - 互补?如何利用α - 互补来筛选插入了外源DNA 的重组质粒? 答:α - 互补指 lacZ 基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β - 半乳糖苷酶阴性的突变体之间实现互补。α - 互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的。实现α- 互补主要有两部分组成:LacZ △ M15 ,放在 F 质粒或染色体上,随宿主传代;LacZ' ,放在载体上,作为筛选标记,当在 LacZ' 中插入一个片断后,将不可避免地导致产生无α- 互补能力的β-半乳糖苷酶片断。在诱导物IPTG 和底物 X-gal (同时可作为生色剂)的作用下,含重组质粒的菌落不能产生有活性的β-半乳糖苷酶,不能分解 X-gal ,呈现白色,而含非重组质粒的菌落则呈现兰色。以此达到筛选的目的。 7、试简述λ噬菌体的裂解生长状态Lytic growth 和溶原状态 Lysogenic state 两种循环的分化及其调节过程? 答:裂解生长状态是λ噬菌体在宿主中大量复制并组装成子代λ噬菌体颗粒,导致宿主细胞裂 解。溶原状态为λ噬菌体基因组 DNA 通过位点专一性重组整合到宿主染色体DNA 中随宿主的繁殖传到子代细胞。调节过程:由感染复数

《基因工程》专题复习总结

专题1 基因工程 知识体系构建 专题整合 一、基因工程的基本工具 A.重组DNA技术所用的工具酶是限制酶、连接酶、载体 B.为育成抗除草剂的作物新品种,导入抗除草剂基因时只能以受精卵为受体细胞 C.选用细菌作为重组质粒的受体细胞是因为细菌繁殖快

D.只要目的基因进入了受体细胞就能成功表达 二、基因工程的操作程序 1.目的基因的获取 (1)目的基因:指编码蛋白质的结构基因。 (2)获取方法:从基因文库获取,原核基因也可直接分离获得;真核基因主要是人工合成,人工合成目的基因的常用方法有反转录法和化学合成法。 2.基因表达载体的构建 (1)目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 (2)组成:启动子+目的基因+标记基因+终止子。 ①启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需要的蛋白质。 ②终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。 ③标记基因的作用:鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素抗性基因。 3.将目的基因导入受体细胞

A.提取目的基因→目的基因导入受体细胞→目的基因与载体结合→目的基因的检测与鉴定 B.目的基因的检测与鉴定→提取目的基因→目的基因与载体结合→目的基因导入受体细胞 C.提取目的基因→目的基因与载体结合→目的基因导入受体细胞→目的基因的检测与鉴定 D.目的基因与载体结合→提取目的基因→目的基因导入受体细胞→目的基因的检测与鉴定 三、蛋白质工程 1.蛋白质工程流程 2.蛋白质工程与基因工程的区别:蛋白质工程的本质是通过改造基因进而形成自然界不存在的蛋白质,所以被形象地称为第二代基因工程;基因工程在原则上只能生产自然界已存在的蛋白质。 训练3 利用蛋白质工程改造天然蛋白质,进而改变其功能,可获得毒副作用减小,专一性、药效和稳定性都增强的理想的药物。如胰岛素是治疗依赖型糖尿病的特效药物,但是天然胰岛素在人体内寿命只有几小时,重症病人每天得注射好几次药物,给病人增加了不便和痛苦。通过蛋白质工程改变胰岛素的空间结构,以延长胰岛素的半衰期,得到长效胰岛素;还可以在不改变胰岛素活性部位结构的前提下,增强其他部位结合强度,使之难以被酶破坏,从而增强其稳定性。 (1)若要批量生产以上提到的长效胰岛素,根据所学知识,需要用到哪些生物工程( )

基因工程和细胞工程测试题(附答案,可用于考试)

