文档库 最新最全的文档下载
当前位置:文档库 › 带传动的滑动与效率试验

带传动的滑动与效率试验

带传动的滑动与效率试验
带传动的滑动与效率试验

实验三带传动的滑动与效率实验

一、实验目的

1. 了解带传动试验台的结构和工作原理。

2. 掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。

3. 观察带传动的弹性滑动及打滑现象。

4. 了解改变预紧力对带传动能力的影响

二、实验内容与要求

1.测试带传动转速n1、n2和扭矩T1、T2。

2.计算出输出功率P2、滑动率ε、效率η。

3.绘制P2—ε滑动率曲线和P2—η效率曲线。

三、带传动实验台的结构及工作原理

4.带传动实验台是由机械、电器箱和负载箱三部分组成。其间由航空插座与

导线连接。如图1所示:

1

图1 带传动实验台

1—皮带预紧装置2—主动带轮3—测速传感器4—直流电机5、7一测转矩6—传动带8一从动轮9一直流发电机10—测速传感器

11一连接电缆(2根)12—电气箱I3一负载箱14连接导线(2根)

1.机械部分:包括主动部分和从动部分。

(1)主动部分包括:355W直流电动机“4”和其主轴上的主动带轮“2”,带预紧装置“l”,直流电机测速传感器“3”及电动机测矩传感器“5”。电动机安装在可左右直线滑动的平台上,平台与带预紧力装置相连,改变预紧装置“l”的砝码重力,就可改变传动带的预紧力。

(2)从动部分包括:355W直流发电机“9”和其主轴上的从动带轮“8”,直流发电机测速传感器“10”及直流发电机测矩传感器“7”,发电机发出的电量,经

连接电缆送进电器控制箱“12”,再经导线“14”与负载箱“13”连接。

2.负载箱:由8只40W灯泡组成,改变负载箱上的开关,即可改变负载大小。3.电器箱:实验台所有的控制、测试均由电器控制箱“12”来完成(其原理参见图2),旋转设在面板上的调速旋纽,可改变主动轮和被动轮的转速,并由面板上的转速计数器直接显示。直流电动机和直流发电机的转动力矩也分别由设在面板上的计数器显示出来。

图2 电器箱

4.实验台的工作原理:

传动带装在主动轮和从动轮上,带传动是依靠带与带轮接触表面产生的摩擦力来传递运动和动力的。由于工作时带两边的拉力不相等(F1>F2),这样就使得带在沿带轮接触弧上各个位置所产生的弹性变形也各不相同,从而使带(弹性元件)在运转过程中相对于带轮表面必然产生一定的微量滑动。其滑动量的大小通常用滑动率ε%来表示。

实验台直流电动机和发电机均由一对滚动轴承支撑,而使电机的定子可绕轴线摆动,从而通过测矩系统,直接测出主动轮和从动轮的工作转矩T1和T2。主动轮和从动轮的转速n1和n2是通过调速旋纽来调控,并通过测速装置直接显示出来。

这样,就可以得到在相应工况下的一组实验结果:

带传动的滑动系数:

n1-in2

ε

×100%

式中i 为传动比,由于实验台的带轮直径D1=D2=120mm ,i=1。所以

ε

×100%

带传动的传动效率:

η100%

式中: P1、P2

随着发电机负载的改变,T1、T2和n1、n2值也将随之改变。这样,可以获得几个工况下的ε和η值,由此可以给出这组带传动的滑动率曲线和效率曲线。

改变带的预紧力F0,又可以得到在不同预紧拉力下的一组测试数据。

显然,实验条件相同且预紧力F0一定时,滑动率的大小取决于负载的大小,F1与F2之间的差值越大,则产生弹性滑动的范围也随之过大。当带在整个接触弧上都产生滑动时,就会沿带轮表面出现打滑现象,这时,带传动已不能正常工作。显然,打滑现象是应该避免的。滑动曲线上临界点(A 和B )所对应的有效拉力,在不产生打滑现象时带所能传递的最大有效拉力。通常,我们以临界点为界,降曲线分为两个区,即弹性滑动区,和打滑区(见图3所示) 实验证明,不同的预拉力具有不同的滑动曲线。其临界点对应的有效拉力也有所不同。从图3可以看出,预紧力增大,其滑动曲线上的临界点所对应的功率P 2也随之增加,因此带传递负载的能力有所提高,但预紧力过分增大势必对带的疲劳寿命产生不利的影响。

四、带传动实验台主要技术参数 直流电机功率为 355W

调速范围 50~1500rpm 最大负载转速下降率 ≤5% 初拉力最大值为 3Kg

图 3 带传动滑动曲线

图4滑动曲线及效率曲线

皮带轮直径 D1=D2=120mm

发电机负载 0W、40W、80W、120W、160W、200W、240W、280W、

320W

五、安装调试和实验操作

1. 实验台应安装在水平平台上。

2.为了安全,请务必接好地线。

3.接通电源前,先将实验台的电源开关置于“关”的位置,检查控制面板上的调速旋钮,应将其逆时针旋转到底,即置于电动机转速为零的位置。

4.将传动带套到主动带轮和从动带轮上,轻轻向左拉移电动机,并在预紧装置的砝码盘上加2Kg重量的砝码(要考虑摩擦力的影响)。

5.启动电脑,启动带传动测试软件,进入皮带传动实验台软件封面。

6.接通实验台电源(单相220V),打开电源开关。

7. 点击进入皮带传动实验台软件封面非文字去,进入皮带传动实验说明界

面。

8. 单击“实验”按钮,进入皮带传动实验分析界面。

9. 单击“运动模拟”按钮,可以清楚观察皮带传动的运动和弹性滑动及打滑

现象。

10.顺时针方向缓慢旋转调速旋钮,使电动机转速由低到高,直到电动机的转速

显示为n1≈1100转/分为止(同时显示出n2),此时,转矩显示器也同时

显示出两电机的工作扭矩T1、T2。

11.待稳定后,单击“稳定测试”按钮,实时稳定记录皮带传动的实测结果,同

时将这一结果记录到实验指导书的数据记录表中。

12.点击“加载”按钮,使发电机增加一定量的负载,并将转速调到n1≈1100

转/分,待稳定后,单击“稳定测试”按钮,同时将测试结果n1、n2和T1、T2记录到实验指导书的数据记录表中。重复本步骤,直到ε%≥16%~20%为止,结束本实验。

13.单击“实测曲线”,显示皮带传动滑动曲线和效率曲线。

14.增加皮带预紧力到3Kg(增加砝码重量),再重复以上实验。经比较实验结

果,可发现带传动功率提高,滑动率系数降低。

15.实验结束后,首先将负载卸去,然后将调速旋钮逆时针方向旋转到底,关掉

电源开关,然后切断电源,取下带的预紧砝码;退出测试系统,并关电脑。

16.整理实验数据,写出实验报告。

六、绘制滑动率曲线和效率曲线

用获得的一系列T1、T2 、n1、n2值,通过计算又可获得一系列ε、η和P2 (P2= T2 ×n2)的值。然后可在坐标纸上绘制P2—ε和P2—η关系曲线,如图5所示。

