文档库 最新最全的文档下载
当前位置:文档库 › 金属材料学课后习题总结

金属材料学课后习题总结

金属材料学课后习题总结
金属材料学课后习题总结

习题

第一章

1、何时不能直接淬火呢?本质粗晶粒钢为什么渗碳后不直接淬火?重结晶为什么可以细化晶粒?那么渗碳时为什么不选择重结晶温度进行A化?

答:本质粗晶粒钢,必须缓冷后再加热进行重结晶,细化晶粒后再淬火。晶粒粗大。A 形核、长大过程。影响渗碳效果。

2、C是扩大还是缩小奥氏体相区元素?

答:扩大。

3、Me对S、E点的影响?

答:A形成元素均使S、E点向左下方移动。F形成元素使S、E点向左上方移动。

S点左移—共析C量减小;E点左移—出现莱氏体的C量降低。

4、合金钢加热均匀化与碳钢相比有什么区别?

答:由于合金元素阻碍碳原子扩散以及碳化物的分解,因此奥氏体化温度高、保温时间长。

5、对一般结构钢的成分设计时,要考虑其M S点不能太低,为什么?

答:M量少,Ar量多,影响强度。

6、W、Mo等元素对贝氏体转变影响不大,而对珠光体转变的推迟作用大,如何理解?答:对于珠光体转变:Ti, V:主要是通过推迟(P转变时)K形核与长大来提高过冷γ的稳定性。

W,Mo:

1)推迟K形核与长大。

2)增加固溶体原子间的结合力,降低Fe的自扩散系数,增加Fe的扩散激活能。

3)减缓C的扩散。

对于贝氏体转变:W,Mo,V,Ti:增加C在γ相中的扩散激活能,降低扩散系数,推迟贝氏体转变,但作用比Cr,Mn,Ni小。

7、淬硬性和淬透性

答:淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。

淬透性:指由钢的表面量到钢的半马氏体区组织处的深度。

8、C在γ-Fe与α-Fe中溶解度不同,那个大?

答:γ-Fe中,为八面体空隙,比α-Fe的四面体空隙大。

9、C、N原子在α-Fe中溶解度不同,那个大?

答:N大,因为N的半径比C小。

10、合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。

答:V:MC型;Cr:M7C3、M23C6型;Mo:M6C、M2C、M7C3型;Mn:M3C型。

复杂点阵:M23C6、M7C3、M3C、稳定性较差;简单点阵:M2C、MC、M6C稳定性好。

11、如何理解二次硬化与二次淬火?

答:二次硬化:含高W、Mo、Cr、V钢淬火后回火时,由于析出细小弥散的特殊碳化物及回火冷却时A’转变为M回,使硬度不仅不下降,反而升高的现象称二次硬化。

二次淬火:在高合金钢中回火冷却时残余奥氏体转变为马氏体的现象称为二次淬火。

第二章

1、退火后的低C钢板一般在深冲前,先进行一次少量变形的平整加工,然后再进行深冲,为什么?

答:克服时效现象,不出现上下屈服点,深冲时板面平整度提高。

2、15MnTi和16Mn屈服强度有差别的原因。

答:微合金元素的碳化物和氮化物的析出强化。

3、Q235AF、Q235BZ含义

答:Q--屈服点235--最低屈服强度值为235MPa A、B、C、D--质量等级符号F--沸腾钢Z--镇静钢b--半镇静钢TZ--特殊镇静钢

4、低合金高强度结构钢比碳素结构钢屈服强度提高25%~100%的原因是什么?

答:成分不同,Mn%高,这是以合金化为目的的添加元素。还有Si、Nb、Ti、V、Al的作用。

5、什么是双相钢,如何获得,有何特点?

答:由马氏体、奥氏体或贝氏体与铁素体基体两相组织构成的钢。通过在两相区加热后冷却的双相化热处理或者通过直接热轧而得到。特点:1.连续屈服,无屈服点延伸;2.高的加工硬化速率;3.低的屈服强度;4.高的抗拉强度;5.均匀伸长率和总伸长率大。

6、微珠光体钢如要提高强度可以从哪些方面考虑?

答:微合金元素的作用:1.阻止加热时A晶粒长大;2.抑制A形变再结晶。3.析出强化和晶粒细化。

7、工程结构钢的设计思路?

答:1.在低碳范围内提高碳含量,以提高强度。

2.添加合金元素提高强度。

3.热处理改变组织提高强度。

4.形变热处理细化组织提高强度。

5.在提高强度时一定要注意焊接性能和韧脆转变温度。

8、低合金高强度结构钢的强度很高吗?

答:高强度是针对低碳结构钢而言,实际上其含碳量低,合金元素含量低所以其强度不能和后面要介绍的钢相比较。

9、工程结构钢为什么含碳量低?

答:保证其良好的屈服强度,较好的冷热加工成型性,良好的焊接性,较低的冷脆倾向、时效敏感性。

10、双相钢低的屈服强度是好还是坏?

答:使其均匀塑变能力强,冷加工性能好。

第三章

1、大型弹簧为什么要先成形后强化,小型弹簧先强化后成形?小型弹簧成形后为什么进行低温退火?

答:钢材在热成形之前并不具备弹簧所要求的性能,在热成形之后,进行淬火及中温回火,以获得所要求的性能。由于冷成形弹簧在成形之前,钢丝已具备了一定的性能,即已处于硬化状态,所以小型弹簧先强化后成型。为了降低应力。

2、水韧处理?

答:只有将高猛钢加热至1050-1100℃,保温一定时间淬火并快速入水中冷却后,才能得到单一奥氏体组织,其韧性变得极高,这种工艺较水韧处理。

3、钢奥氏体化后,迅速水冷应得到马氏体组织,而高锰钢水韧处理后,奥氏体组织为何不

转变为马氏体组织?

答:由于锰的存在,使Ms与Mf下移到室温以下,故得到奥氏体。

4、奥氏体软,为什么耐磨?

答:一般的水韧处理为ZGMn13类高锰钢,主要用于承受冲击载荷工作的零件,奥氏体表面在受到冲击作用时,产生强烈的加工硬化,当硬化层被磨崩掉后,又露出新鲜的奥氏体,重新硬化,如此反复。

5、为什么是铸钢?