5 高二生物《基因工程和细胞工程》测试题姓名班级 (时间:90分钟分数:100分) 一.选择题(本大题包括25题,每题2分,共50分。每题只有一个选项符合题意。) 1.以下说法正确的是() A.所有的限制酶只能识别一种特定的核苷酸序列 B.质粒是基因工程中惟一的运载体 C.运载体必须具备的条件之一是:具有多个限制酶切点,以便与外源基因连接D.质粒是广泛存在于细菌细胞中的一种颗粒状细胞器 2.植物体细胞杂交与动物细胞工程中所用技术与原理不.相符的是() A.纤维素酶、果胶酶处理和胰蛋白酶处理——酶的专一性 B.植物组织培养和动物细胞培养——细胞的全能性 C.植物体细胞杂交和动物细胞融合——生物膜的流动性 D.紫草细胞培养和杂交瘤细胞的培养——细胞分裂 3.有关基因工程的叙述正确的是() A.限制性内切酶只在获得目的基因时才用 B.重组质粒的形成在细胞内完成 C.质粒都可作运载体 D.蛋白质的结构可为合成目的基因提供资料 4.能克服远缘杂交障碍培育农作物新品种的技术是() A.基因工程 B.组织培养 C.诱变育种 D.杂交育种 5.下列关于动物细胞培养的叙述,正确的是( ) A.培养人的效应T细胞能产生单克隆抗体 B.培养人的B细胞能够无限地增殖 C.人的成熟红细胞经过培养能形成细胞株 D.用胰蛋白酶处理肝组织可获得单个肝细胞 6.PCR技术扩增DNA,需要的条件是( ) ①目的基因②引物③四种脱氧核苷酸 ④DNA聚合酶等⑤mRNA⑥核糖体 A、①②③④ B、②③④⑤ C、①③④⑤ D、①②③⑥ 7.以下对DNA的描述,错误的是() A.人的正常T淋巴细胞中含有人体全部遗传信息 B.同种生物个体间DNA完全相同 C.DNA的基本功能是遗传信息的复制与表达 D.一个DNA分子可以控制多个性状 8. 蛋白质工程中直接需要进行操作的对象是() A.氨基酸结构 B.蛋白质空间结构 C.肽链结构 D.基因结构 9.细胞工程的发展所依赖的理论基础是() A.DNA双螺旋结构模型的建立 B.遗传密码的确立及其通用性的发现 C.生物体细胞全能性的证明 D.遗传信息传递的“中心法则”的发现 10.下列不是基因工程中的目的基因的检测手段的是:() A.分子杂交技术 B.抗原—抗体杂交 C.抗虫或抗病的接种 D.基因枪法 11.在以下4种细胞工程技术中,培育出的新个体中,体内遗传物质均来自一个亲本的是() A.植物组织培养 B. 单克隆抗体 C. 植物体细胞杂交 D.细胞核移植 12.动物细胞融合与植物细胞融合相比特有的是() A.基本原理相同 B.诱导融合的方法类 C.原生质体融合 D.可用灭活的病毒作诱导剂 13.下列哪一项属于克隆() A.将鸡的某个DNA片段整合到小鼠的DNA分子中 B.将抗药菌的某基因引入草履虫的细胞内 C.将鼠骨髓细胞与经过免疫的脾细胞融合成杂交瘤细胞