1—滑动率曲线2—效率曲线

从图上可以看出,ε曲线上的A0点是临界点,其左侧为弹性滑动区,是带传动的正常工作区。随着负载的增加,滑动系数逐渐增加并与负载成线性关系。当载荷增加到超过临界点A0后,带传动进入打滑区,带传动不能正常工作,所以应当避免。

带传动实验报告

(一)计算式

滑动率ε

ε

效率η

T2n2

η=

=

式中: T 1、T 2 为主、从动轮转矩 (N ?mm )

n 1、n 2 为主、从动轮转速 (r/min )

(二)思考题

1.带传动的弹性滑动和打滑现象有何区别?它们各自产生的原因是什么? 2.带传动的张紧力对传动力有何影响?最佳张紧力的确定与什么因素有关?

3.带传动的效率如何测定?试解释传动效率和有效拉力的关系?

4.带传动的滑动率如何测定?分析滑动率曲线与效率曲线的关系,如何确

定有效拉力的最佳值?

5.测量弹性滑动的精确度如何分析?试提出另一种测量弹性滑动的方法。

(三)实验记录计算结果

F 0= 2 kg

绘制 P 2—ε 滑动率曲线,P 2—η 效率曲线。

F 0= 3 kg η %

ε %

P 2

绘制P2—ε滑动率曲线,P2—η效率曲线。

η%

ε%

机械设计实验报告带传动

实验一 带传动性能分析实验 一、实验目的 1、了解带传动试验台的结构和工作原理。 2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。 3、观察带传动的弹性滑动及打滑现象。 4、了解改变预紧力对带传动能力的影响。 二、实验内容与要求 1、测试带传动转速n 1、n 2和扭矩T 1、T 2。 2、计算输入功率P 1、输出功率P 2、滑动率ε、效率η。 3、绘制滑动率曲线ε—P 2和效率曲线η—P 2。 三、带传动实验台的结构及工作原理 传动实验台是由机械部分、负载和测量系统三部分组成。如图1-1所示。 1直流电机 2主动带轮 3、7力传感器 4轨道 5砝码 6灯泡 8从动轮 9 直流发电机 10皮带 图1-1 带传动实验台结构图 1、机械部分 带传动实验台是一个装有平带的传动装置。主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。 2、测量系统 测量系统由转速测定装置和扭矩测量装置两部分组成。 (1)转速测定装置 用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min ;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U ”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n 1、n 2。 (2)扭矩测量装置 电动机输出转矩1T (主动轮转矩)、和发电机输入转矩2T (从动轮转矩)采用平衡电机外壳(定子)的方法来测定。电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。当电动机通过带传动带动发电机转动后,由于受转子转矩的反作用,电动机定子将向转子旋转的相反方向倾倒,发电机的定子将向转子旋转的相同方向倾倒,翻转力的大小可通过力传感器测得,经过计算电路计算可得到作用于电机和发电机定子的转矩,其大小与主、从动轮上的转矩1T 、2T 相等。 只要测得不同负载下主动轮的转速1n 和从动轮的转速2n 以及主动轮的扭矩1T 和从动轮的扭矩

齿轮传动效率测定

验证性实验指导书 实验名称:齿轮传动效率测定 实验简介:齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。为此,人们采用了许多试验方法和试验设备。本实验是针对齿轮传动的效率进行验证性测定。 适用课程:机械设计 实验目的:A了解电功率封闭式齿轮传动试验台的基本原理、结构及特点;B掌握功率流分析、效率测定的方法;C测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线;D初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。。面向专业:机械类 实验项目性质:验证性(课内选做) 计划学时: 2学时 实验分组:4人/组 实验照片:

《机械设计》课程实验 实验二齿轮传动效率测定 齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。为此,人们采用了许多试验方法和试验设备。本实验是针对齿轮传动的效率进行验证性测定。 一、实验目的 1. 了解电功率封闭式齿轮传动试验台的基本原理、结构及特点; 2.掌握功率流分析、效率测定的方法; 3.测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线; 4.初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。 二、实验设备和工具 1. Z-45直流电动机2台; 2. ZJ型转矩转速传感器2台; 3. ZD10型减速器2台; 4. JXW-1型机械效率仪1台; 5. TSGC-20调压器1台; 6. 加载控制箱1台; 7. CP-80打印机1台。 三、实验原理 1. 齿轮传动试验台简介 所有类型的齿转传动试验台,根据运转与否分为运转式和非运转式两大类。非运转式试验台指齿轮或齿轮副只能在静止状态下进行试验的试验台,如静态加载的齿轮静强度试验台。非运转式试验台中被测齿轮的试验状态同齿轮的实际工作状态有较大的差别,不大可能获得满意的试验结果。运转式试验台是指齿轮副能在一定转速下进行试验的设备。该类设备一般都由驱动装置、传动装置、加载装置、齿轮试件失效监护装置、润滑装置、测试装置等六部分组成。其试验能获得较接近实际的结果,运转式试验台根据试验台功率的传递原理和加载方法的不同,可分为开放功率流式和封闭功率流式两类。 (1)开放功率流式试验台 所谓开放功率流,就是齿轮传动所传递的功率由原动机传来,经过齿轮传动和试验装且中的全部传动件,最后传到耗能装置中,由耗能装置即加载装置将其全部消耗,并借助耗能装置给被测装置加载。功率传递的流向未形成封闭回路,故称其为开放功率流式试验台,图2-1为开放功率流式试验台构成原理。

变速器的发展历史

变速器的发展历史 了解汽车的人都知道,汽车的动力是由发动机产生的。而发动机发出的动力通过离合器、变速器、传动轴等传递到车轮。变速器的重要性由此可见,所以,了解变速器的发展历史是每个爱车人所必需的。变速器的基本作用是: 1)改动传动比,降速增扭。 2)利用倒档实现汽车的倒向行驶。 3)在发动机熄火的情况下,利用空档中断动力传递,且便于汽车起动、怠速、换挡和动力输出。 近百年,变速器经历了用变速杆改变链条的传动比→手动变速器→有级变速器→无级变速器的发展历史。 1、早起汽车传动系统 早期的汽车传动系统,从发动机到车轮之间的动力形式很简单。发动机驱动一组锥齿减速齿轮,再传动到一根轴和皮带轮。皮带轮和驱动桥上的内齿轮啮合,使汽车行驶,大齿轮用来加速,能使汽车达到32 km/h的速度。如果遇到上坡,而爬坡能力不够时,驾驶员就停下车子,把小链轮啮合后进行驱动。 世界上第一辆汽油汽车由德国工程师卡尔·本茨和戈特利布·戴姆勒于1886年同时宣告制成,卡尔·本茨制造的是三轮汽车,后者制造的是四轮汽车。在三轮汽车中,汽油机发动以后,动力经齿轮和链条传至后轴,后轴系两个半轴,中间装有差速器,有利于车辆转弯。