答:因其有强烈的加工硬化,故不可采用机械加工方法成形,主要用铸造方法所得,所以为铸钢。

6、耐磨实质是奥氏体耐磨吗?

答:铸钢锰13水韧处理后的硬度是180~200HB ,硬度并不高,因为它是奥氏体组织,大部分金属材料都是热致相变,但是该钢有个特点:应力致相变,就是当遇到外力的时候,会发生相变,由奥氏体转变为硬度很高的马氏体,实际上耐磨的还是马氏体。

7、ZGMn13铸态组织及水韧组织

答:高锰钢的铸态组织由奥氏体基体,晶界连续网状碳化物和晶内针片状碳化物,及少量的珠光体和磷共晶组成。性能很脆,一般不在铸态下使用。高锰钢使用状态是水韧固溶处理态,组织为单一奥氏体。经热处理后韧性大幅度提高,满足服役条件。

8、40、40Cr、40CrNi 、40CrNiMo的淬透性比较

答:40CrNiMo>40CrNi>40Cr>40

9、举例说明调质钢、弹簧钢、轴承钢的热处理方法?

答:调质钢:淬火+高回弹簧钢:淬火+中回轴承钢:淬火后冷处理+低回

第四章

1、淬火加热时,为什么要预热?

答:高速钢合金量高,特别是W,所以高速钢的导热性很差。预热可减少工件加热过程中的变形开裂倾向;缩短高温保温时间,减少氧化脱碳;可准确地控制炉温稳定性。

2、高速钢W6Mo5Cr4V2的AC1在800℃左右,但淬火加热温度在1200~1240℃,淬火加热温度为什么这样高?

答:因为高速钢中碳化物比较稳定,必须在高温下才能溶解。而高速钢淬火目的是获得高合金度的马氏体,在回火时才能产生有效的二次硬化效果。

3、高速钢回火工艺一般为560℃左右,并且进行三次,为什么?

答:由于高速钢中高合金度马氏体的回火稳定性非常好,在560℃左右回火,才能弥散析出特殊碳化物,产生二次硬化。同时在560℃左右回火,使材料的组织和性能达到了最佳状态。三次回火是为了尽可能减少Ar,形成M。

4、淬火冷却时常用分级淬火,分级淬火目的是什么?

答:分级淬火目的:降低热应力和组织应力,尽可能地减小工件的变形与开裂。

5、不应该是回火索氏体么?怎么我见资料上是回火马氏体?

答:合金元素的影响。使马氏体中碳的析出延迟,奥氏体稳定性增加,其转变也延迟,所以高温回火仍然得到回火马氏体组织。

6、问题:Cr12MoV有两种常用热处理工艺:一种是1000℃淬火,160℃回火;另一种是1100℃淬火,510℃回火。讨论为什么1000℃较低温度淬火只能采用160℃低温回火,只有采用1100℃较高温度淬火才能采用510℃高温回火?

答:1)1000℃淬火,碳及合金元素溶入奥氏体中数量较少,淬火得板条马氏体+碳化物+残余奥氏体。由于板条马氏体有较好的强韧配合,碳化物的存在有利于提高耐磨性和硬度,

同时加热温度较低,热应力较小,低温回火的主要目的是保证硬度基础上,缓解应力,增加马氏体稳定性,如果高温回火,硬度下降过多,达不到性能要求;

2)1100℃淬火,碳及合金元素大量溶入奥氏体中,淬火后残余奥氏体数量增多,510℃回火是从二次淬火和二次硬化角度考虑。同时提高回火温度,有利于提高韧性,缓解应力;低温回火达不到上述要求,会导致残余奥氏体数量较多,硬度、强度不足。

第五章

1、为什么铬能决定不锈钢的耐腐蚀性能?是不是含铬的钢都是不锈钢?

答:1)铬提高钢耐腐蚀性能的第一个原因是铬使铁-铬合金钢的电极电位提高。当铬含量达到1/8、2/8、3/8……原子比时(耐蚀组元的原子数与合金总原子数之比),铁-铬合金钢的电极电位呈跳跃式的提高,这种变化规律叫n/8定律。

2)铬提高钢的耐蚀性能的第二个原因是铁-铬合金钢在氧化性介质中极易形成一层致密的钝化膜(FeO·Cr2O3),这层钝化膜稳定、完整,与基体金属结合牢固,将基体与介质完全隔开,从而有效地防止钢进一步氧化或腐蚀。

2、奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大的原因?

答:1Cr18Ni9含C较高,又没有Ti等稳定C的强碳化物形成元素,所以在晶界上容易析出Cr23C6,从而使晶界上产生贫Cr区,低于不锈钢的基本成分要求,所以在晶界处的腐蚀倾向比较大。

3、4Cr13为什么是过共析钢?

答:Cr元素使共析S点向左移动,当Cr含量达到一定程度时,S点已左移到小于0.4%C,所以4Cr13是属于过共析钢。

4、什么是奥氏体不锈钢的固溶处理?

答:固溶处理是奥氏体不锈钢最大程度的软化处理。由于这时的奥氏体具有最大的合金度,所以也具有最高的耐蚀性能。

5、什么是奥氏体不锈钢的稳定化处理?

答:晶界碳化铬被全部溶解,部分钛和铌的碳化物也被溶解,使碳重新溶入奥氏体中,然后迅速冷却,使碳来不及析出,形成稳定均一的奥氏体组织,消除晶界处的贫铬层,避免产生晶间腐蚀。

第六章

1、耐热钢的基本性能要求。

答:1)提高合金基体的原子间结合力,强化基体

2)晶界强化

3)弥散相强化

2、如何利用合金化提高钢的高温强度?