基因工程制药复习提纲

名词解释 1. 基因工程基因工程是值在体外合成或重组特定的DNA,再与载体连接,最后导入到宿 主细胞内表达、扩增出人们需要的蛋白质,而且使这种性状可遗传给后代的技术。包括上游技术和下游技术。 2. 基因工程制药基因工程制药是通过基因工程的方法生产药物,具体包括获得目的基因、构建重 组质粒、构建基因工程菌、培养工程菌、产物分离纯化、产品加工检验等步骤。 3. 逆转录逆转录(reverse transcription )是某些RNA病毒由逆转录酶直接利用RNA为模 板合成DNA的过程。 4. CDNA以生物细胞的mRNA为模板,在逆转录酶的作用下合成cDNA的第一条链,然后 在合成双链DNA,并将合成的cDNA双链重组到质粒载体或噬菌体载体上,倒入宿主细胞进行增殖。在这个过程中合成的双链DNA叫做cDNA。 5. 引物引物是人工合成的单链DNA小片段,碱基顺序分别与所要扩增的模板DNA双链的 5'端相同。是PCR的起始点。 6. 表达载体所谓表达载体(expression vector)是指具有宿主细胞基因表达所需的调节控制序列,能 使外源基因在宿主细胞内转录和翻译的载体。 7. 克隆载体克隆载体(cloning vector)是把一个有用的制药DNA片段通过重组DNA技术,送进受 体细胞中进行繁殖的工具。 8. 载体载体(vector),指在基因工程重组DNA技术中将DNA片段(目的基因)转移至 受体细胞的一种能自我复制的DNA分子。 9. 报告基因载体分子上有一种特殊意义的基因序列,它们表达的目的是为了证明载体已经进入宿 主细胞,并将含有外源基因的宿主细胞从其他细胞中区分并挑选出来。这种基因就是报告基因。 10. 启动子启动子是位于结构基因5'端上游的DNA序列,能被RNA聚合酶识别并结合,具 有转录起始的特异性 11. PCR聚合酶链式反应是一种体外放大扩增特定DNA片段的分子生物学技术,它主要包括 变性、退火、延伸三个过程,并且多次循环。 12. 包涵体包涵体(inclusion body)是存在于细胞质中的一种不可溶的蛋白质聚集折叠而形成的晶体 结构物。通常包涵体虽然具有正确的氨基酸序列,但是空间结构却是错误的。 13. 蛋白表达系统蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系,通过这个体系 实现外源基因在宿主细胞中表达的目的。 14. 单克隆抗体由单一B细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体,称为单克隆抗 体。 15. 基因工程抗体基因工程抗体就是按不同的目的和需求,对抗体基因进行加工、改造和重新装配, 然后导入适当的受体细胞中表达得到的抗体分子。 16. 改形抗体改性抗体(reshaped antibody,RAb )是指利用基因工程技术,将人抗体可变区 (V)中互补决定簇序列改换成鼠源单抗互补决定簇。重构成既具有鼠源性单抗的特异性又保持抗体亲和力的人源化抗体。 17. 嵌合抗体在基因水平上将鼠源单克隆抗体可变区和人抗体恒定区连接起来并在合适的宿主细胞中 表达,这种抗体叫做嵌合抗体( chimeric antibody )。 18. 镶面抗体将鼠源单抗可变区中氨基酸残基改造成人源的,消除了异源性且不影响可变区的整体 空间构象。 19. 单链抗体单链抗体(single chain antibody fragment,scFv),是由抗体重链可变区和轻链可变区 通过15?20个氨基酸的短肽(linker)连接而成。scFv能较好地保留其对抗原的亲 和活性,并具有分子量小、穿透力强和抗原性弱等特点。

基因工程复习要点

一名词解释: 1基因:是遗传信息的基本单位,携带着某种蛋白质或的遗传信息。从化学本质上看,基因是一段携带特定遗传信息的脱氧核糖核苷酸()序列,是构成巨大遗传单位染色体的组成部分。 2基因工程:按照人们的愿望,进行严密的设计,利用体外重组和转基因等生物技术,有目的地改造生物性状使之具有满足人们特定需求的能力。最突出的优点:打破了常规育种难以突破的物种之间的界限,使不同的物种之间可以进行遗传信息的重组和转移。 3 :熔点温度或者解链温度,是变性进行到一半时的温度 4同裂酶:有时,一些限制性内切酶虽然来源不同,但是识别序列相同,这样的酶称为同裂酶(同切酶或异源同工酶)。此种酶切割位点可同可不同。 5 技术:是一种在体外快速扩增特定基因或序列的方法,即聚合酶链式反应技术。(已知的短片段1以内) 6质粒不相容性:不同质粒有的可共存于同一细胞中,但有的不行。不能同寓于一个细胞中的不同质粒称为不相容性质粒。 7转录单元:始于启动子,止于终止子,中间是一段转录区,转录为单链的一段序列 8杂种位点::由一对同尾酶分别产生的粘性末端共价结合形成的位点。一般不能被原来的任何一种同尾酶识别。 9基因表达:基因通过的转录和的转译等过程,将其所携带的遗传信息转变成蛋白质(或转录本)的过程。 10基因组文库:某一特定生物的很多克隆的集合,其中克隆数足够大以覆盖每一个基因。 11 :开放阅读框,以起始密码子开始终止密码子结束的一串三联体核苷酸序列。 起始密码子:终止密码子: 12克隆:动词:是指从一个共同祖先经无性繁殖得到的一群遗传上同一的分子、细胞或个体所组成的特殊生命群体;名词:指从同一个祖先产生这类同一的分子群体、细胞群体或个体群体的过程。 13蛋白质印迹杂交技术:将蛋白样本通过聚丙烯酰胺电泳按分子量大小分离,再转移到杂交膜上,然后通过一抗/二抗复合物对靶蛋白进行特异性检测的方法。 14同尾酶:指来源不同、识别靶序列不同但产生相同的粘性末端的核酸内切酶。利用同尾酶可使切割位点的选择余地更大。 二选择题: 1焦磷酸测序中没用到以下什么酶;(聚合酶( )、硫酸化酶( ).荧光素酶(1)和三磷酸腺苷双磷酸酶()4种酶都有) 2克隆基因常用强效载体,哪种不适用于大肠杆菌,选; 3质粒克隆载体非必需元件,选融合标签; 4外源基因在下列哪种中表达最完善(哺乳动物细胞); 5一个完整的转录单位不包括(复制起始位点)。 三简答题: 1简要勾勒一副原核表达载体图。(重点是要包括原核表达载体的6个要素:启动子、核糖