前轮架位于一个叉形结构架上,类似现代自行车的前叉装置,上面有转向手柄,用来操纵车辆转弯。这辆车上还装有变速杆,用来改变链条的传动比,使车速快慢自如. 2、手动变速器 手动变速器是靠驾驶员直接操纵换挡手柄换挡,为汽车最初普遍采用。在20世纪60年代,大部分的汽车变速器只有3个档位,只有高速档具备同步器。当时驾驶员驾驶车辆时,必须有很好的技术,才能平顺地换档。发展至今,大多数手动变速器也搭载有5档,甚至6档速率。低档速率对节约燃料有好处,加快速度需要变高速档。 手动变速器(MT)主要采用齿轮传动的降速增扭原理,变速器内有多组传动比不同的齿轮副,一对齿数不同的齿轮啮合传动时,若小齿动时,输出转速就增高。汽车行驶时的换挡就是通过操纵机构使变速器内不同的齿轮副工作。 12122112M M z z n n i === z 1,n 1,M 1,主动齿轮的参数;z 2,n 2,M 2为从动齿轮的参数。如图1 所示: 图1 工作原理

效率实验报告

机械传动性能综合实验报告 姓名: 学号: 班级: 任课老师:

(特别提示:本报告第一、二、三部分来自试验指导书,稍有更改。) 一、实验目的 1.了解机械传动系统效率测试的工程试验手段和常用的机械效率测试设备, 掌握典型机械传动系统的效率范围,分析传动系统效率损失的原因; 2.通过对典型机械传动系统及其组合的性能测试,加深对机械传动系统性能 的认识以及对机械传动合理布置的基本原则的理解; 3.通过对实验方案的设计、组装和性能测试等训练环节,掌握计算机辅助实 验测试方法, 培养学生创新设计与实践能力。 二、实验原理及设备 1、实验原理: 机械传动性能综合测试实验台的工作原理如图1所示。通过对转矩和转速的测量,利用转矩、转速与功率的数学关系间接导出功率数值,并通过对电机和负载的相应控制观察分析转速、转矩、功率的相应变化趋势,同时通过对减速器的输入功率和输出功率的测量分析,得出减速器的效率及其随不同情况的变化所呈现的变化趋势。 2、实验设备: 机械传动性能综合测试实验台采用模块化结构,由不同种类的机械传动装置、联轴器、变频电机、加载装置和工控机等模块组成,学生可以根据选择或设计的实验类型、方案和内容,自己动手进行传动连接、安装调试和测试,进行设计性实验、综合性实验或创新性实验。机械传动性能综合测试实验台各硬件组成部件的结构布局如图2所示。 图2(a) 实验台外观图

1-变频调速电机 2-联轴器 3-转矩转速传感器 4-试件 5-加载与制动装置 6-工控机 7-电器控制柜 8-台座实验设备包括机械传动综合效率实验台(包括台座、变频调速器、机柜、电控箱)、蜗轮蜗杆减速器、齿轮减速器、三相异步电动机、同步带传动装置、滚子链传动装置、V带传动装置、磁粉制动器、ZJ转矩转速传感器、计算机及打印机、其他零配件。典型实验装置包括齿轮减速传动装置、蜗轮蜗杆减速传动装置、V带+齿轮减速传动装置、齿轮减速+滚子链传动装置、同步带减速传动装置、V带减速传动装置、V带+同步带减速传动装置。实验装置由动力部分、测试部分、加载部分和被测部分等组成。各部分的性能参数如下: 1、动力部分 1)YP-50-0.55三相感应变频电机:额定功率0.55KW;同步转速 1500r/min;输入电压380V。 2)LS600-4001变频器:输入规格 AC 3PH 380-460V 50/60HZ;输出规格 AC 0-240V 1.7KVA 4.5A;变频范围 2~200 HZ。 2、测试部分 1)ZJ10型转矩转速传感器:额定转矩 10N.m;转速范围 0~6000r/min; 2)ZJ50型转矩转速传感器:额定转矩 50N.m;转速范围 0~5000r/min; 3)TC-1转矩转速测试卡:扭矩测试精度±0.2%FS;转速测量精度± 0.1%; 4)PC-400数据采集控制卡。 3、被测部分 1)三角带传动: 带轮基准直径 D1=70mm D2=115mm O型带L内=900mm; 带轮基准直径 D1=76mm D2=145mm O型带L内=900mm; 带轮基准直径 D1=70mm D2=88mm O型带L内=630mm。 2)链传动:链轮 Z1=17 Z2=25 滚子链 08A-1×71 滚子链 08A-1×53 滚子链 08A-1×66。

汽车变速器传动效率测试实验指导书

汽车变速器传动效率测试 实验指导书 目录 一、实验目的 二、实验原理 传动实验台构成 转矩转速传感器测量原理和方法 三、实验内容及实验步骤 实验前准备工作 实验步骤 四、试验分析和报告要求 五、实验注意事项

一、 实验目的 1.掌握转速、扭矩和功率的测量原理和方法。 2.掌握汽车变速器的传动效率测试原理和方法。 3.了解变速器的传动效率随转速和载荷间变化的关系。 二、 实验原理 1. 车辆传动实验台构成 车辆传动实验台构成如图1和图2所示由由原动机(带变频调速的电动机)、传感器(转速扭矩测量仪)、汽车变速器(SG135-2)、负荷(拖动发电机)组成。变速器的转矩、转速信号分别由传感器的两条信号线接入到扭矩仪上读出。 图1 汽车传动实验台安装方式 图2 汽车传动实验台与转速转矩测试分析系统 输入端信号 输出端信号

2.转矩转速传感器测量原理和方法 JC型转矩转速传感器的基本原理是:通过弹性轴、两组磁电信号发生器,把被测转矩、转速转换成具有相位差的两组交流电信号,这两组交流电信号的频率相同且与轴的转速成正比,而其相位差的变化部分又与被测转矩成正比。 JC型转矩转速传感器的工作原理如图3。 图3 JC型转矩转速传感器的工作原理 在弹性轴的两端安装有两只信号齿轮,在两齿轮的上方各装有一组信号线圈,在信号线圈内均装有磁钢,与信号齿轮组成磁电信号发生器。当信号齿轮随弹性轴转动时,由于信号齿轮的齿顶及齿谷交替周期性的扫过磁钢的底部,使气隙磁导产生周期性的变化,线圈内部的磁通量亦产生周期性变化,使线圈中感生出近似正弦波的交流电信号。这两组交流电信号的频率相同且与轴的转速成正比,因此可以用来测量转速。这两组交流电信号之间的相位与其安装的相对位置及弹性轴所传递扭矩的大小及方向有关。当弹性轴不受扭时,两组交流电信号之间的相位差只与信号线圈及齿轮的安装相对位置有关,这一相位差一般称为初始相位差,在设计制造时,使其相差半个齿距左右,即两组交流电信号之间的初始相位差在180度左右。在弹性轴受扭时,将产生扭转变形,使两组交流电信号之间的相位差发生变化,在弹性变形范围内,相位差变化的绝对值与转矩的大小成正比。把这两组交流电信号用专用电缆线送入JW型微机扭矩仪,即可得到转矩、转速及功率的精确值。 三、实验内容及实验步骤 1. 实验前准备工作 1)检查机械部分与电器部分线路是否连接好,控制面板上的按扭和旋扭是否复位。