答:1)提高合金基体的原子间结合力,固溶强化基体

2)强化晶界

3)沉淀强化

4)获得奥氏体基体(不发生相变)

5)碳是扩大γ相区的元素,对钢有强化作用

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

金属材料重点 复试

金属材料重点 题型:填空(30-40%),选择(20%,有多选),简答(10%+10%),问答(10%+10%+20%) 一、钢的物理冶金基础(15%) 1、钢的分类(填空、多选) 结构钢: 工程结构钢:铁素体-珠光体钢、低碳贝氏体钢、马氏体钢 机械制造结构钢:渗碳钢、调质钢、轴承钢、高合金超高强度结构钢、弹簧钢等工具钢:碳素工具钢、低合金工具钢、高速工具钢、冷作模具钢、热作模具钢等 不锈耐蚀钢 耐热钢 2、铁碳相图中的反应及平衡温度: 包晶转变:LB+δH→γJ(1495℃,单相A) 共晶转变:LC→γB+Fe3C(1148℃,A体+Fe3C:Ld ) 共析转变:γS→αP+Fe3C(727 ℃,F体+Fe3C:P) 3、退火的定义、目的及得到的组织: 退火:将钢加热到奥氏体化温度Ac1(727℃)以上或以下温度,保温,炉冷以获得平衡状态组织(扩散型相变,加热速度为0.125℃/分时A1的温度为Ac1)。 目的:稳定组织,成分和组织均匀,细化晶粒,调整硬度,消除内应力和加工硬化,改善成形和加工性能。 4、马氏体(M)转变特点(简答):

1) 无扩散:Fe 和C 原子都不进行扩散,M是体心正方的C过饱和的F,固溶强化显著。 2) 瞬时性:M 的形成速度很快,106mm/s。温度↓则转变量↑。 3) 不彻底:M 转变总要残留少量A,A中的C%↑则MS、Mf ↓,残余A含量↑ 4) M形成时体积↑,造成很大内应力。 5)切变共格性:表面产生浮凸。 ☆5、钢中杂质的种类(填空): 常存杂质:Mn、Si、Al、S、P等 由脱氧剂带入(Mn、Si、Al)的或矿石中存在的(S、P) 隐存杂质:O、H、N,极其微量,有溶解度 偶存杂质:Cu、Sn、Pb、Ni、Cr等,与矿石和废钢有关 ☆6、合金元素在钢中的分布/存在方式/状态: 溶解于固溶体中,置换和间隙固溶体; 溶于渗碳体中形成合金渗碳体或单独与碳、氮等作用形成碳、氮化合物; 形成金属间化合物; 形成氧化物、硫化物等夹杂物; 以纯金属相存在,如Cu、Pb等; 偏聚 7、什么叫奥氏体形成元素、铁素体形成元素? 在γ-Fe中有较大溶解度并能稳定γ-Fe的元素称为奥氏体形成元素; 而在α-Fe中有较大溶解度并使γ-Fe不稳定的元素,称为铁素体形成元素。 △8、金属间化合物的种类(填空,掌握重要类型): 合金钢中比较重要的金属间化合物有σ相、AB2相(laves拉维斯相)及AB3相(有序相)。 9、合金钢的回火脆性,原因及解决办法: 提高韧性、降低脆性、稳定组织,但200~350 ℃,450~650℃之间回火,冲击韧性出现两个低谷,称为回火脆性。 (a)第一类回火脆性/低温回火脆性(200~350 ℃) 原因:Fe3C薄膜在原A或M晶界形成,降低晶界强度;P、S、Bi等元素偏聚于晶界合金元素作用:Mn、Cr、Ni促进,Mo、Ti、V等改善,Si推迟脆性温度区。 (b)第二类回火脆性/高温回火脆性(450~650 ℃) 原因:Sb、S、As、P、O、N等杂质元素偏聚于晶界,或形成网状化合物,高于回火温

2008级金属材料学习题

金属材料学习题集 ※<习题一> 第一章复习思考题-1 1.描述下列元素在普通碳素钢的作用:(a)锰、(b)硫、(c)磷、(d)硅。 2.为什么钢中的硫化锰夹杂要比硫化亚铁夹杂好? 3.为什么要向普通碳素钢中添加合金元素以制造合金钢? ※<习题二> 复习思考题-2 8.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在 γ-Fe 中形成无限固溶体? 9.钢中常见的碳化物类型主要有几种?哪一种碳化物最不稳定? 10.分析合金元素对Fe-Fe3C相图影响规律对热处理工艺实施有哪些指导意义? 11.钢在加热转变时,为什么含有强碳化物形成元素的钢奥氏体晶粒不易长大?12.简述合金元素对钢过冷奥氏体等温分解C曲线的影响规律? 13.合金元素提高钢的回火稳定性的原因何在? 15.叙述低合金钢的第二类回火脆性? ※<习题三> 复习思考题-3 16.防止钢铁材料腐蚀途径有哪些? 17.钢材的强度随温度的变化将发生变化,从合金化的角度考虑如何提高钢的热强性? 18略述沉淀强化Al-4%Cu合金所必需的三个主要步骤。 ※<习题四> Ch2 复习思考题 1.对工程应用来说,普通碳素钢的主要局限性是哪些?工程构件用合金结构钢的成分和性能要求是什么? 2. 合金元素在低合金高强度结构钢中的作用是什么?为什么考虑低C?具体分析Mn、Si,Al、Nb、V、Ti,Cu、P、Cr、Ni对低合金高强钢性能的影响? 3.什么是微合金化钢?什么是生产微合金化钢的主要添加元素?微合金化元素 在微合金化钢中的作用是什么? 4.根据合金元素在钢中的作用规律,结合低合金高强度结构钢的性能要求,分析讨论低合金高强度结构钢中合金元素的作用 复习思考题-1 1.结合渗碳钢20CrMnTi和20Cr2Ni4A的热处理工艺规范,分析其热处理特点。2.合金元素在机器零件用钢中的作用是什么?就下列合金元素(Cr、Mn、Si、Ni、Mo、Al、Ti、W、V、B)各举一例钢种指出其作用是什么?