基因工程期末复习总结

一、单选 1、第一个实现DNA重组的实验:1972年,美国斯坦福大学医学中心的P.Berg在世界上第一次成功地实现了DNA的体外重组。 2、第一次实现重组体转化成功的实验:1973年,科恩(Coher)和博耶(Boyer)建立的基因工程基本模式。 3、基因工程研究的主要内容:切接转增检。 4、基因工程研究的基本要素:基因、工具酶、载体、受体细胞。 5、DNA在生物体内的存在状态:染色体DNA、病毒DNA(噬菌体DNA)、质粒DNA、线粒体DNA和叶绿体DNA,有的以线型存在,有的以环状存在。 6、天然DNA提取的步骤:生物材料的准备、裂解细胞、分离抽提DNA。 7、DNA的分离抽提法:酚-氯仿抽提法(常用、经典)。 8、DNA的保存:温度越低越好,同等条件下,温度越低越不容易降解。 9、为了消除在制备RNA过程中RNA酶的污染,应用0.1% DEPC处理过的水配制试剂。 10、人工合成DNA片段的方法有化学合成法和聚合酶链式反应扩增法。 11、紫外分光光度法检测核酸样品的纯度(常用),纯净的核酸溶液的0D260/OD280值应为 1.7~2.0,0D260/OD230值应大于 2.0,如果0D260/OD280小于1.7,可能有蛋白质污染,如果0D260/OD280大于2.0

或0D260/OD230小于2.0时,核酸溶液中可能存在其他干扰物质。12、工具酶就其用途而言可分为三大类:限制性内切酶、连接酶和修饰酶。 13、 14、通常提到的限制性核酸内切酶主要指Ⅱ类酶而言,限制性核酸内切酶的命名:属名+种名。例如:B acillus am ylolique faciens H、 H aemophilus in fluenzae dⅠ→Bam H、Hind 15、限制性内切核酸酶的本质:细菌细胞的限制—修饰系统。 17、常用的酶切方法:单酶切、双酶切和部分酶切。

(整理)分子生物学与基因工程复习题

一、名词解释 1、分子生物学 2、基因工程 3、DNA的变性与复性 4、细胞学说 5、遗传密码的简并性 6、DNA半保留复制、半不连续复制 7、SD序列 8、开放阅读框(ORF) 9、多顺反子 10、蓝白斑筛选 11、中心法则 12、限制修饰系统 13、断裂基因 14、单链结合蛋白 15、核酶 16、密码子家族 17、TA克隆 18、PCR 19、SNP 20、操纵子学说 21、DNA重组技术 22、减色效应-增色效应 23、可变剪接 24、反转录 25、同尾酶 26、加帽反应 27、蓝白斑筛选 28、表观基因组学 29、DNA的溶解温度 30、DNA的大C值 31、重叠基因 32、引物酶 33、逆转录 34、限制性内切酶 35、载体的选择标记 36、DNA甲基化

37、端粒 38、端粒酶 39、前导链 40、启动子 41、反式作用因子 42、同义密码子 43、多克隆位点(MCS) 44、基因组计划 45、C值悖论 46、顺式作用元件 47、胸腺嘧啶二聚体 48、寄主的限制修饰现象 49、拓扑异构酶 50、DNA的溶解 51、拓扑异构体 52、间隔基因 53、假基因 54、同源异型蛋白 55、翻译 56、多重PCR 57、抗终止作用 58、SD序列 59、空载tRNA 60、cDNA RACE 61、分子杂交 62、cDNA文库 63、载体 64、RT-PCR 65、反义RNA 66、延伸tRNA 67、起始tRNA 68、探针 69、反式剪接 70、增强子 71、动物基因工程 72、基因组 73、限制性内切酶 74、单顺反子