《机械设计》实验一(带传动的滑动率曲线与效率曲线测定)pdf

验证性实验指导书 实验名称:带传动的滑动率曲线与效率曲线测定 实验简介:带传动在工作中,滑动现象是不可避免的,通过本实验可以观察带传动的打滑现象,绘出滑动曲线和效率曲线,从而加深对带传动工作原理的特点的认识,并初步学会实验技能。 适用课程:机械设计 实验目的:A验证带传动滑动率曲线及效率曲线;B观察带传动的打滑现象;C了解实验台高效节能的电封闭加载原理;D 了解常用机械量的测量原理及方法。 面向专业:机械类 实验项目性质:验证性(课内必做) 计划学时: 2学时 实验分组: 2人/组 实验照片:

《机械设计》课程实验 实验一 带传动的滑动率曲线与效率曲线测定 带传动在工作中,滑动现象是不可避免的,本实验的目的和要求是:观察带传动的打滑 现象,绘出滑动曲线和效率曲线,从而加深对带传动工作原理的特点的认识,并初步学会实验技能。 一、 实验目的 1. 验证带传动滑动率曲线及效率曲线; 2. 观察带传动的打滑现象; 3. 了解实验台高效节能的电封闭加载原理; 4. 了解常用机械量的测量原理及方法。 二、 实验设备 带传动的滑动率与效率测定试验台 图1-1是试验台的结构简图,它有两台直流电机,电机1和电机2。在试验中,我们将用电机1通过进行试验的皮带拖着电机2发电来给皮带加上负载。具体的加载原理和方法,下面一节再详细介绍。 电机1的定子用轴承固定在支架上,并加以平衡,可以自由摆动,称为悬支电机。这样结构是为了便于通过固联在定子上的力臂和放在它旁边的磅秤,测量电机工作时转子上的转矩。因为按电动机工作的电机,定子上由反作用力产生的转矩,大小与转子转矩相等(摩擦力忽略不计),方向与转子产生转矩相反。这台电机试验时按电动机工作,转子顺时针方向旋转,所以磅秤放在它的左侧。转矩T1可由下式计算: 1 1 T P L =× (4) 式中:P1——磅秤的读数(kg) L ——为力臂长度,L=400mm 右边的电机2也用相同的方法支承在它的支架上,因为这台电机在试验中按发电机工作,发电机定子上的转矩的大小和方向均与转子转矩相同,现在转子为顺时针方向旋转,所以磅秤放在它的右边。转矩T2的求法和力臂的长度,与电机1相同,即

变速器设计步骤

第一节概述 变速器用来改变发动机传到驱动轮上的转矩和转速,目的是在原地起步,爬坡,转弯,加速等各种行驶工况下,使汽车获得不同的牵引力和速度,同时使发动机再最有利工况范围内工作。变速器设有空挡和倒挡。需要时变速器还有动力输出功能。 变速器由变速传动机构和操纵机构组成。 对变速器如下基本要求. 1)保证汽车有必要的动力性和经济性。 2)设置空挡,用来切断发动机动力向驱动轮的传输。 3)设置倒档,使汽车能倒退行驶。 4)设置动力输出装置,需要时能进行功率输出。 5)换挡迅速,省力,方便。 6)工作可靠。汽车行驶过程中,变速器不得有跳挡,乱挡以及换挡冲击等现象发生。 7)变速器应当有高的工作效率。 8)变速器的工作噪声低。 除此以外,变速器还应当满足轮廓尺寸和质量小,制造成本低,维修方便等要求。 满足汽车有必要的动力性和经济性指标,这与变速器的档数,传动比范围和各挡传动比有关。汽车工作的道路条件越复杂,比功率越小,变速器的传动比范围越大。 在原变速传动机构基础上,再附加一个副箱体,这就在结构变化不大的基础上,达到增加变速器挡数的目的。近年来,变速器操纵机构有向自动操纵方向发展的趋势。

第二节变速器传动机构布置方案 机械式变速器因具有结构简单,传动效率高,制造成本低和工作可靠等优点,在不同形式的汽车上得到广泛应用。 一.传动机构布置方案分析 变速器传动机构有两种分类方法。根据前进挡数的不同,有三,四,五和多挡变速器。根据轴的形式不同,分为固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又分为两轴式,中间轴式,双中间轴式变速器。固定轴式应用广泛,其中两轴式变速器多用于发动机前置前轮驱动的汽车上,中间轴式变速器多用于发动机前置后轮驱动的汽车上。旋转轴式主要用于液力机械式变速器。与中间轴式变速器比较,两轴式变速器有结构简单,轮廓尺寸小,布置方便,中间挡位传动效率高和噪声低等优点。因两轴式变速器不能设置直接挡,所以在高档工作时齿轮和轴承均承载,不仅工作噪声增大,且易损坏。此外,受结构限制,两轴式变速器的一挡速比不可能设计得很大。 图3-1示出用在发动机前置前轮驱动轿车的两轴式变速器传动方案。其特点是:变速器输出轴与主减速器主动齿轮做成一体,发动机纵置时,主减速器采用弧齿锥齿轮或双曲面齿轮,发动机横置时则采用圆柱齿轮;多数方案的倒档传动常用滑动齿轮,其他挡位均用常啮合齿轮传动。图3-1F中的倒挡齿轮为常啮合齿轮,并用同步器换挡;同步器多数装在输出轴上,这是因为一挡主动齿轮尺寸小,同步器装在输入轴上有困难,而高档同步器可以装在输入轴的后端,见图3-1D,E;图3-1D所示方案的变速器有辅助支承,用来提高轴的刚度,减少齿轮磨损和降低工作噪声。图3-1F所示方案为五挡全同步器式变速器,以此为基础,只要将五挡齿轮用尺寸相当的隔套替代,即可改变为四挡变速器,从而形成一个系列产品。