最新金属材料学课后习题总结

习题 第一章 1、何时不能直接淬火呢?本质粗晶粒钢为什么渗碳后不直接淬火?重结晶为什么可以细化晶粒?那么渗碳时为什么不选择重结晶温度进行A化? 答:本质粗晶粒钢,必须缓冷后再加热进行重结晶,细化晶粒后再淬火。晶粒粗大。A 形核、长大过程。影响渗碳效果。 2、C是扩大还是缩小奥氏体相区元素? 答:扩大。 3、Me对S、E点的影响? 答:A形成元素均使S、E点向左下方移动。F形成元素使S、E点向左上方移动。 S点左移—共析C量减小;E点左移—出现莱氏体的C量降低。 4、合金钢加热均匀化与碳钢相比有什么区别? 答:由于合金元素阻碍碳原子扩散以及碳化物的分解,因此奥氏体化温度高、保温时间长。 5、对一般结构钢的成分设计时,要考虑其M S点不能太低,为什么? 答:M量少,Ar量多,影响强度。 6、W、Mo等元素对贝氏体转变影响不大,而对珠光体转变的推迟作用大,如何理解? 答:对于珠光体转变:Ti, V:主要是通过推迟(P转变时)K形核与长大来提高过冷γ的稳定性。 W,Mo: 1)推迟K形核与长大。 2)增加固溶体原子间的结合力,降低Fe的自扩散系数,增加Fe的扩散激活能。 3)减缓C的扩散。 对于贝氏体转变:W,Mo,V,Ti:增加C在γ相中的扩散激活能,降低扩散系数,推迟贝氏体转变,但作用比Cr,Mn,Ni小。 7、淬硬性和淬透性 答:淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。 淬透性:指由钢的表面量到钢的半马氏体区组织处的深度。 8、C在γ-Fe与α-Fe中溶解度不同,那个大? 答:γ-Fe中,为八面体空隙,比α-Fe的四面体空隙大。 9、C、N原子在α-Fe中溶解度不同,那个大? 答:N大,因为N的半径比C小。 10、合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。 答:V:MC型;Cr:M7C3、M23C6型;Mo:M6C、M2C、M7C3型;Mn:M3C型。 复杂点阵:M23C6、M7C3、M3C、稳定性较差;简单点阵:M2C、MC、M6C稳定性好。 11、如何理解二次硬化与二次淬火? 答:二次硬化:含高W、Mo、Cr、V钢淬火后回火时,由于析出细小弥散的特殊碳化物及回火冷却时A’转变为M回,使硬度不仅不下降,反而升高的现象称二次硬化。 二次淬火:在高合金钢中回火冷却时残余奥氏体转变为马氏体的现象称为二次淬火。

金属材料学总结

第一章 1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些? 答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。 硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。 2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化) b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化) c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化) d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化) 淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。淬火和回火结合使用提高钢的综合性能。 3、按照合金化思路,如何改善钢的韧性? 答:a、加入可细化晶粒的元素Mo、W、Cr; b、改善基体韧性,加Ni元素;

c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量; g、加入合金元素提高耐回火性,以提高韧性。 4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。 答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。 5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。 答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。 6、合金钢中碳化物形成规律①②③④⑤⑥⑦ 答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。 第二章 1、简述工程钢一般服役条件、加工特点和性能要求。 答:服役条件:静载、无相对运动、受大气腐蚀。 加工特点:简单构件是热轧或正火状态,空气冷却,有焊接、剪切、

金属材料考试复习资料

1.工程材料的主要性能分为(1)使用性能和(2)工艺性能。(1)又包括力学性能、物理性能和化学性能等。 2.金属的变形包括弹性变形和塑性变形。 3.通过拉伸试验可测得的强度指标主要有屈服强度和抗拉强度;可测得的塑性指标有延伸率和断面收缩率。 4.常见的金属晶格类型有体心立方晶格、面心立方晶格和密排六方晶格三种类型。α–Fe 属于体心立方晶格,γ–Fe属于面心立方晶格,δ–Fe属于体心立方晶格。 5.实际金属的晶体缺陷有点缺陷(空位或间隙原子)、线缺陷(位错)和面缺陷(晶界)。 6.金属的理论结晶温度与实际结晶温度之差称为过冷度。金属的冷却速度越快,过冷度越大,获得的晶粒越细。 7.细化金属材料的晶粒,可使金属的强度、硬度提高,塑性、韧性提高;在生产中常用的细化晶粒的方法有增大过冷度、变质处理、机械搅拌和振动;压力加工再结晶;热处理。 8.合金的晶体结构有固溶体和金属化合物,其中固溶体具有良好的塑性,金属化合物具有高的硬度和脆性。 9.在铁碳合金的基本组织中,珠光体属于复相结构,它由铁素体和渗碳体按一定比例组成,珠光体用符号P表示。 10.铁碳合金相结构中,属于固溶体的有铁素体和奥氏体;其中铁素体是碳在α–Fe中形成的固溶体。 11.铁碳合金的力学性能随含碳量的增加,其强度和硬度增高,而塑性和韧性降低。但当w C>1.0%时,强度随其含碳量的增加而降低。 12.铁碳合金中,共析钢w C为0.77%,室温平衡组织为P;亚共析钢w C为<0.77%,室温平衡组织为P+F;过共析钢w C为>0.77%,室温平衡组织为P+Fe3C;共晶白口生铁w C为4.3%,室温平衡组织为Ld';亚共晶白口生铁w C为<4.3%,室温平衡组织为P+Fe3C II+Ld';过共晶白口生铁w C为>4.3%,室温平衡组织为Fe3C I+Ld'。 13.按碳的质量分数的不同.碳素钢可分为高碳钢、中碳钢和低碳钢三类;钢硫、磷杂质质量分数的不同,钢可分为普通钢、优质钢、高级优质钢和特级优质钢三类。 二、简答题与应用题 1.材料的常用力学性能指标有那些?若某种材料的零件在使用过程中突然发生断裂,是由于那些力学性能指标不足所造成的? (1)常用力学性能指标有: 强度、塑性、刚度、硬度、冲击韧性、疲劳强度。 (2) 零件在使用过程中突然发生断裂,是由于强度、塑性、冲击韧性、疲劳强度等力学性能指标不足所造成的。 2.画出低碳钢的应力-应变曲线,并简述拉伸变形的几个阶段。 oe段:弹性变形