75、密码子 76、转录 77、RNA干扰 78、中心法则 79、回环模型 80、TATA box 81、前导链 82、目的基因 83、RFLP 84、RACE 二、判断 1、大肠杆菌DNA生物合成中,DNA聚合酶I主要起聚合作用。( ) 2、DNA半保留复制时,后随链的总体延伸方向与先导链的延伸方向相反。( ) 3、原核生物DNA的合成是单点起始,真核生物为多点起始。() 4、以一条亲代DNA(3’→ 5’)为模板时,子代链合成方向5’→ 3’,以另一条亲代DNA链 5’→ 3’为模板时,子代链合成方向3’→ 5’。() 5、RNA的生物合成不需要引物。() 6、大肠杆菌RNA聚合酶全酶由4个亚基(α2ββ’)组成。( ) 7、大肠杆菌在多种碳源同时存在的条件下,优先利用乳糖。 ( ) 8、在DNA生物合成中,半保留复制与半不连续复制指相同概念。() 9、逆转录同转录类似,二者均不需要引物。() 10、真核生物染色体核心组蛋白的乙酰化、组蛋白H1的磷酸化,都会使基因得以失活。() 11、在原核细胞中,起始密码子AUG可以在mRNA上的任何位置,但一个mRNA上只有一个起 始位点。( ) 12、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别mRNA上的密码子。( ) 13、表观遗传效应是不可遗传的。( ) 14、cAMP与CAP结合、CAP介导正性调节发生在有葡萄糖及cAMP较高时。( ) 15、DNA甲基化永久关闭了某些基因的活性,这些基因在去甲基化后,仍不能表达。 () 16、RNA聚合酶催化的反应无需引物,也无校对功能。( ) 17、基因是存在于所有生命体中的最小遗传单位 18、人类基因组中大部分DNA不编码蛋白质 19、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别 mRNA上的密码子。 ( )

基因工程复习总结.docx

思考题 第二章分子克隆工具酶 1简述基因工程研究用的工具酶的类型和作用特点。 常用的工具酶 硝基序列内部进庁切割 DrU逵接癖 DT?A 1 i HaSe 将两条以上的纯性HA方子咸序喪傕化昭成磷酸二酣键逢接战一6盘傢 DNAJSt 合BBl DNA PDIytoeraSe 1通?u≡ιg'掰遥一蝎如械昔≡κ???板. 从3'方向令咸新生的互补谜 专一懺降解RMA 内切械肢晦.4?M4tl?或双1?DNA 2?说明限制性内切核酸酶命名原则(举例)

专题一、基因工程知识点归纳

专题一基因工程 一【高考目标定位】 1、专题重点:DNA重组技术所需的三种基本工具;基因工程的基本操作程 序四个步骤;基因工程在农业和医疗等方面的应用;蛋白质工程的原理。 2、专题难点:基因工程载体需要具备的条件;从基因文库中获取目的基因; 利用PCR技术扩增目的基因;基因治疗;蛋白质工程的原理。 二【课时安排】2课时 三【考纲知识梳理】 第1节DNA重组技术的基本工具 教材梳理: 知识点一基因工程的概念:基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫做DNA重组技术。 注意:对本概念应从以下几个方面理解: 知识点二基因工程的基本工具 1.限制性核酸内切酶——“分子手术刀” (1)限制性内切酶的来源:主要是从原核生物中分离纯化来的。 (2)限制性内切酶的作用:能够识别双链DNA分子的某种特定的核苷酸序列,并能将每一条链上特定部位的两个核苷酸之间的磷酸二酯键切开。(3)限制性内切酶的切割方式及结果:①在中心轴线两侧将DNA切开,切口是黏性末端。②沿着中心轴线切开DNA,切口是平末端。 2.DNA连接酶——“分子缝合针” (1)来源:大肠杆菌、T4噬菌体 (2)DNA连接酶的种类:E.coliDNA连接酶和T4DNA连接酶。 (3)作用及作用部位:E.coliDNA连接酶作用于黏性末端被切开的磷酸二