初中物理专题复习能量转化中的效率计算

初中物理专题复习能量转化中的效率计算 能量可以从一种形式转化为另一种形式,要实现这种能量的转化需要一定的设备,由于设备本身的限制,不可能将一种能量全部转化为另一种能量,这就出现了设备的效率问题。笔者发现,2011年各地中考以设备的效率为载体,围绕有用的能量和总能量涉及的相关知识设置考点,试题的综合性较强,覆盖初中物理的力、热、电、能量等知识。 1.锅炉的效率 例1.(2011鞍山)某中学为学生供应开水,用锅炉将200kg的水从25℃加热到100℃,燃烧了6kg 的无烟煤。水的比热容是4.2×103J/(kg·℃),无烟煤的热值是3.4×l07J/kg。求: (1)锅炉内的水吸收的热量是多少? (2)无烟煤完全燃烧放出的热量是多少? (3)此锅炉的效率是多少? 解析:试题以锅炉为载体,考查了吸热升温公式和燃料燃烧放热公式。要求锅炉的效率,需要清楚锅炉将燃料燃烧放出的热量转化为水的内能,因此水温度升高吸收的热量是有用的能量,无烟煤完全燃烧放出的热量是总能量。 答案:(1) (2) (3)锅炉的效率

2.柴油抽水机的效率 例2.(2011荆门)今年我省出现大面积干旱,造成农田缺水,严重影响农作物生长,为缓解旱情,很多地方采用柴油抽水机从江湖中引水灌溉。某柴油抽水机把湖水抬升4.5m流入沟渠,再去灌溉农田。已知在2h内抬升了1600m3的水,此柴油抽水机的效率为40%,柴油的热值为4.5×107J/kg,g取10N/kg,求:(1)此柴油抽水机2h做了多少有用功?℃ (2)此柴油抽水机工作2h消耗了多少柴油? (3)此柴油抽水机的总功率为多少千瓦? 解析:柴油抽水机将柴油完全燃烧产生的能量通过克服重力做功转化为水的重力势能。试题以此为载体,考查了质量、密度、重力、热值、功和功率等知识。 (1)虽然抽水机是将水连续地分批抽上去,我们可以想象成抽水机将全部1600m3的水一次性地在2h 内缓慢抬升4.5m,这就是等效法的应用。这样利用计算出水的质量,再用计算重力,然后用就可以计算出有用功。 (2)要计算柴油的质量,需要先计算柴油燃烧放出的热量。这就要利用柴油抽水机的效率为40%这个数据。教学中发现很多同学常犯一个错误,就是利用柴油抽水机做的有用功去乘以效率。避免错误的方法 是想清楚柴油燃烧放出的热量是总的能量,总的能量要比有用的能量数值大。应该根据,得到 。 (3)柴油抽水机的总功率应该用总能量除以时间计算,总能量就是柴油燃烧放出的热量,时间是2h,要注意把单位化成秒。 答案:(1)

机械传动性能综合测试实验

机械传动性能综合测试实验指导书 一、实验目的 1.了解机械传动效率测试的工程试验方法及常用测试设备及其精度; 2. 分析传动系统效率损失的主要原因,掌握常用传动系统的特点及其效率范围; 3. .认识智能化机械设计综合实验台的工作原理,掌握计算机辅助实验的新方法, 培养进行设计性实验与创新性实验的能力。 二、实验原理及设备 .本实验台采用模块化结构,由不同种类的机械传动装置、联轴器、变频电机、加载装置和工控机等模块组成,学生可以根据选择或设计的实验类型、方案和内容,自己动手进行传动连接、安装调试和测试,进行设计性实验、综合性实验或创新性实验。 机械设计综合实验台的工作原理如图1所示。 图1 实验台的工作原理 机械设计综合实验台各硬件组成部件的结构布局如图2所示。 1-变频调速电机2-联轴器3-转矩转速传感器4-试件 5-加载与制动装置6-工控机7-变频器8电器控制柜9-台座

实验台组成部件的主要技术参数如表1所示。 机械设计综合实验台采用自动控制测试技术设计,所有电机程控起停,转速程控调节,负载程控调节,用扭矩测量卡替代扭矩测量仪,整台设备能够自动进行数据采集处理,自动输出实验结果。其控制系统主界面如图2所示,软件操作指南见附件二。 图2 实验台控制系统主界面 运用“机械设计综合实验台”能完成多类实验项目(表2),可根据专业特点和实验教学改革需要指定,也可以让学生自主选择设计实验类型与实验内容。 表2

线的测试, 来分析机械传动的性能特点; 实验利用实验台的自动控制测试技术,能自动测试出机械传动的性能参数, 如转速n (r/min)、扭矩T (N.m)、功率P (K.w)。并按照以下关系自动绘制参数曲线: 传功比i=n1/n2 扭矩T=9550 P/n (Nm) 传功效率η=P2/P1= T2 n2/ T1n1 四、实验步骤

变速器传动机构布置方案分析

变速器传动机构布置方案分析 变速器传动机构有两种分类方法。根据前进挡数的不同,有三,四,五和多挡变速器。根据轴的形式不同,分为固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又分为两轴式,中间轴式,双中间轴式变速器。 变速器传动机构有两种分类方法。根据前进挡数的不同,有三,四,五和多挡变速器。根据轴的形式不同,分为固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又分为两轴式,中间轴式,双中间轴式变速器。固定轴式应用广泛,其中两轴式变速器多用于发动机前置前轮驱动的汽车上,中间轴式变速器多用于发动机前置后轮驱动的汽车上。旋转轴式主要用于液力机械式变速器。与中间轴式变速器比较,两轴式变速器有结构简单,轮廓尺寸小,布置方便,中间挡位传动效率高和噪声低等优点。因两轴式变速器不能设置直接挡,所以在高档工作时齿轮和轴承均承载,不仅工作噪声增大,且易损坏。此外,受结构限制,两轴式变速器的一挡速比不可能设计得很大。 图3-1示出用在发动机前置前轮驱动轿车的两轴式变速器传动方案。其特点是:变速器输出轴与主减速器主动齿轮做成一体,发动机纵置时,主减速器采用弧齿锥齿轮或双曲面齿轮,发动机横置时则采用圆柱齿轮;多数方案的倒档传动常用滑动齿轮,其他挡位均用常啮合齿轮传动。图3-1F中的倒挡齿轮为常啮合齿轮,并用同步器换挡;同步器多数装在输出轴上,这是因为一挡主动齿轮尺寸小,同步器装在输入轴上有困难,而高档同步器可以装在输入轴的后端,见图3- 1D,E;图3-1D所示方案的变速器有辅助支承,用来提高轴的刚度,减少齿轮磨损和降低工作噪声。图3-1F所示方案为五挡全同步器式变速器,以此为基础,只要将五挡齿轮用尺寸相当的隔套替代,即可改变为四挡变速器,从而形成一个系列产品。