金属材料学思考题标准答案2

金属材料学思考题答案2 绪论、第一章、第二章 1.钢中的碳化物按点阵结构分为哪两大类,各有什么特点? 答:分为简单点阵结构和复杂点阵结构,前者熔点高、硬度高、稳定性好,后者硬度低、熔点低、稳定性差。 2.何为回火稳定性、回火脆性、热硬性?合金元素对回火转变有哪些影响? 答: 回火稳定性:淬火钢对回火过程中发生的各种软化倾向(如马氏体的分解、残余奥氏体的分解、碳化物的析出与铁素体的再结晶)的抵抗能力 回火脆性:在200-350℃之间和450-650℃之间回火,冲击吸收能量不但没有升高反而显著下降的现象 热硬性:钢在较高温度下,仍能保持较高硬度的性能 合金元素对回火转变的影响:①Ni、Mn影响很小,②碳化物形成元素阻止马氏体分解,提高回火稳定性,产生二次硬化,抑制C和合金元素扩散。③Si比较特殊:小于300℃时强烈延缓马氏体分解, 3.合金元素对Fe-Fe3C相图S、E点有什么影响?这种影响意味着什么? 答:凡是扩大奥氏体相区的元素均使S、E点向左下方移动,如Mn、Ni等; 凡是封闭奥氏体相区的元素均使S、E点向左上方移动,如Cr、Si、Mo等? E点左移:出现莱氏体组织的含碳量降低,这样钢中碳的质量分数不足2%时就可以出现共晶莱氏体。S点左移:钢中含碳量小于0.77%时,就会变为过共析钢而析出二次渗碳体。 4.根据合金元素在钢中的作用,从淬透性、回火稳定性、奥氏体晶粒长大倾向、韧性和回火脆性等方面比较下列钢号的性能:40Cr、40CrNi、40CrMn、40CrNiMo。 1)淬透性:40CrNiMo 〉40CrMn 〉 40CrNi 〉 40Cr 2)回火稳定性:40CrNiMo 〉40CrNi 〉 40CrMn 〉 40Cr 3)奥氏体晶粒长大倾向:40CrMn 〉 40Cr 〉 40CrNi 〉 40CrNiMo 4)韧性:40CrNiMo 〉40CrNi 〉40Cr〉40CrMn (Mn少量时细化组织) 5)回火脆性: 40CrMn 〉40CrNi> 40Cr 〉40CrNiMo 5.怎样理解“合金钢与碳钢的强度性能差异,主要不在于合金元素本身的强化作用,而在于合金元素对钢相变过程的影响。并且合金元素的良好作用,只有在进行适当的热处理条件下才能表现出来”?从强化机理和相变过程来分析(不是单一的合金元素作用) 合金元素除了通过强化铁素体,从而提高退火态钢的强度外,还通过合金化降低共析点,相对提高珠光体的数量使其强度提高。其次合金元素还使过冷奥氏体稳定性提高,C曲线右移,在相同冷却条件下使铁素体和碳化物的分散度增加,从而提高强度。 然而,尽管合金元素可以改善退火态钢的性能但效果远没有淬火回火后的性能改变大。 除钴外,所有合金元素均提高钢的淬透性,可以使较大尺寸的零件淬火后沿整个截面得到均匀的马氏体组织。大多数合金元素都有阻止奥氏体晶粒长大的倾向(Mn除外),从而细化晶粒,使淬火后的马氏体组织均匀细小。

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

材料化学考试重点整理

第一章 1、材料的基本概念 材料是人类赖以生存的基础,材料的发展和进步伴随着人类文明发展和进步的全过程。材料是国民经济建设,国防建设和人民生活不可缺少的重要组成部分,是社会现代化的物质基础与先导。 材料,尤其是新材料的研究、开发与应用反映着一个国家的科学技术与工业水平。 材料特别是新材料与社会现代化及现代文明的关系十分密切,新材料对提高人民生活,增加国家安全,提高工业生产率与经济增长提供了物质基础,因此新材料的发展十分重要。 材料是一切科学技术的物质基础,而各种材料的起点主要来源于材料的化学制备和化学改性。 2、什么是材料科学工程 具有物理学、化学、冶金学、金属学、陶瓷学、计算数学等多学科交叉与结合的特点,并且具有鲜明的工程性。 3、什么是材料化学 材料化学在研究开发新材料中的作用,就是用化学理论和方法来研究功能分子以及由功能分子构筑的材料的结构与功能关系,使人们能够设计新型材料,提供的各种化学合成反应和方法使人们可以获得具有所设计结构的材料。 采用新技术和新工艺方法,合成新物质和新材料,通过化学反应实现各组分在原子或分子水平上的相互转换过程。涉及材料的制备、组成、结构、性质及其应用的一门科学。 材料化学既是材料科学的一个重要分支,也是材料科学的核心内容。同时又是化学学科的一个组成部分,具有明显的交叉学科、边缘学科的性质。是材料学专业学生的一门重要的专业基础知识课程。 4、材料的分类 (1)按照材料的使用性能:可分为结构材料与功能材料两类 结构材料的使用性能主要是力学性能; 功能材料的使用性能主要是光、电、磁、热、声等功能性能。 (2)以材料所含的化学物质的不同将材料分为四类:金属材料、非金属材料、高分子材料及由此三类材料相互组合而成的复合材料。 第二章 1、原子结合---键合 两种主要类型的原子键:一次键和二次键。 (1)一次键的三个主要类型:离子键、共价键和金属键。(一次键都涉及电子的转移,或者是电子的共用。)一次键通常比二次键强一个数量级以上。 ①金属键:自由电子和正离子组成的晶体格子之间的相互作用就是金属键。没有方向性和饱和性的。 ②离子键:包含正电性和负电性两种元素的化合物最通常的键类型为离子键。阴阳离子的电子云通常都是球形对称的,故离子键没有方向性和饱和性。 ③共价键:由两个原子共有最外层电子的键合,使每个原子都达到稳定的饱和电子层。共价键具有方向性和饱和性。 (2)二次键:范德华键(二次键既不涉及电子的转移,也不涉及电子的共用。) 以弱静电吸引的方式使分子或原子团连接在一起的,比前3种键合力要弱得多。包含色散效应、分子极化、氢键。 ①色散效应:对称的分子和惰性气体原子,由于电子运动的结果,有时分子或原子的内部会发生电子的偏离而引起瞬时的极化,形成诱导瞬间电偶极子,就会产生很弱的吸引力,这样的吸引力在其它力不存在时能使分子间产生结合。 ②分子极化:原子、离子及分子的电荷并不是固定在一定部位上,它们在相互靠近时,电荷会发生偏移,形成