酯键,T4DNA连接酶作用于黏性末端和平末端被切开的磷酸二酯键。 注意:比较有关的DNA酶 (1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基 (2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。注意:使DNA解成两条长链的方法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA解旋。(3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。(4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。注意比较DNA 聚合酶和DNA连接酶的异同点。 3.基因进入受体细胞的载体——“分子运输车” (1)分子运载车的种类:①质粒:常存在于原核细胞和酵母菌中,是一种分子质量较小的环状的裸露的DNA分子,独立于拟核之外。②病毒:常用的病毒有噬菌体、动植物病毒等。 (2)运载体作用:①是用它做运载工具,将目的基因转运到宿主细胞中去。 ②是利用它在受体细胞内对目的基因进行大量复制。 (3)作为运载体必须具备的条件:①在宿主细胞中保存下来并大量复制②有多个限制性内切酶切点③有一定的标记基因,便于筛选。 思维探究:知识点3、4、5主要是介绍DNA重组技术的三种基本工具及其作用。限制酶──“分子手术刀”,主要是介绍限制酶的作用,切割后产生的结果。在这部分内容学习时,应关心的问题之一是:限制酶从哪里寻找?我们可以联想从前学过的内容──噬菌体侵染细菌的实验,进而认识细菌等单细胞生物容易受到自然界外源DNA的入侵。那么这类原核生物之所以长期进化而不绝灭,有何保护机制?进而联想到可能是有什么酶来切割外源DNA,而使之失效,达到保护自身的目的”。这样就对“限制酶主要是从原核生物中分离纯化出来”的认识提高了一个层次。 基因进入受体细胞的载体──“分子运 输车”的学习内容,不能仅仅着眼于记住这几 个条件,而应该深入思考每一个条件的内涵, 通过深思熟虑,才能真正明确为什么要有这些 条件才能充当载体。 教材拓展: 拓展点一限制酶所识别序列的特点 限制酶所识别的序列的特点是:呈现碱基互补对称,无论是奇数个碱基还是偶数个碱基,都可以找到一条中心轴线,如图,中轴线两侧的双链

基因工程期末复习总结.docx

一、单选 1、第一个实现DNA重组的实验:1972年,美国斯坦福大学医学中心的P.Berg在世界上第一次成功地实现了DNA的体外重组。 2、第一次实现重组体转化成功的实验:1973年,科恩(Coher)和博耶(Boyer)建立的基因工程基本模式。 3、基因工程研究的主要内容:切接转增检。 4、基因工程研究的基本要素:基因、工具酶、载体、受体细胞。 5、DNA在生物体内的存在状态:染色体DNA、病毒DNA (噬菌体DNA)、质粒DNA、线粒体DNA利叶绿体DNA,有的以线型存在,有的以环状存在。 6、天然DNA提取的步骤:生物材料的准备、裂解细胞、分离抽提 DNAo 7、DNA的分离抽提法:酚■氯仿抽提法(常用、经典)。 8、DNA的保存:温度越低越好,同等条件下,温度越低越不容易降解。 9、为了消除在制备RNA过程中RNA酶的污染,应用0.1% DEPC处理过的水配制试剂。 10、人工合成DNA片段的方法有化学合成法和聚合酶链式反应扩增法。 口、紫外分光光度法检测核酸样品的纯度(常用),纯净的核酸溶液的 OD260/OD280值应为1.7-2.0, OD260/OD230值应大于2.0,如果OD260/OD280小于1.7,可能有蛋白质污染,如果OD260/OD280大于2.0

或OD260/OD23O小于2.0时,核酸溶液中可能存在其他干扰物质。 12、工具酶就其用途而言可分为三大类:限制性内切酶、连接酶和修饰酶。 基因工程屮最常用的工具酶 14、通常提到的限制性核酸内切酶主要指II类酶而言,限制性核酸内切酶的命名: 属名+种名。例如:Bacillus amylolique faciens H、Haemophilus influenzae d Bam H> Hind I o“属种株序” 15、限制性内切核酸酶的本质:细菌细胞的限制一修饰系统。 16、限制性内切核酸酶的作用机制识别双链DNA中特定的核昔酸 17、常用的酶切方法:单酶切、双酶切和部分酶切。

分子生物学与基因工程复习资料

分子生物学与基因工程 绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代” 3、分子生物学与基因工程的专业地位与作用。 核酸概述 1、核酸的化学组成 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖;

(2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链; (4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。

基因工程复习资料

细菌的限制—修饰作用 核酸限制性内切酶的类型及主要特性

一个单位的限制性核酸内切酶定义为:在合适的温度和缓冲液中,在50uL反应体系中,1h完全降解1ug底物DNA所需要的酶量。 星号(*)活性:如果改变反应条件就会影响酶的专一性和切割效率,内切酶出现切割与识别位点相似但不完全相同的序列,这一现象称为星号(*)活性。 同位酶:识别位点相同,但切点不同。 同裂酶:识别位点和切点均相同,但来源不同。 同尾酶:识别的序列不同,但能切出相同的粘性末端 两种DNA连接酶 (1)大肠杆菌DNA连接酶:只能连接粘性末端。分子质量为68ku (2)T4噬菌体DNA连接酶:不但能连接粘性末端,还能连接平齐末端。分子质量为75ku