能量转化中的效率计算

能量转化中的效率计算 能量可以从一种形式转化为另一种形式,要实现这种能量的转化需要一定的设备,由于设备本身的限制,不可能将一种能量全部转化为另一种能量,这就出现了设备的效率问题。笔者发现,2019年各地中考以设备的效率为载体,围绕有用的能量和总能量涉及的相关知识设置考点,试题的综合性较强,覆盖初中物理的力、热、电、能量等知识。 1.锅炉的效率 例1.(2019鞍山)某中学为学生供应开水,用锅炉将200kg 的水从25℃加热到100℃,燃烧了6kg的无烟煤。水的比热容是4.2×103J/(kg·℃),无烟煤的热值是3.4×l07J/kg。求: (1)锅炉内的水吸收的热量是多少? (2)无烟煤完全燃烧放出的热量是多少? (3)此锅炉的效率是多少? 解析:试题以锅炉为载体,考查了吸热升温公式和燃料燃烧放热公式。要求锅炉的效率,需要清楚锅炉将燃料燃烧放出的热量转化为水的内能,因此水温度升高吸收的热量是有用的能量,无烟煤完全燃烧放出的热量是总能量。 答案:(1) (2) (3)锅炉的效率

2.柴油抽水机的效率 例2.(2019荆门)今年我省出现大面积干旱,造成农田缺水,严重影响农作物生长,为缓解旱情,很多地方采用柴油抽水机从江湖中引水灌溉。某柴油抽水机把湖水抬升4.5m 流入沟渠,再去灌溉农田。已知在2h内抬升了1600m3的水,此柴油抽水机的效率为40%,柴油的热值为4.5×107J/kg,g取10N/kg,求: (1)此柴油抽水机2h做了多少有用功?℃ (2)此柴油抽水机工作2h消耗了多少柴油? (3)此柴油抽水机的总功率为多少千瓦? 解析:柴油抽水机将柴油完全燃烧产生的能量通过克服重力做功转化为水的重力势能。试题以此为载体,考查了质量、密度、重力、热值、功和功率等知识。 (1)虽然抽水机是将水连续地分批抽上去,我们可以想象成抽水机将全部1600m3的水一次性地在2h内缓慢抬升 4.5m,这就是等效法的应用。这样利用计算出水的质量,再用计算重力,然后用就可以计算出有用功。 (2)要计算柴油的质量,需要先计算柴油燃烧放出的热量。这就要利用柴油抽水机的效率为40%这个数据。教学中发现很多同学常犯一个错误,就是利用柴油抽水机做的有用功去乘以效率。避免错误的方法是想清楚柴油燃烧放出的热量是总的能量,总的能量要比有用的能量数值大。应该根据,得

带传动的滑动率和效率测定的实验方案设计

带传动的滑动率和效率测定的实验案设计 一、实验目的 1.深入了解带传动的原理以及传动摩擦和滑动时候的相关问题。 2.深入了解、掌握机械带传动效率及滑动率测量法及原理,了解测量过程所使用的仪器、仪表以及传感器的工作原理。 3.观察带传动的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。 4.通过对滑动曲线(ε—F曲线)和效率曲线(η—F曲线)的测定和分析,深刻认识带传动特性、承载能力、效率及其影响因素。 二、实验的理论依据 由于带是弹性体,受力不同的时候伸长量不等,使带传动发生弹性滑动现象。在带绕带轮滑动传动时候,带的压力由F1 下降到F2所以带的弹性变形也要相应减小,亦即带在逐渐缩短,带的速度要落后于带轮,因此两者之间必然发生相对滑动。同样的现象也发生在从动轮上,但是情况恰好相反。带从松边转到紧边时,带所受到的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。带与带轮间同样也发生相对滑动。 其中:带收到的紧力F0,紧边拉力F1,松边拉力F2。 则:有效拉力F=F1- F2等于带沿带轮的接触弧上摩擦力的总和F f 带传动中滑动的程度用滑动率表示,其表达式为

%100)1(1 122121?-=-=n D n D v v v ε 式中 v 1、v 2——分别为主动轮、从动轮的圆速度,单位:m/s ; n 1、n 2——分别为主动轮、从动轮的转速,r/min ; D 1、D 2——分别为主动轮、从动轮的直径,mm 。 如图2-1所示,带传动的滑动(曲线1)随着带的有效拉力F 的增大 而增大,表示这种关系的曲线称为滑动曲 线。当有效拉力F 小于临界点F '点时,滑 动率与有效拉力F 成线性关系,带处于弹性 滑动工作状态;当有效拉力F 超过临界点 F '点以后,滑动率急剧上升,带处于弹性滑 动与打滑同时存在的工作状态。当有效拉力 等 于F max 时,滑动率近于直线上升,带处于完全打滑的工作状态。图中曲线2为带传动的效率曲线,即表示带传动效率η与有效拉力F 之间关系的曲线。当有效拉力增加时,传动效率逐渐提高,当有效拉力F 超过临界点F '点以后,传动效率急剧下降。 带传动最合理的状态,应使有效拉力F 等于或稍小于临界点F ',这时 带传动的效率最高,滑动率ε =1% ~ 2%,并且还有余力负担短时间(如启动时)的过载。 三、实验台的结构与工作原理 本实验的设备是PC —A 型带传动实验台。该实验 1-滑动曲线 2-效率曲线 图2-1 带传动的滑动曲线和效率曲线

齿轮传动效率测定与分析

齿轮传动效率测定与分 析 Document number:PBGCG-0857-BTDO-0089-PTT1998

实验2 齿轮传动效率测定与分析 实验目的 1.了解机械传动效率的测定原理,掌握用扭矩仪测定传动效率的方法; 2.测定齿轮传动的传递功率和传动效率; 3.了解封闭加载原理。 实验设备和工具 1.齿轮传动效率试验台; 2.测力计; 3.数据处理与分析软件; 4.计算机、打印机。 实验原理和方法 1. 齿轮传动的效率及其测定方法 齿轮传动的功率损失主要在于:(1)啮合面的摩擦损失;(2)轮齿搅动润滑油时的油阻损失;(3)轮轴支承在轴承中和轴承内的摩擦损失。齿轮传动的效率即指一对齿轮的从动轮(轴)输出功率与主动轮(轴)输入功率之比。对于采用滚动轴承支承的齿轮传动,满负荷时计入上述损失后,平均效率如表所示。 表齿轮传动的平均效率