《金属材料学》考试真题及答案

一、选择题 1、细化晶粒对钢性能的贡献是强化同时韧化;提高钢淬透性的主要作用是使零件整个断面性能 趋于一致,能采用比较缓和的方式冷却。 2、滚动轴承钢GCr15的Cr质量分数含量为 1.5% 。滚动轴承钢中碳化物不均匀性主要是指碳化物液析、带状碳化物、网状碳化物。 3、选择零件材料的一般原则是使用性能要求、工艺性要求和经济性要求等。 4、凡是扩大丫区的元素均使Fe-C相图中S、E点向左下方移动,例Ni、Mn等元素;凡封闭Y区的元素使S、E点向左上方移动,例Cr、Si、Mo等元素。S点左移意味着共析碳含量减少,E点左移 意味着出现莱氏体的碳含量减少。 5、铝合金可分铸造铝合金和变形铝,变形铝又可分硬铝、超硬铝、锻铝和 防锈铝。 6、H62是表示压力加工黄铜的一个牌号,主要成份及名义含量是Cu62% Zn38% 。 7、在非调质钢中常用微合金化元素有Ti、V Nb N等,这些元素的主要作用是____________ 细化组织和相间沉淀析出强化。 8、球铁的力学性能高于灰铁是因为球铁中石墨的断面切割效应、石墨应力集中效应要比灰铁小 得多。 9、铝合金热处理包括固溶处理和时效硬化两过程,和钢的热处理最大区别是铝合金没有同 素异构相变。 1、钢的合金化基本原则是多元适量、复合加入。在钢中细化晶粒作用较大的合金元素有Ti、V Nb 等,细化晶粒对钢性能的作用是既强化又韧化。 2、在钢中,常见碳化物形成元素有Ti、Nb V Mo W Cr、(按强弱顺序排列,列举5个以上)。钢中二元碳化物分为两类:r c/r M < 0.59为简单点阵结构,有MC和M2C 型;r°/r M > 0.59为复杂点阵结构,有M23C6 、 M7C和M3C型。 3、选择零件材料的一般原则是使用性能要求、工艺性要求和经济性要求等。汽车变速箱齿轮常用20CrMnTi 钢制造,经渗碳和淬回火热处理。 4、奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大,产生晶界腐蚀的主要原因是晶界析出Cr 23C6,导致晶界区贫Cr ,为防止或减轻晶界腐蚀,在合金化方面主要措施有降低碳量、加入Ti、V Nb强 碳化物元素。 5、影响铸铁石墨化的主要因素有碳当量、冷却速度。球墨铸铁在浇注时 要经过孕育处理和球化处理。 6、铁基固溶体的形成有一定规律,影响组元在置换固溶体中溶解情况的因素有:溶剂与溶质原子的点 阵结构、原子尺寸因素、电子结构。 7、对耐热钢最基本的性能要求是良好的高温强度和塑性、良好的化学稳定性。常用的抗氧化合金 元素是Cr 、Al 、Si 。 1、钢中二元碳化物分为二类:r c/ r M< 0.59,为简单点阵结构,有MC和 ______________ 型;r c/ 5> 0.59,为复杂点阵结构,有MC M7C3和M23C6 型。两者相比,前者的性能特点是硬度高、熔点高和 稳定性好。 2、凡能扩大丫区的元素使铁碳相图中S、E点向左下方移动,例Mn Ni_等元素(列岀2个);使丫区缩小的元素使S、E点向左上方移动, 例Cr 、Mo W 等元素(列出3个)。 3、提高钢淬透性的作用是获得均匀的组织,满足力学性能要求_________ 、 能采取比较缓慢的冷却方式以减少变形、开裂倾向_______ 。 4、高锰耐磨钢(如ZGMn13经水韧处理后得到奥氏体组织。在高应力磨损条件下,硬度提高而耐 磨,其原因是加工硬化___________ 及________ 。

金属材料学考试题库

第一章钢中的合金元素 1、合金元素对纯铁γ相区的影响可分为哪几种 答:开启γ相区的元素:镍、锰、钴属于此类合金元素 扩展γ相区元素:碳、氮、铜属于此类合金元素 封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅属于此类合金元素 缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 2、合金元素对钢γ相区和共析点会产生很大影响,请举例说明这种影响的作用 答:合金元素对α-Fe、γ-Fe、和δ-Fe的相对稳定性以及同素异晶转变温度A3和A4均有很大影响 A、奥氏体(γ)稳定化元素 这些合金元素使A3温度下降,A4温度上升,即扩大了γ相区,它包括了以下两种情况:(1)开启γ相区的元素:镍、锰、钴属于此类合金元素 (2)扩展γ相区元素:碳、氮、铜属于此类合金元素 B、铁素体(α)稳定化元素 (1)封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅 (2)缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 3、请举例说明合金元素对Fe-C相图中共析温度和共析点有哪些影响 答: 1、改变了奥氏体相区的位置和共析温度 扩大γ相区元素:降低了A3,降低了A1 缩小γ相区元素:升高了A3,升高了A1 2、改变了共析体的含量 所有的元素都降低共析体含量 第二章合金的相组成 1、什么元素可与γ-Fe形成固溶体,为什么

答:镍可与γ-Fe形成无限固溶体 决定组元在置换固溶体中的溶解条件是: 1、溶质与溶剂的点阵相同 2、原子尺寸因素(形成无限固溶体时,两者之差不大于8%) 3、组元的电子结构(即组元在周期表中的相对位置) 2、间隙固溶体的溶解度取决于什么举例说明 答:组元在间隙固溶体中的溶解度取决于: 1、溶剂金属的晶体结构 2、间隙元素的尺寸结构 例如:碳、氮在钢中的溶解度,由于氮原子小,所以在α-Fe中溶解度大。 3、请举例说明几种强、中等强、弱碳化物形成元素 答:铪、锆、鈦、铌、钒是强碳化物形成元素;形成最稳定的MC型碳化物钨、钼、铬是中等强碳化物形成元素 锰、铁、铬是弱碳化物形成元素 第四章合金元素和强韧化 1、请简述钢的强化途径和措施 答:固溶强化 细化晶粒强化 位错密度和缺陷密度引起的强化 析出碳化物弥散强化 2、请简述钢的韧化途径和措施 答:细化晶粒 降低有害元素含量 调整合金元素含量