p35页表2-4 简述DNA连接酶的作用机制及其特点 说明使用切口位移法进行DNA标记的原理及其步骤 基因工程载体根据来源和性质不同可分为质粒载体,噬菌体载体,黏粒载体,噬菌粒载体,病毒载体,人工染色体等 质粒的概念:质粒(plasmid)是一种存在于细菌或真菌染色体外的小型环状(线型质粒DNA 分子—眼虫、衣藻等)双链DNA 分子(酵母的“杀伤质粒”是RNA),可自身复制和表达。 共价闭合环状DNA(SC构型)开环DNA(oc构型)线形DNA (L构型) 同一质粒尽管分子量相同,不同的构型电泳迁移率不同: SC DNA最快、L DNA次之、OC DNA最慢。 理想质粒载体的必备条件: A、具有较小的分子质量和较高的拷贝数 B、具有若干限制性核酸内切酶的单一酶切位点(多克隆位点) C、具有两种以上的选择标记基因 D、缺失mob基因(载体的安全性:质粒不能随便转移、条件致死突变) E、插入外源基因的重组质粒较易导入宿主细胞并复制和表达(复制起点)、较小的宿主范围蓝白班筛选原理 穿梭质粒载体(shuttle vector) :由人工构建的具有两种不同复制子起点和选择性标记基因 黏粒载体也称柯斯质粒载体:它是一类含有λ噬菌体的cos序列的质粒载体 噬菌体载体的优越性p69

基因工程复习要点

一 1.载体的功能 1.运送外源基因高效转入受体细胞 2.为外源基因提供复制能力或整合能力 3.为外源基因的扩增或表达提供必要的条件 2.基因工程学科建立的理论和技术发明 1.三大理论:DNA是遗传物质、1953年提出DNA的双螺旋结构、提出中心法则和遗传密码 2.三大技术:工具酶的发现、载体的发现、逆转录酶的发现 3.质粒的特点 质粒是一类存在于细菌和真菌细胞中能独立于染色体DNA而自主复制的共价、闭合、环状DNA分子,也称cccDNA.通常在1~100范围内。 自主复制性、可扩增性、可转移性、不相容性 4.描述PBR322质粒筛选过程 PBR322质粒有两个标记基因,氨苄青霉素抗性基因和四环素抗性基因。 若在康四环素抗性基因上插入外源DNA,则 1.先将转化液涂布在含有氨苄青霉素的平板上,未长的菌落是未导入质粒的菌落 2.再将上述平板上存活的菌落影印到含有四环素平板上,在四环素上不长但在氨苄青霉素 上长的转化子即为重组子。 5.简述PUC系列质粒筛选重组子的过程 PUC是在PBR322质粒上改造的 若在lacZ’标记基因上插入外源DNA,则 将转化液涂布在含有Amp的平板上,蓝色菌落为非重组子,白色菌落为重组子,没长的未导入质粒。 6.基因工程操作的基本流程 1.离:从供体细胞中分离出基因组DNA 2.切、连:用限制性核酸内切酶分别将外源DNA和载体分开,用DNA连接酶将含有外源基 因的DNA片段接到载体分子上,构成重组DNA分子 3.转、增:将重组DNA导入受体细胞,段时间培养转化细胞,以扩增DNA重组分子或使其 整合到受体细胞的基因组中 4.筛:筛选经转化处理的细胞,获得外源基因高效稳定的基因工程菌或细胞 5.表达:筛选好的菌或细胞导入到受体中使其高效稳定表达 7.为什么说逆转录酶的发现对基因工程学科的建立至关重要 1.对分子生物学的中心法则进行修正和补充 2.使真核基因的制备成为可能可将mRNA反转录形成DNA用于获得目的基因 3.在致癌病毒的研究中发现癌基因,为肿瘤发病机理的研究提供有价值线索 8.蓝白斑筛选 是一种基因工程常用的重组菌筛选方法。野生型大肠杆菌产生的β-半乳糖苷酶可以将无色

基因工程期末考试重点知识整理教学文案

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg 及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选)