测定效率的方式主要有两种:开放功率流式与封闭功率流式。前者借助一个加载装置(机械制动器、电磁测功器或磁粉制动器)来消耗齿轮传动所传递的能量。其优点是与实际工作情况一致,简单易行,实验装置安装方便;缺点是动力消耗大,对于需作较长时间试验的场合(如疲劳试验),消耗能力尤其严重。而后者采用输出功率反馈给输入的方式,电源只供给齿轮传动中摩擦阻力所消耗的功率,可以大大减小功耗,因此这种实验方案采用较多。 2. 封闭式试验台加载原理 图表示一个加载系统,电机功率通过联轴器1传到齿轮2,带动齿轮3及同一轴上的齿轮6,齿轮6再带动齿轮5。齿轮5的轴与齿轮2的轴之间以一只特殊联轴器和加载器相联接。 设齿轮齿数6532,z z z z ==,齿轮5的转速为5n (r/min)、扭矩为)m N (5?M ,则齿轮5处的功率为 )kW ( 9550 555n M N = 若齿轮2、5的轴不作封闭联接,则电机的功率为 )kW ( 9550/5 551η η?==n M N N 式中η为传动系统的效率。 而当封闭加载时,在5M 不变的情况下,齿轮2、3、6、5形成的封闭系统的内力产生封闭力矩4M )m N (?,其封闭功率为 )kW ( 9550 444n M N = 该功率不需全部由电机提供,此时电机提供的功率仅为 )kW ( /441 N N N -='η 由此可见,11 N N <<',若%95≈η,则封闭式加载的功率消耗仅为开放式加载功率的1/20。

齿轮传动效率测试试验台设计说明书

齿轮传动效率测试试验台设计说明书 齿轮传动的效率即指一对齿轮的从动轮(轴)输出功率与主动轮(轴)输入功率之比。 当输入功率为P1,输出功率为P2时,则齿轮传动效率η可写为 12221121///P P T n T n T iT η=== 式中:1T 、2T ——分别为输入轴和输出轴的转矩; 1n 、2n ——分别为输入轴和输出轴的转速; i ——传动比,12/i n n = 利用测试手段,通过测量齿轮试验箱的输入和输出轴的转矩和转速,即可由上式迅速确定齿轮的传动效率。 一:测定效率的方式:开放功率流式和封闭功率流式 ①开放功率流式:借助一个加载装置(机械制动器、电磁测功器或磁粉制动器)来消耗齿轮传动所传递的能量。一般测试对象的功率减小时多采用此种形式。 优点:与实际工作情况一致,简单易行,实验装置安装方便。 缺点:动力消耗大,对于需作较长时间实验的场合(如疲劳试验),耗费能量尤其严重。 ②封闭功率流式:采用输出功率反馈给输入从而形成功率流封闭。一般测试对象的功率较大时或需作长时间试验时多采用此种形式。 优点:电源只提供齿轮传动中摩擦阻力所消耗的功率,可大大地减小功耗。 缺点:试验台的控制复杂,价格较高。 鉴于在学生实验中一般都是小功率,而且不需长时间试验,所以选择开放功率流式测定效率。

二:实验系统的技术参数 1、齿轮箱的长度:400~600mm 2、齿轮箱的宽度:200~400mm 3、齿轮箱的高度:300~400mm 4、转速调节范围:0~1440r/min 5、传动比:2~20 6、功率条件范围:0~4kw 7、扭矩测量范围:0~500N·m 三:动力源 ①直流电动机:将直流电能转换为机械能的转动装置。电动机定子提供磁场,直流电源向转子的绕组提供电流,换向器使转子电流与磁场产生的转矩保持方向不变。 特点: 1.调速性能好。所谓“调速性能”,是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。 2.起动力矩大,可以均匀而经济地实现转速调节。因此,凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。

齿轮传动效率实验

齿轮传动效率实验 一. 实验目的 1. 了解封闭式齿轮试验台的基本原理及其结构。 2. 测定齿轮传动效率,掌握测试方法。 3. 本试验台可长期运行,定时观察齿面点蚀现象。 二. 实验设备及工作原理 1. 1. 试验台结构 图12-1所示为封闭式齿轮试验台的结构示意图: 1—功耗电机 2—重力测力计 3—齿轮箱 4—加载器 5—试验齿轮箱 6—砝码 7—电器控制箱 图12-1 封闭式齿轮试验台结构示意图 1是外壳浮动式功耗电机;2是重力测力计;3、5是两套完全相同的齿轮箱,两对齿轮①、②、③、④分别用两根轴I 、II 相联接,并由特殊设计的联轴器和加载器4组成机械封闭回路;6是加在加载器上的砝码,从而产生作用在封闭系统中的轴向力;7是电器控制箱。 2. 加载机构 封闭式齿轮试验台加载器有多种形式,本试验台是采用螺旋槽轴向移动而产生轴扭转的方法来实现加载的。图12-2表示螺旋槽加载器的结构,由于槽中的滚子距轴心的作用半径为d/2(d =43mm ),螺旋槽的螺旋角β=11.14°,轴向力由砝码G (kgf )通过动滑轮实现,故作用在封闭系统内的封闭力矩为: (12—1) 系统中最大封闭力矩T B =50 N ?m 时,砝码重量G 最大为25 kgf 左右。 T G tg G N m B =???=?22159811141000 2140....()

系统中齿轮所受负载的大小仅与加载机构施加的扭矩有关,而与封闭系统外的浮动电机无关。当电机不转时,即齿轮处于静止状态,力矩T B仍然存在,此时 T B是由齿轮①—②—③—④所组成封闭系统中的平衡内力产生,称为封闭力矩。静止时,系统中只有力矩的存在而无功率的流动和损耗。当电机运转时,带动整个系统运转,并使封闭系统产生功率流动和损耗,电动机的作用就是克服系统中各种摩擦阻力,补充摩擦功率耗损、以维持正常运转状态。由于摩擦功率损耗很小,因而电机容量很小,仅需齿轮工作功率的1/20左右。这对于长期运转的实验,其经济意义很大。本试验台的功耗电机功率仅300w左右,同步转速1000 r/min,工作时约950 r/min。 三. 封闭功率的效率计算 单纯的齿轮副的效率测定是比较困难的,这里齿轮副的效率分别为η12,η34,它包括啮合效率,轴承效率及搅油效率等。 效率是指输出功率与输入功率之比。要确定输入和输出功率,首先要判明哪个是主动轮,哪个是从动轮。判别的方法是根据加载机构产生扭矩的方向与电机的转向是否一致,若方向一致则齿轮④为主动,相反为从动,封闭功率流动的方向应由大流向小,由主动流向从动。图12-1中设电机转动的方向与螺旋加载器产生扭矩T B方向相同,则齿轮④为主动,③为从动,齿轮④的左端为封闭功率P B的输入端(功率最大),功率P B流经齿轮④→齿轮③→轴II→齿轮②→齿轮①→轴I。流动中有啮合磨损,轴承磨损,搅油损耗等,功率逐渐减少,然而经过电动机输出功率P f的弥补,则通过轴II输入齿轮④的左端时,又恢复成P B。设封闭系统中的总效率为η0,则η0=η12?η34若η12≈η34=η,则一对齿轮副的效率为η=。 电动机输出功率为: P f =P B(1-η0)=P B(1-η2) η=P-P P B f B η