(完整版)金属材料学复习答案(完整)

第一章答案 1、为什么说钢中的S、P杂质元素总是有害的? 答:S容易和Fe结合成熔点为989℃的FeS相,会使钢产生热脆性;P和Fe结合形成硬脆的Fe3P相使钢在冷加工过程中产生冷脆性。 2、合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么? 答:凡是扩大γ相区的元素均使S、E点向左下方移动,如Mn、Ni; 凡是封闭γ相区的元素均使S、E点向左上方移动,如Cr、Si、Mo。E点左移意味着出现莱氏体的碳含量减小;S点左移意味着共析碳含量减小。 3、那些合金元素能够显著提高钢的淬透性?提高钢的淬透性有什么作用? 答:B、Mn、Mo、Cr、Si、Ni等元素能够显著提高钢的淬透性。提高钢的淬透性一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面在淬火时,可以选用比较缓和的冷却介质以减小零件的变形和开裂的倾向。 4、为什么说合金化的基本原则是“复合加入”?举二例说明合金复合作用的机 理。 答:1.提高性能,如淬透性;2.扬长避短,合金元素能对某些方面起积极作用,但往往还有些副作用,为了克服不足,可以加入另一些合金元素弥补,如Si-Mn,Mn-V;3.改善碳化物的类型和分布,某些合金元素改变钢中碳化物的类型和分布或改变其他元素的存在形式和位置,从而提高钢的性能,如耐热钢中Cr-Mo-V,高速钢中V-Cr-W。 5、合金元素提高钢的韧度主要有哪些途径? 答:1.细化A晶粒;2.提高钢的回火稳定性;3.改善机体韧度;4.细化碳化物;5.降低或消除钢的回火脆性;6.在保证强度水平下适当降低碳含量;7.提高冶金质量;8.通过合金化形成一定量的残余A,利用稳定的残余A提高钢的韧度。 6、钢的强化机制有那些?为什么一般的强化工艺都采用淬火-回火? 答:固溶强化、细晶强化、位错强化、第二相强化。因为一般的钢的强化都要求它有一定的强度的同时又要保持一定的任性,淬火后钢中能够形成M,这给了钢足够的强度,但是带来的后果就是韧度不够,而回火能够在强度降低不大的情况下给淬火钢以足够的韧性,这样能够得到综合力学性能比较优良的材料,所以一般钢的强化工艺都采用淬火加回火。 7、铁置换固溶体的影响因素? 答:1.溶剂与溶质的点阵结构;2.原子尺寸因素;3.电子结构。 第二章 1、叙述构件用钢一般的服役条件、加工特点、性能要求? 答:服役条件:工程结构件长期受静载荷;互相无相对运动;受大气(海水)侵蚀;

金属材料学课后习题答案

金属材料学习题与思考题 第七章铸铁 1、铸铁与碳钢相比,在成分、组织和性能上有什么区别? (1)白口铸铁:含碳量约2.5%,硅在1%以下白口铸铁中的碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色。故称白口铸铁,由于有大量硬而脆的Fe3c,白口铸铁硬度高、脆性大、很难加工。因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。大多用作炼钢和可锻铸铁的坯料 (2)灰口铸铁;含碳量大于4.3%,铸铁中的碳大部或全部以自由状态片状石墨存在。断口呈灰色。它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。(3)钢的成分要复杂的多,而且性能也是各不相同钢是含碳量在0.04%-2.3%之间的铁碳合金。我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过1.7%。钢的主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤0.045%,S≤0.050%)②优质钢(P、S均≤0.035%)③高级优质钢(P≤0.035%,S≤0.030%)按照化学成分又分①碳素钢:.低碳钢(C≤0.25%).中碳钢(C≤0.25~0.60%).高碳钢(C≤0.60%)。 ②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%)。 2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响?为什么三低(C、Si、Mn低)一高(S高)的铸铁易出现白口? (1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为: Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等。其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强。C和Si是铸铁中主要的强烈促进石墨化元素,为综合考虑它们的影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点。S是强烈阻碍石墨化元素,降低铸铁的铸造和力学性能,控制其含量。 (2)铸铁的含碳量高,脆性大,焊接性很差,在焊接过程中易产生白口组织和裂纹。 白口组织是由于在铸铁补焊时,碳、硅等促进石墨化元素大量烧损,且补焊区冷速快,在焊缝区石墨化过程来不及进行而产生的。白口铸铁硬而脆,切削加工性能很差。采用含碳、硅量高的铸铁焊接材料或镍基合金、铜镍合金、高钒钢等非铸铁焊接材料,或补焊时进行预热缓冷使石墨充分析出,或采用钎焊,可避免出现白口组织,。 3、铸铁壁厚对石墨化有什么影响?冷速越快,不利于铸铁的石墨化,这主要取决于浇注温度、铸型材料的导热能力及铸件壁厚等因素。冷速过快,第二阶段石墨化难以充分进行。 4、石墨形态是铸铁性能特点的主要矛盾因素,试分别比较说明石墨形态对灰铸铁和球墨铸铁力学性能及热处理工艺的影响。墨的数量、大小和分布对铸铁的性能有显著影响。如片状石墨,数量越多对基体的削弱作用和应力集中程度越大。 石墨形状影响铸铁性能:片状、团絮状、球状。对于灰铸铁,热处理仅能改变基体组织,改变不了石墨形态,热处理不能明显改善灰铸铁的力学性能。 球墨铸铁是石墨呈球体的灰铸铁,简称球铁。由于球墨铸铁中的石墨呈球状,对基体的割裂作用大为减少,球铁比灰铸铁及可锻铸铁具有高得多的强度、塑性和韧性。 5、球墨铸铁的性能特点及用途是什么? 球墨铸铁。将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。比普通灰口铸铁有较高强度、较好韧性和塑性。用于制造内燃机、汽车零部件及农机具等.。 珠光体型球墨铸铁——柴油机的曲轴、连杆、齿轮;机床主轴、蜗轮、蜗杆;轧钢机的轧辊;水压机的工作缸、缸套、活塞等。铁素体型球墨铸铁——受压阀门、机器底座、汽车后桥壳等。 6、和刚相比,球墨铸铁的热处理原理有什么异同? 球墨铸铁的热处理主要有退火、正火、淬火加回火、等温淬火等。 7、HT200、HT350、KTH300-06、QT400、QT600各是什么铸铁?数字代表什么意义?各具有什么样的基体和石墨形态?说明他们的力学性能特点及用途。 (1)灰铸铁常用型号为HT100/HT150/HT200/HT250/HT300/HT350 球墨铸铁常用型号为QT400-18/QT400-15/QT450-10/QT500-7/QT600-3/QT700-2/QT800-2/QT900-2 黑心可锻铸铁常用牌号为KTH300-06/KTH350-10/KTZ450-06/KTZ550-04/KTZ650-02/KTZ700-02,其中KTH300-06适用于气密性零件,KTH380-08适用于水暖件,KTH350-10适用于阀门、汽车底盘。