第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ

基因工程复习题

第二章《基因工程》复习题 一、选择题 1. 限制性核酸内切酶是由细菌产生的,其生理意义是(D) A 修复自身的遗传缺陷 B 促进自身的基因重组 C 强化自身的核酸代谢 D 提高自身的防御能力 2.生物工程的上游技术是(D) A 基因工程及分离工程 B 基因工程及发酵工程 C 基因工程及细胞工程 D 基因工程及蛋白质工程 3. 基因工程操作的三大基本元件是:(I 供体 II 受体 III 载体 IV 抗体 V 配体) (A) A. I + II + III B. I + III + IV C. II + III + IV D. II + IV + V 4. 多聚接头( Polylinker )指的是(A) A. 含有多种限制性内切酶识别及切割顺序的人工 DNA 片段 B. 含有多种复制起始区的人工 DNA 片段 C. 含有多种 SD 顺序的人工 DNA 片段 D. 含有多种启动基因的人工 DNA 片段

5.下列五个 DNA 片段中含有回文结构的是(D) A. GAAACTGCTTTGAC B. GAAACTGGAAACTG C. GAAACTGGTCAAAG D. GAAACTGCAGTTTC 6. 若将含有 5' 末端 4 碱基突出的外源 DNA 片段插入到含有 3' 末端 4 碱基突出的载体质粒上,又必须保证连接区域的碱基对数目既不增加也不减少,则需用的工具酶是(D) I T 4 -DNA 聚合酶 II Klenow III T 4 -DNA 连接酶 IV 碱性磷酸单酯酶 A. III B. I + III C. II + III D. I + II + III 7.下列有关连接反应的叙述,错误的是(A) A. 连接反应的最佳温度为 37 ℃ B. 连接反应缓冲体系的甘油浓度应低于 10% C. 连接反应缓冲体系的 ATP 浓度不能高于 1mM D. 连接酶通常应过量 2-5 倍 8. T 4-DNA 连接酶是通过形成磷酸二酯键将两段 DNA 片段连接在一起,其底物的关键基团是(D) A. 2' -OH 和 5' –P B. 2' -OH 和 3' -P C. 3' -OH 和 5' –P D. 5' -OH 和 3' -P

《基因工程原理》期末复习思考题教案资料

《医用基因工程》复习思考题 第一章基因和基因组及基因工程的概念 一、名词概念 ①移动基因(插入序列;转位子);②断裂基因;③RNA剪辑; ④内含子(间隔序列)与表达子;⑤重叠基因;⑥重复序列;⑦假基因;⑧启动子与终止子;⑨起始位点、终止位点。 二、讨论题 1.什么叫基因?何谓基因的新概念?基因的主要功能是什么? 2.一种基因一种酶的提法妥否? 3.基因密码子三联体间是否存在着逗号? 4.基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 5.何谓转位子和转位作用?转位的后果如何? 6.基因中最小的突变单位和重组单位是什么? 7.基因工程应包括哪些内容?何谓基因工程的四大里程碑和三大技术发明? 8.真核细胞基因组中常有内含子存在,能否在原核细胞获得表达?能,为什么?不能,为什么? 第二章基因工程中常用的工具酶 1.什么是限制性核酸内切酶? 2.什么是R/M现象?如何解释? 3.II型核酸内切酶的基本特点有哪些? 4.影响II型核酸内切酶活性的因素有哪些?如何克服和避免这

些不利因素? 5.DNA连接酶有哪两类?有何不同? 6.甲基化酶有哪两类?有何应用价值? 7.什么叫同尾酶、同裂酶?在基因工程中有何应用价值? 8.平末端连接的方法有哪些?(图示) 9.Klenow酶的特性和用途有哪些?举例说明。 10.反转录酶的特性有哪些?有何应用价值? 11.列举碱性磷酸酶BAP/CAP的应用之一。 12.列举末端核苷酸序列转移酶的应用之一。 13.质粒单酶切点的基因连接如何降低本底和防止自我环化和提高连接效率? 14.基因片段与载体的平末端连接的方法有哪些? 15.用寡核苷酸和衔接物DNA的短片段连接时为使基因内部的切点保护,常用何种办法解决? 第三章基因克隆载体 1.基因工程常用的载体有哪5种?其共同特性如何? 2.什么是质粒?质粒分哪几种?有哪两种复制类型,质粒的分子生物学特性有哪些? 3.质粒存在的三种形式是什么? 4.分离质粒的基本步骤有哪些? 5.分离纯化质粒的方法有哪几种?简述CsCl密度梯度(浮密度)分离法、碱变性法的原理,如何选择合适的分离方法? 6.作为理想质粒载体的基本条件有哪些? 7.什么叫插入失活,举例说明之。 8.构建pBR322质粒载体的亲本质粒有哪些? 9.什么叫插入型和替换型噬菌体载体?插入型和替换型入噬菌体

相关文档