发动机的效率和变速箱的传动力

一、发动机的效率和变速箱的传动力之间的关系: 1 传动顺畅,加速快 2 省油 3 变速箱油更换周期长,有的终生免更换 4 使用寿命 5 噪音大小 就其经济性来说:手动变速箱,省油,价格低,维修成本也低。 就其适应路况来说:自动、手自一体、无级变速适合市区使用,手动变速箱适合公路使用。 就其维护来说:自动、手自一体、无级变速变速箱,油品要要求高,只要按要求换油就行,维修价格较贵;手动变速箱一定里程后要更换离合器片。 二、汽车驱动理论 (一)马力与扭力哪一项最能具体代表车辆性能? 有人说“起步靠扭力,加速靠马力”,也有人说“马力大代表极速高,扭力大代表加速好”,其实这些都是片段的错误解释,其实车辆的前进一定是靠引擎所发挥的扭力,所谓的“扭力”在物理学上应称为“扭矩”。本文以下皆称为“扭矩”。 扭矩的公制单位为牛顿-米(N-m),除以重力加速度9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。(英制单位则为磅-呎(lb-ft),在美国车的型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。) 汽车驱动力的计算方式:将扭矩除以车轮半径即可。 由引擎马力-扭力输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?一部1.6升的引擎大约可发挥15.0kg-m的最大扭力,此时若直接连上185/60R14尺寸的轮胎(185指的轮胎胎面宽度为185毫米,60指扁平比,轮胎截面高度与轮胎宽度之比;轮胎截面高度具体计算就是185*60%=111毫米;R为子午线轮胎的标志,此类轮胎防爆性较好,但对尖锐物体的刺扎没有太多防护;14寸指该车胎可以使用的轮毂的直径14英寸,1英寸=25.4毫米;因此,这条轮胎整个安装完毕后的直径为14*25.4+185*60%*2=565毫米),半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位“牛顿”)。 36公斤的力量怎么推动一吨的车重呢?而且动辄数千转的引擎转速更不可能恰好成为轮胎转速,否则车子不就飞起来了? 引擎扭矩经由变速箱,可降可以将旋转的速度降低,同时将扭矩放大。 从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。齿轮的圆周比就是半径比。 举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿数为45齿。 当小齿轮以3000rpm的转速旋转,而扭矩为20kg-m时,传递至大齿轮的转速便降低了1/3,变成1000rpm;但是扭矩反而放大三倍,成为60kg-m。这就是低转速并放大扭矩的基本原理。(3000rpm X 20kg-m=1000rpm X 60kg-m) 在汽车上,引擎输出至轮胎为止共经过两次扭矩的放大,第一次由变速箱的档位作用而产生,第二次则导因于最终齿轮比(或称最终传动比)。扭矩的总放大倍率就是变速箱齿比与最终齿轮比

生物必修三能量流动计算

一、食物链中的能量计算 1.已知较低营养级生物具有的能量(或生物量),求较高营养级生物所能获得能量(或生物量)的最大值。 例1.若某生态系统固定的总能量为24000kJ,则该生态系统的第四营养级生物最多能获得的能量是() A. 24kJ B. 192kJ C.96kJ D. 960kJ 解析:据题意,生态系统固定的总能量是生态系统中生产者(第一营养级)所固定的能量,即24000kJ,当能量的传递效率为20%时,每一个营养级从前一个营养级获得的能量是最多的。因而第四营养级所获得能量的最大值为:24000×20%×20%×20%=192kJ。 答案:D 规律:已知较低营养级的能量(或生物量),不知道传递效率,计算较高营养级生物获得能量(或生物量)的最大值时,可按照最大传递效率20%计算,即较低营养级能量(或生物量)×(20%)n(n为食物链中由较低营养级到所需计算的营养级的箭头数)。 2.已知较高营养级的能量(或生物量),求较低营养级应具备的能量(或生物量)的最小值。 例2.在一条有5个营养级的食物链中,若第五营养级的生物体重增加1 kg,理论上至少要消耗第一营养级的生物量为() A. 25 kg B. 125 kg C. 625 kg D. 3125 kg 解析:据题意,要计算消耗的第一营养级的生物量,应按照能量传递的最大效率20%计算。设需消耗第一营养级的生物量为X kg,则X=1÷(20%)4=625 kg。 答案:C 规律:已知能量传递途径和较高营养级生物的能量(或生物量)时,若需计算较低营养级应具有的能量(或生物量)的最小值(即至少)时,按能量传递效率的最大值20%进行计算,即较低营养级的生物量至少是较高营养级的能量(或生物量)×5n(n为食物链中,由较低营养级到所需计算的营养级的箭头数)。

【清华课件-机械设计基础A(3)】带传动的滑动与效率实验yasuo--自改new

带传动滑动与效率实验指导书 一、实验目的 1. 了解带传动中的弹性滑动及打滑现象以及与带传动承载能力的关系; 2. 掌握带传动的滑动和效率的测试方法,确定带传动最合理的工作状态,探讨改善带传动性能的措施。 二、实验原理 带传动的设计准则是:保证传动带在工作中不打滑,同时又有足够的疲劳强度和寿命。传动带不出现打滑的临界条件取决于带传动的滑动与承载能力(有效拉力、扭矩或传递功率)之间的关系。在传动条件及初拉力一定的情况下带传动的滑动与有效拉力F 之间的关系曲线如图1所示。图中ε-F 曲线称为带传动滑动曲线,η-F 曲线为带传动效率曲线: 图1带传动滑动曲线和效率曲线 ε为滑动系数或称滑差率 ε=%100)1(1 212121??-=-n n D D V V V (1) 式中 V 1、V 2、n 1、n 2—分别为主动轮、从动轮的线速度和转速,m/s 和r/min; D 1、D 2—分别为主动轮、从动轮的计算直径,mm 。 由图可知:滑动曲线在开始一段,滑动系数随有效拉力的增加而成线性增加,这时传动带处于弹性滑动范围内工作,属于弹性滑动区。当拉力增加至超过某一值后,滑动系数增加很快,带处于弹性滑动与打滑同时存在的范围内工作,属于打滑区。当拉力继续增加,带将在带轮上处于完全打滑工作状态,此时滑动系数ε近于直线上升。为了保证传动带在工作中不打滑,又能发挥带的最大工作能力,临界条件应取在k 点,在这一临界条件下,滑动系数ε=1~2%,且传动效率η处于较高值。 三、实验装置 1、 主要结构及工作原理 图2为带传动实验台外观结构图。该实验台主要由两个直流电机组成或其中一个为主动电机5,另一个为从动电机8,作发电机使用,其电枢绕组两端接上灯泡负载9,主动电机固定在一个以水平方向移动的底板1上,与发电机由一根平皮带6连接。在与滑动底板相连的法码架上加上法码,即可拉紧皮带6。电机锭子未固定可转动,其外壳上装有测力杆,支点压在

相关文档
相关文档 最新文档