金属材料学 简要总结

《金属材料学》复习总结 第1章:钢的合金化概论 一、名词解释: 合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。 过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。 回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。 回火脆性:淬火钢回火后出现韧性下降的现象。 二、填空题: 1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、 性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。 2.扩大A相区的元素有:Ni、Mn、Co(与Fe -γ无限互溶);C、N、Cu(有限互溶); α无限互溶);Mo、W、Ti(有限互溶); 扩大F相区的元素有:Cr、V(与Fe - 缩小F相区的元素有:B、Nb、Zr(锆)。 3.强C化物形成元素有:Ti、Zr、Nb、V; 弱C化物形成元素有:Mn、Fe; 4.强N化物形成元素有:Ti、Zr、Nb、V; 弱N化物形成元素有:Cr、Mn、Fe; 三、简答题: 1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何? ●按照合金含量分类:低合金钢:合金元素总量<5%; 中合金钢:合金元素总量在5%~10%; 高合金钢:合金元素总量>10%; ●按照含碳量的分类:低碳钢:w c≤0.25%; 中碳钢:w c=0.25%~0.6%; 高碳钢:w c>0.6%; 2.加入合金元素的作用? ①:与Fe、C作用,产生新相,组成新的组织与结构; ②:使性能改善。 3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么? (1)A形成元素均使S、E点向左下方移动,如Mn、Ni等; F形成元素均是S、E点向左上方移动,如Cr、V等 (2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织; E点向左上方移动,意味着出现Ld的碳含量会减小。 4.请简述合金元素对奥氏体形成的影响。 (1)碳化物形成元素可以提高碳在A中的扩散激活能,对A形成有一定阻碍作用; (2)非碳化物形成元素Ni、Co可以降低碳的扩散激活能,对A形成有一定加速作用。 (3)钢的A转化过程中存在合金元素和碳的均匀化过程,可以采用淬火加热来达到成 分均匀化。 5.有哪些合金元素强烈阻止奥氏体晶粒的长大?组织奥氏体晶粒长大有什么好处? (1)Ti、Nb、V等强碳化物形成元素会强烈阻止奥氏体晶粒长大,因为:Ti、Nb、V等

材料科学基础知识点大全

点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷 2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求 4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减. 肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ·· 非计量氧化物:1/2O2(g)=V M,,+ 2h·+ O O不等价参杂:Li2O=2Li M,+ O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g) 5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程. 6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降. 位错 7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错. 8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错 9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体

金属材料学重点

1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。 2.钢中的碳化物按点阵结构分为哪两大类?有什么特点?简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。 3.简述合金钢中碳化物形成规律。①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。 4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?A形成元素均使S、E点向左下方移动,F形成元素使S、E点向左上方移动。S点左移意味着共析碳量减小,E点左移意味着出现莱氏体的碳量降低。 5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。优先形成碳化物,余量溶入基体。淬火态:合金元素的分布与淬火工艺有关。溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。 6.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处?Ti、Nb、V等强碳化物形成元素(好处):能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。 7.哪些合金元素能显著提高钢的淬透性?提高钢的淬透性有何作用?在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni等。作用:一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。 8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?Cr、Mn、Ni、Mo、W、V、Si作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。 9.第一类回火脆性和第二类回火脆性是在什么条件下产生的?如何减轻和消除?第一类回火脆性:脆性特征:①不可逆;②与回火后冷速无关;③断口为晶界脆断。产生原因:钢在200-350℃回火时,Fe3C 薄膜在奥氏体晶界形成,削弱了晶界强度;杂质元素P、S、Bi等偏聚晶界,降低了晶界的结合强度。防止措施:①降低钢中杂质元素的含量;②用Al脱氧或加入Nb(铌)、V、Ti等合金元素细化奥氏体晶粒;③加入Cr、Si调整温度范围;④采用等温淬火代替淬火回火工艺。第二类回火脆性:脆性特征:①可逆;②回火后满冷产生,快冷抑制;③断口为晶界脆断。产生原因:钢在450-650℃回火时,杂质元素Sb、S、As或N、P等偏聚于晶界,形成网状或片状化合物,降低了晶界强度。高于回火脆性温度,杂质元素扩散离开了晶界或化合物分解了;快冷抑制了杂质元素的扩散。防止措施:①降低钢中的杂质元素;②加入能细化A晶粒的元素(Nb、V、Ti)③加入适量的Mo、W元素;④避免在第二类回火脆性温度范围回火 14.合金元素V在某些情况下能起到降低淬透性的作用,为什么?而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?钒和碳、氨、氧有极强的亲和力,与之形成相应的稳定化合物。钒在钢中主要以碳化物的形式存在。其主要作用是细化钢的组织和晶粒,降低钢的强度和韧性。当在高温溶入固溶体时,增加淬透性;反之,如以碳化物形式存在时,降低淬透性。 19.试解释40Cr13已属于过共析钢,而Cr12钢中已经出现共晶组织,属于莱氏体钢。①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%时,共析碳量小于0.4%,所以含0.4%C、13%Cr的40Cr13不锈钢就属于过共析钢。②Cr使E点左移,意味着出现莱氏体的碳含量减小。在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。但是如果加入了12%

相关文档